MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashgt12el2 Structured version   Visualization version   GIF version

Theorem hashgt12el2 14066
Description: In a set with more than one element are two different elements. (Contributed by Alexander van der Vekens, 15-Nov-2017.)
Assertion
Ref Expression
hashgt12el2 ((𝑉𝑊 ∧ 1 < (♯‘𝑉) ∧ 𝐴𝑉) → ∃𝑏𝑉 𝐴𝑏)
Distinct variable groups:   𝑉,𝑏   𝐴,𝑏
Allowed substitution hint:   𝑊(𝑏)

Proof of Theorem hashgt12el2
StepHypRef Expression
1 hash0 14010 . . . 4 (♯‘∅) = 0
2 fveq2 6756 . . . 4 (∅ = 𝑉 → (♯‘∅) = (♯‘𝑉))
31, 2eqtr3id 2793 . . 3 (∅ = 𝑉 → 0 = (♯‘𝑉))
4 breq2 5074 . . . . . . 7 ((♯‘𝑉) = 0 → (1 < (♯‘𝑉) ↔ 1 < 0))
54biimpd 228 . . . . . 6 ((♯‘𝑉) = 0 → (1 < (♯‘𝑉) → 1 < 0))
65eqcoms 2746 . . . . 5 (0 = (♯‘𝑉) → (1 < (♯‘𝑉) → 1 < 0))
7 0le1 11428 . . . . . 6 0 ≤ 1
8 0re 10908 . . . . . . . 8 0 ∈ ℝ
9 1re 10906 . . . . . . . 8 1 ∈ ℝ
108, 9lenlti 11025 . . . . . . 7 (0 ≤ 1 ↔ ¬ 1 < 0)
11 pm2.21 123 . . . . . . 7 (¬ 1 < 0 → (1 < 0 → ∃𝑏𝑉 𝐴𝑏))
1210, 11sylbi 216 . . . . . 6 (0 ≤ 1 → (1 < 0 → ∃𝑏𝑉 𝐴𝑏))
137, 12ax-mp 5 . . . . 5 (1 < 0 → ∃𝑏𝑉 𝐴𝑏)
146, 13syl6com 37 . . . 4 (1 < (♯‘𝑉) → (0 = (♯‘𝑉) → ∃𝑏𝑉 𝐴𝑏))
15143ad2ant2 1132 . . 3 ((𝑉𝑊 ∧ 1 < (♯‘𝑉) ∧ 𝐴𝑉) → (0 = (♯‘𝑉) → ∃𝑏𝑉 𝐴𝑏))
163, 15syl5com 31 . 2 (∅ = 𝑉 → ((𝑉𝑊 ∧ 1 < (♯‘𝑉) ∧ 𝐴𝑉) → ∃𝑏𝑉 𝐴𝑏))
17 df-ne 2943 . . . 4 (∅ ≠ 𝑉 ↔ ¬ ∅ = 𝑉)
18 necom 2996 . . . 4 (∅ ≠ 𝑉𝑉 ≠ ∅)
1917, 18bitr3i 276 . . 3 (¬ ∅ = 𝑉𝑉 ≠ ∅)
20 ralnex 3163 . . . . . . . . . 10 (∀𝑏𝑉 ¬ 𝐴𝑏 ↔ ¬ ∃𝑏𝑉 𝐴𝑏)
21 nne 2946 . . . . . . . . . . . 12 𝐴𝑏𝐴 = 𝑏)
22 eqcom 2745 . . . . . . . . . . . 12 (𝐴 = 𝑏𝑏 = 𝐴)
2321, 22bitri 274 . . . . . . . . . . 11 𝐴𝑏𝑏 = 𝐴)
2423ralbii 3090 . . . . . . . . . 10 (∀𝑏𝑉 ¬ 𝐴𝑏 ↔ ∀𝑏𝑉 𝑏 = 𝐴)
2520, 24bitr3i 276 . . . . . . . . 9 (¬ ∃𝑏𝑉 𝐴𝑏 ↔ ∀𝑏𝑉 𝑏 = 𝐴)
26 eqsn 4759 . . . . . . . . . . . . . 14 (𝑉 ≠ ∅ → (𝑉 = {𝐴} ↔ ∀𝑏𝑉 𝑏 = 𝐴))
2726bicomd 222 . . . . . . . . . . . . 13 (𝑉 ≠ ∅ → (∀𝑏𝑉 𝑏 = 𝐴𝑉 = {𝐴}))
2827adantl 481 . . . . . . . . . . . 12 ((𝑉𝑊𝑉 ≠ ∅) → (∀𝑏𝑉 𝑏 = 𝐴𝑉 = {𝐴}))
2928adantr 480 . . . . . . . . . . 11 (((𝑉𝑊𝑉 ≠ ∅) ∧ 𝐴𝑉) → (∀𝑏𝑉 𝑏 = 𝐴𝑉 = {𝐴}))
30 hashsnle1 14060 . . . . . . . . . . . . 13 (♯‘{𝐴}) ≤ 1
31 fveq2 6756 . . . . . . . . . . . . . . 15 (𝑉 = {𝐴} → (♯‘𝑉) = (♯‘{𝐴}))
3231breq1d 5080 . . . . . . . . . . . . . 14 (𝑉 = {𝐴} → ((♯‘𝑉) ≤ 1 ↔ (♯‘{𝐴}) ≤ 1))
3332adantl 481 . . . . . . . . . . . . 13 ((((𝑉𝑊𝑉 ≠ ∅) ∧ 𝐴𝑉) ∧ 𝑉 = {𝐴}) → ((♯‘𝑉) ≤ 1 ↔ (♯‘{𝐴}) ≤ 1))
3430, 33mpbiri 257 . . . . . . . . . . . 12 ((((𝑉𝑊𝑉 ≠ ∅) ∧ 𝐴𝑉) ∧ 𝑉 = {𝐴}) → (♯‘𝑉) ≤ 1)
3534ex 412 . . . . . . . . . . 11 (((𝑉𝑊𝑉 ≠ ∅) ∧ 𝐴𝑉) → (𝑉 = {𝐴} → (♯‘𝑉) ≤ 1))
3629, 35sylbid 239 . . . . . . . . . 10 (((𝑉𝑊𝑉 ≠ ∅) ∧ 𝐴𝑉) → (∀𝑏𝑉 𝑏 = 𝐴 → (♯‘𝑉) ≤ 1))
37 hashxrcl 14000 . . . . . . . . . . . . 13 (𝑉𝑊 → (♯‘𝑉) ∈ ℝ*)
3837adantr 480 . . . . . . . . . . . 12 ((𝑉𝑊𝑉 ≠ ∅) → (♯‘𝑉) ∈ ℝ*)
3938adantr 480 . . . . . . . . . . 11 (((𝑉𝑊𝑉 ≠ ∅) ∧ 𝐴𝑉) → (♯‘𝑉) ∈ ℝ*)
40 1xr 10965 . . . . . . . . . . 11 1 ∈ ℝ*
41 xrlenlt 10971 . . . . . . . . . . 11 (((♯‘𝑉) ∈ ℝ* ∧ 1 ∈ ℝ*) → ((♯‘𝑉) ≤ 1 ↔ ¬ 1 < (♯‘𝑉)))
4239, 40, 41sylancl 585 . . . . . . . . . 10 (((𝑉𝑊𝑉 ≠ ∅) ∧ 𝐴𝑉) → ((♯‘𝑉) ≤ 1 ↔ ¬ 1 < (♯‘𝑉)))
4336, 42sylibd 238 . . . . . . . . 9 (((𝑉𝑊𝑉 ≠ ∅) ∧ 𝐴𝑉) → (∀𝑏𝑉 𝑏 = 𝐴 → ¬ 1 < (♯‘𝑉)))
4425, 43syl5bi 241 . . . . . . . 8 (((𝑉𝑊𝑉 ≠ ∅) ∧ 𝐴𝑉) → (¬ ∃𝑏𝑉 𝐴𝑏 → ¬ 1 < (♯‘𝑉)))
4544con4d 115 . . . . . . 7 (((𝑉𝑊𝑉 ≠ ∅) ∧ 𝐴𝑉) → (1 < (♯‘𝑉) → ∃𝑏𝑉 𝐴𝑏))
4645exp31 419 . . . . . 6 (𝑉𝑊 → (𝑉 ≠ ∅ → (𝐴𝑉 → (1 < (♯‘𝑉) → ∃𝑏𝑉 𝐴𝑏))))
4746com24 95 . . . . 5 (𝑉𝑊 → (1 < (♯‘𝑉) → (𝐴𝑉 → (𝑉 ≠ ∅ → ∃𝑏𝑉 𝐴𝑏))))
48473imp 1109 . . . 4 ((𝑉𝑊 ∧ 1 < (♯‘𝑉) ∧ 𝐴𝑉) → (𝑉 ≠ ∅ → ∃𝑏𝑉 𝐴𝑏))
4948com12 32 . . 3 (𝑉 ≠ ∅ → ((𝑉𝑊 ∧ 1 < (♯‘𝑉) ∧ 𝐴𝑉) → ∃𝑏𝑉 𝐴𝑏))
5019, 49sylbi 216 . 2 (¬ ∅ = 𝑉 → ((𝑉𝑊 ∧ 1 < (♯‘𝑉) ∧ 𝐴𝑉) → ∃𝑏𝑉 𝐴𝑏))
5116, 50pm2.61i 182 1 ((𝑉𝑊 ∧ 1 < (♯‘𝑉) ∧ 𝐴𝑉) → ∃𝑏𝑉 𝐴𝑏)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  c0 4253  {csn 4558   class class class wbr 5070  cfv 6418  0cc0 10802  1c1 10803  *cxr 10939   < clt 10940  cle 10941  chash 13972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-fz 13169  df-hash 13973
This theorem is referenced by:  conngrv2edg  28460  3cyclfrgrrn  28551  copisnmnd  45251
  Copyright terms: Public domain W3C validator