MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashgt12el2 Structured version   Visualization version   GIF version

Theorem hashgt12el2 14217
Description: In a set with more than one element are two different elements. (Contributed by Alexander van der Vekens, 15-Nov-2017.)
Assertion
Ref Expression
hashgt12el2 ((𝑉𝑊 ∧ 1 < (♯‘𝑉) ∧ 𝐴𝑉) → ∃𝑏𝑉 𝐴𝑏)
Distinct variable groups:   𝑉,𝑏   𝐴,𝑏
Allowed substitution hint:   𝑊(𝑏)

Proof of Theorem hashgt12el2
StepHypRef Expression
1 hash0 14161 . . . 4 (♯‘∅) = 0
2 fveq2 6812 . . . 4 (∅ = 𝑉 → (♯‘∅) = (♯‘𝑉))
31, 2eqtr3id 2791 . . 3 (∅ = 𝑉 → 0 = (♯‘𝑉))
4 breq2 5091 . . . . . . 7 ((♯‘𝑉) = 0 → (1 < (♯‘𝑉) ↔ 1 < 0))
54biimpd 228 . . . . . 6 ((♯‘𝑉) = 0 → (1 < (♯‘𝑉) → 1 < 0))
65eqcoms 2745 . . . . 5 (0 = (♯‘𝑉) → (1 < (♯‘𝑉) → 1 < 0))
7 0le1 11578 . . . . . 6 0 ≤ 1
8 0re 11057 . . . . . . . 8 0 ∈ ℝ
9 1re 11055 . . . . . . . 8 1 ∈ ℝ
108, 9lenlti 11175 . . . . . . 7 (0 ≤ 1 ↔ ¬ 1 < 0)
11 pm2.21 123 . . . . . . 7 (¬ 1 < 0 → (1 < 0 → ∃𝑏𝑉 𝐴𝑏))
1210, 11sylbi 216 . . . . . 6 (0 ≤ 1 → (1 < 0 → ∃𝑏𝑉 𝐴𝑏))
137, 12ax-mp 5 . . . . 5 (1 < 0 → ∃𝑏𝑉 𝐴𝑏)
146, 13syl6com 37 . . . 4 (1 < (♯‘𝑉) → (0 = (♯‘𝑉) → ∃𝑏𝑉 𝐴𝑏))
15143ad2ant2 1133 . . 3 ((𝑉𝑊 ∧ 1 < (♯‘𝑉) ∧ 𝐴𝑉) → (0 = (♯‘𝑉) → ∃𝑏𝑉 𝐴𝑏))
163, 15syl5com 31 . 2 (∅ = 𝑉 → ((𝑉𝑊 ∧ 1 < (♯‘𝑉) ∧ 𝐴𝑉) → ∃𝑏𝑉 𝐴𝑏))
17 df-ne 2942 . . . 4 (∅ ≠ 𝑉 ↔ ¬ ∅ = 𝑉)
18 necom 2995 . . . 4 (∅ ≠ 𝑉𝑉 ≠ ∅)
1917, 18bitr3i 276 . . 3 (¬ ∅ = 𝑉𝑉 ≠ ∅)
20 ralnex 3073 . . . . . . . . . 10 (∀𝑏𝑉 ¬ 𝐴𝑏 ↔ ¬ ∃𝑏𝑉 𝐴𝑏)
21 nne 2945 . . . . . . . . . . . 12 𝐴𝑏𝐴 = 𝑏)
22 eqcom 2744 . . . . . . . . . . . 12 (𝐴 = 𝑏𝑏 = 𝐴)
2321, 22bitri 274 . . . . . . . . . . 11 𝐴𝑏𝑏 = 𝐴)
2423ralbii 3093 . . . . . . . . . 10 (∀𝑏𝑉 ¬ 𝐴𝑏 ↔ ∀𝑏𝑉 𝑏 = 𝐴)
2520, 24bitr3i 276 . . . . . . . . 9 (¬ ∃𝑏𝑉 𝐴𝑏 ↔ ∀𝑏𝑉 𝑏 = 𝐴)
26 eqsn 4774 . . . . . . . . . . . . . 14 (𝑉 ≠ ∅ → (𝑉 = {𝐴} ↔ ∀𝑏𝑉 𝑏 = 𝐴))
2726bicomd 222 . . . . . . . . . . . . 13 (𝑉 ≠ ∅ → (∀𝑏𝑉 𝑏 = 𝐴𝑉 = {𝐴}))
2827adantl 482 . . . . . . . . . . . 12 ((𝑉𝑊𝑉 ≠ ∅) → (∀𝑏𝑉 𝑏 = 𝐴𝑉 = {𝐴}))
2928adantr 481 . . . . . . . . . . 11 (((𝑉𝑊𝑉 ≠ ∅) ∧ 𝐴𝑉) → (∀𝑏𝑉 𝑏 = 𝐴𝑉 = {𝐴}))
30 hashsnle1 14211 . . . . . . . . . . . . 13 (♯‘{𝐴}) ≤ 1
31 fveq2 6812 . . . . . . . . . . . . . . 15 (𝑉 = {𝐴} → (♯‘𝑉) = (♯‘{𝐴}))
3231breq1d 5097 . . . . . . . . . . . . . 14 (𝑉 = {𝐴} → ((♯‘𝑉) ≤ 1 ↔ (♯‘{𝐴}) ≤ 1))
3332adantl 482 . . . . . . . . . . . . 13 ((((𝑉𝑊𝑉 ≠ ∅) ∧ 𝐴𝑉) ∧ 𝑉 = {𝐴}) → ((♯‘𝑉) ≤ 1 ↔ (♯‘{𝐴}) ≤ 1))
3430, 33mpbiri 257 . . . . . . . . . . . 12 ((((𝑉𝑊𝑉 ≠ ∅) ∧ 𝐴𝑉) ∧ 𝑉 = {𝐴}) → (♯‘𝑉) ≤ 1)
3534ex 413 . . . . . . . . . . 11 (((𝑉𝑊𝑉 ≠ ∅) ∧ 𝐴𝑉) → (𝑉 = {𝐴} → (♯‘𝑉) ≤ 1))
3629, 35sylbid 239 . . . . . . . . . 10 (((𝑉𝑊𝑉 ≠ ∅) ∧ 𝐴𝑉) → (∀𝑏𝑉 𝑏 = 𝐴 → (♯‘𝑉) ≤ 1))
37 hashxrcl 14151 . . . . . . . . . . . . 13 (𝑉𝑊 → (♯‘𝑉) ∈ ℝ*)
3837adantr 481 . . . . . . . . . . . 12 ((𝑉𝑊𝑉 ≠ ∅) → (♯‘𝑉) ∈ ℝ*)
3938adantr 481 . . . . . . . . . . 11 (((𝑉𝑊𝑉 ≠ ∅) ∧ 𝐴𝑉) → (♯‘𝑉) ∈ ℝ*)
40 1xr 11114 . . . . . . . . . . 11 1 ∈ ℝ*
41 xrlenlt 11120 . . . . . . . . . . 11 (((♯‘𝑉) ∈ ℝ* ∧ 1 ∈ ℝ*) → ((♯‘𝑉) ≤ 1 ↔ ¬ 1 < (♯‘𝑉)))
4239, 40, 41sylancl 586 . . . . . . . . . 10 (((𝑉𝑊𝑉 ≠ ∅) ∧ 𝐴𝑉) → ((♯‘𝑉) ≤ 1 ↔ ¬ 1 < (♯‘𝑉)))
4336, 42sylibd 238 . . . . . . . . 9 (((𝑉𝑊𝑉 ≠ ∅) ∧ 𝐴𝑉) → (∀𝑏𝑉 𝑏 = 𝐴 → ¬ 1 < (♯‘𝑉)))
4425, 43biimtrid 241 . . . . . . . 8 (((𝑉𝑊𝑉 ≠ ∅) ∧ 𝐴𝑉) → (¬ ∃𝑏𝑉 𝐴𝑏 → ¬ 1 < (♯‘𝑉)))
4544con4d 115 . . . . . . 7 (((𝑉𝑊𝑉 ≠ ∅) ∧ 𝐴𝑉) → (1 < (♯‘𝑉) → ∃𝑏𝑉 𝐴𝑏))
4645exp31 420 . . . . . 6 (𝑉𝑊 → (𝑉 ≠ ∅ → (𝐴𝑉 → (1 < (♯‘𝑉) → ∃𝑏𝑉 𝐴𝑏))))
4746com24 95 . . . . 5 (𝑉𝑊 → (1 < (♯‘𝑉) → (𝐴𝑉 → (𝑉 ≠ ∅ → ∃𝑏𝑉 𝐴𝑏))))
48473imp 1110 . . . 4 ((𝑉𝑊 ∧ 1 < (♯‘𝑉) ∧ 𝐴𝑉) → (𝑉 ≠ ∅ → ∃𝑏𝑉 𝐴𝑏))
4948com12 32 . . 3 (𝑉 ≠ ∅ → ((𝑉𝑊 ∧ 1 < (♯‘𝑉) ∧ 𝐴𝑉) → ∃𝑏𝑉 𝐴𝑏))
5019, 49sylbi 216 . 2 (¬ ∅ = 𝑉 → ((𝑉𝑊 ∧ 1 < (♯‘𝑉) ∧ 𝐴𝑉) → ∃𝑏𝑉 𝐴𝑏))
5116, 50pm2.61i 182 1 ((𝑉𝑊 ∧ 1 < (♯‘𝑉) ∧ 𝐴𝑉) → ∃𝑏𝑉 𝐴𝑏)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1540  wcel 2105  wne 2941  wral 3062  wrex 3071  c0 4267  {csn 4571   class class class wbr 5087  cfv 6466  0cc0 10951  1c1 10952  *cxr 11088   < clt 11089  cle 11090  chash 14124
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-sep 5238  ax-nul 5245  ax-pow 5303  ax-pr 5367  ax-un 7630  ax-cnex 11007  ax-resscn 11008  ax-1cn 11009  ax-icn 11010  ax-addcl 11011  ax-addrcl 11012  ax-mulcl 11013  ax-mulrcl 11014  ax-mulcom 11015  ax-addass 11016  ax-mulass 11017  ax-distr 11018  ax-i2m1 11019  ax-1ne0 11020  ax-1rid 11021  ax-rnegex 11022  ax-rrecex 11023  ax-cnre 11024  ax-pre-lttri 11025  ax-pre-lttrn 11026  ax-pre-ltadd 11027  ax-pre-mulgt0 11028
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4268  df-if 4472  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4851  df-int 4893  df-iun 4939  df-br 5088  df-opab 5150  df-mpt 5171  df-tr 5205  df-id 5507  df-eprel 5513  df-po 5521  df-so 5522  df-fr 5563  df-we 5565  df-xp 5614  df-rel 5615  df-cnv 5616  df-co 5617  df-dm 5618  df-rn 5619  df-res 5620  df-ima 5621  df-pred 6225  df-ord 6292  df-on 6293  df-lim 6294  df-suc 6295  df-iota 6418  df-fun 6468  df-fn 6469  df-f 6470  df-f1 6471  df-fo 6472  df-f1o 6473  df-fv 6474  df-riota 7274  df-ov 7320  df-oprab 7321  df-mpo 7322  df-om 7760  df-1st 7878  df-2nd 7879  df-frecs 8146  df-wrecs 8177  df-recs 8251  df-rdg 8290  df-1o 8346  df-er 8548  df-en 8784  df-dom 8785  df-sdom 8786  df-fin 8787  df-card 9775  df-pnf 11091  df-mnf 11092  df-xr 11093  df-ltxr 11094  df-le 11095  df-sub 11287  df-neg 11288  df-nn 12054  df-n0 12314  df-xnn0 12386  df-z 12400  df-uz 12663  df-fz 13320  df-hash 14125
This theorem is referenced by:  conngrv2edg  28695  3cyclfrgrrn  28786  copisnmnd  45628
  Copyright terms: Public domain W3C validator