MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashgt12el2 Structured version   Visualization version   GIF version

Theorem hashgt12el2 13787
Description: In a set with more than one element are two different elements. (Contributed by Alexander van der Vekens, 15-Nov-2017.)
Assertion
Ref Expression
hashgt12el2 ((𝑉𝑊 ∧ 1 < (♯‘𝑉) ∧ 𝐴𝑉) → ∃𝑏𝑉 𝐴𝑏)
Distinct variable groups:   𝑉,𝑏   𝐴,𝑏
Allowed substitution hint:   𝑊(𝑏)

Proof of Theorem hashgt12el2
StepHypRef Expression
1 hash0 13731 . . . 4 (♯‘∅) = 0
2 fveq2 6672 . . . 4 (∅ = 𝑉 → (♯‘∅) = (♯‘𝑉))
31, 2syl5eqr 2872 . . 3 (∅ = 𝑉 → 0 = (♯‘𝑉))
4 breq2 5072 . . . . . . 7 ((♯‘𝑉) = 0 → (1 < (♯‘𝑉) ↔ 1 < 0))
54biimpd 231 . . . . . 6 ((♯‘𝑉) = 0 → (1 < (♯‘𝑉) → 1 < 0))
65eqcoms 2831 . . . . 5 (0 = (♯‘𝑉) → (1 < (♯‘𝑉) → 1 < 0))
7 0le1 11165 . . . . . 6 0 ≤ 1
8 0re 10645 . . . . . . . 8 0 ∈ ℝ
9 1re 10643 . . . . . . . 8 1 ∈ ℝ
108, 9lenlti 10762 . . . . . . 7 (0 ≤ 1 ↔ ¬ 1 < 0)
11 pm2.21 123 . . . . . . 7 (¬ 1 < 0 → (1 < 0 → ∃𝑏𝑉 𝐴𝑏))
1210, 11sylbi 219 . . . . . 6 (0 ≤ 1 → (1 < 0 → ∃𝑏𝑉 𝐴𝑏))
137, 12ax-mp 5 . . . . 5 (1 < 0 → ∃𝑏𝑉 𝐴𝑏)
146, 13syl6com 37 . . . 4 (1 < (♯‘𝑉) → (0 = (♯‘𝑉) → ∃𝑏𝑉 𝐴𝑏))
15143ad2ant2 1130 . . 3 ((𝑉𝑊 ∧ 1 < (♯‘𝑉) ∧ 𝐴𝑉) → (0 = (♯‘𝑉) → ∃𝑏𝑉 𝐴𝑏))
163, 15syl5com 31 . 2 (∅ = 𝑉 → ((𝑉𝑊 ∧ 1 < (♯‘𝑉) ∧ 𝐴𝑉) → ∃𝑏𝑉 𝐴𝑏))
17 df-ne 3019 . . . 4 (∅ ≠ 𝑉 ↔ ¬ ∅ = 𝑉)
18 necom 3071 . . . 4 (∅ ≠ 𝑉𝑉 ≠ ∅)
1917, 18bitr3i 279 . . 3 (¬ ∅ = 𝑉𝑉 ≠ ∅)
20 ralnex 3238 . . . . . . . . . 10 (∀𝑏𝑉 ¬ 𝐴𝑏 ↔ ¬ ∃𝑏𝑉 𝐴𝑏)
21 nne 3022 . . . . . . . . . . . 12 𝐴𝑏𝐴 = 𝑏)
22 eqcom 2830 . . . . . . . . . . . 12 (𝐴 = 𝑏𝑏 = 𝐴)
2321, 22bitri 277 . . . . . . . . . . 11 𝐴𝑏𝑏 = 𝐴)
2423ralbii 3167 . . . . . . . . . 10 (∀𝑏𝑉 ¬ 𝐴𝑏 ↔ ∀𝑏𝑉 𝑏 = 𝐴)
2520, 24bitr3i 279 . . . . . . . . 9 (¬ ∃𝑏𝑉 𝐴𝑏 ↔ ∀𝑏𝑉 𝑏 = 𝐴)
26 eqsn 4764 . . . . . . . . . . . . . 14 (𝑉 ≠ ∅ → (𝑉 = {𝐴} ↔ ∀𝑏𝑉 𝑏 = 𝐴))
2726bicomd 225 . . . . . . . . . . . . 13 (𝑉 ≠ ∅ → (∀𝑏𝑉 𝑏 = 𝐴𝑉 = {𝐴}))
2827adantl 484 . . . . . . . . . . . 12 ((𝑉𝑊𝑉 ≠ ∅) → (∀𝑏𝑉 𝑏 = 𝐴𝑉 = {𝐴}))
2928adantr 483 . . . . . . . . . . 11 (((𝑉𝑊𝑉 ≠ ∅) ∧ 𝐴𝑉) → (∀𝑏𝑉 𝑏 = 𝐴𝑉 = {𝐴}))
30 hashsnle1 13781 . . . . . . . . . . . . 13 (♯‘{𝐴}) ≤ 1
31 fveq2 6672 . . . . . . . . . . . . . . 15 (𝑉 = {𝐴} → (♯‘𝑉) = (♯‘{𝐴}))
3231breq1d 5078 . . . . . . . . . . . . . 14 (𝑉 = {𝐴} → ((♯‘𝑉) ≤ 1 ↔ (♯‘{𝐴}) ≤ 1))
3332adantl 484 . . . . . . . . . . . . 13 ((((𝑉𝑊𝑉 ≠ ∅) ∧ 𝐴𝑉) ∧ 𝑉 = {𝐴}) → ((♯‘𝑉) ≤ 1 ↔ (♯‘{𝐴}) ≤ 1))
3430, 33mpbiri 260 . . . . . . . . . . . 12 ((((𝑉𝑊𝑉 ≠ ∅) ∧ 𝐴𝑉) ∧ 𝑉 = {𝐴}) → (♯‘𝑉) ≤ 1)
3534ex 415 . . . . . . . . . . 11 (((𝑉𝑊𝑉 ≠ ∅) ∧ 𝐴𝑉) → (𝑉 = {𝐴} → (♯‘𝑉) ≤ 1))
3629, 35sylbid 242 . . . . . . . . . 10 (((𝑉𝑊𝑉 ≠ ∅) ∧ 𝐴𝑉) → (∀𝑏𝑉 𝑏 = 𝐴 → (♯‘𝑉) ≤ 1))
37 hashxrcl 13721 . . . . . . . . . . . . 13 (𝑉𝑊 → (♯‘𝑉) ∈ ℝ*)
3837adantr 483 . . . . . . . . . . . 12 ((𝑉𝑊𝑉 ≠ ∅) → (♯‘𝑉) ∈ ℝ*)
3938adantr 483 . . . . . . . . . . 11 (((𝑉𝑊𝑉 ≠ ∅) ∧ 𝐴𝑉) → (♯‘𝑉) ∈ ℝ*)
40 1xr 10702 . . . . . . . . . . 11 1 ∈ ℝ*
41 xrlenlt 10708 . . . . . . . . . . 11 (((♯‘𝑉) ∈ ℝ* ∧ 1 ∈ ℝ*) → ((♯‘𝑉) ≤ 1 ↔ ¬ 1 < (♯‘𝑉)))
4239, 40, 41sylancl 588 . . . . . . . . . 10 (((𝑉𝑊𝑉 ≠ ∅) ∧ 𝐴𝑉) → ((♯‘𝑉) ≤ 1 ↔ ¬ 1 < (♯‘𝑉)))
4336, 42sylibd 241 . . . . . . . . 9 (((𝑉𝑊𝑉 ≠ ∅) ∧ 𝐴𝑉) → (∀𝑏𝑉 𝑏 = 𝐴 → ¬ 1 < (♯‘𝑉)))
4425, 43syl5bi 244 . . . . . . . 8 (((𝑉𝑊𝑉 ≠ ∅) ∧ 𝐴𝑉) → (¬ ∃𝑏𝑉 𝐴𝑏 → ¬ 1 < (♯‘𝑉)))
4544con4d 115 . . . . . . 7 (((𝑉𝑊𝑉 ≠ ∅) ∧ 𝐴𝑉) → (1 < (♯‘𝑉) → ∃𝑏𝑉 𝐴𝑏))
4645exp31 422 . . . . . 6 (𝑉𝑊 → (𝑉 ≠ ∅ → (𝐴𝑉 → (1 < (♯‘𝑉) → ∃𝑏𝑉 𝐴𝑏))))
4746com24 95 . . . . 5 (𝑉𝑊 → (1 < (♯‘𝑉) → (𝐴𝑉 → (𝑉 ≠ ∅ → ∃𝑏𝑉 𝐴𝑏))))
48473imp 1107 . . . 4 ((𝑉𝑊 ∧ 1 < (♯‘𝑉) ∧ 𝐴𝑉) → (𝑉 ≠ ∅ → ∃𝑏𝑉 𝐴𝑏))
4948com12 32 . . 3 (𝑉 ≠ ∅ → ((𝑉𝑊 ∧ 1 < (♯‘𝑉) ∧ 𝐴𝑉) → ∃𝑏𝑉 𝐴𝑏))
5019, 49sylbi 219 . 2 (¬ ∅ = 𝑉 → ((𝑉𝑊 ∧ 1 < (♯‘𝑉) ∧ 𝐴𝑉) → ∃𝑏𝑉 𝐴𝑏))
5116, 50pm2.61i 184 1 ((𝑉𝑊 ∧ 1 < (♯‘𝑉) ∧ 𝐴𝑉) → ∃𝑏𝑉 𝐴𝑏)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3018  wral 3140  wrex 3141  c0 4293  {csn 4569   class class class wbr 5068  cfv 6357  0cc0 10539  1c1 10540  *cxr 10676   < clt 10677  cle 10678  chash 13693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-n0 11901  df-xnn0 11971  df-z 11985  df-uz 12247  df-fz 12896  df-hash 13694
This theorem is referenced by:  conngrv2edg  27976  3cyclfrgrrn  28067  copisnmnd  44083
  Copyright terms: Public domain W3C validator