Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngoueqz Structured version   Visualization version   GIF version

Theorem rngoueqz 37934
Description: Obsolete as of 23-Jan-2020. Use 0ring01eqbi 20441 instead. In a unital ring the zero equals the ring unity iff the ring is the zero ring. (Contributed by FL, 14-Feb-2010.) (New usage is discouraged.)
Hypotheses
Ref Expression
uznzr.1 𝐺 = (1st𝑅)
uznzr.2 𝐻 = (2nd𝑅)
uznzr.3 𝑍 = (GId‘𝐺)
uznzr.4 𝑈 = (GId‘𝐻)
uznzr.5 𝑋 = ran 𝐺
Assertion
Ref Expression
rngoueqz (𝑅 ∈ RingOps → (𝑋 ≈ 1o𝑈 = 𝑍))

Proof of Theorem rngoueqz
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 uznzr.1 . . . 4 𝐺 = (1st𝑅)
2 uznzr.5 . . . 4 𝑋 = ran 𝐺
3 uznzr.3 . . . 4 𝑍 = (GId‘𝐺)
41, 2, 3rngo0cl 37913 . . 3 (𝑅 ∈ RingOps → 𝑍𝑋)
5 en1eqsn 9219 . . . . . 6 ((𝑍𝑋𝑋 ≈ 1o) → 𝑋 = {𝑍})
61rneqi 5901 . . . . . . . 8 ran 𝐺 = ran (1st𝑅)
7 uznzr.2 . . . . . . . 8 𝐻 = (2nd𝑅)
8 uznzr.4 . . . . . . . 8 𝑈 = (GId‘𝐻)
96, 7, 8rngo1cl 37933 . . . . . . 7 (𝑅 ∈ RingOps → 𝑈 ∈ ran 𝐺)
10 eleq2 2817 . . . . . . . . . 10 (𝑋 = {𝑍} → (𝑈𝑋𝑈 ∈ {𝑍}))
1110biimpd 229 . . . . . . . . 9 (𝑋 = {𝑍} → (𝑈𝑋𝑈 ∈ {𝑍}))
12 elsni 4606 . . . . . . . . 9 (𝑈 ∈ {𝑍} → 𝑈 = 𝑍)
1311, 12syl6com 37 . . . . . . . 8 (𝑈𝑋 → (𝑋 = {𝑍} → 𝑈 = 𝑍))
142eqcomi 2738 . . . . . . . 8 ran 𝐺 = 𝑋
1513, 14eleq2s 2846 . . . . . . 7 (𝑈 ∈ ran 𝐺 → (𝑋 = {𝑍} → 𝑈 = 𝑍))
169, 15syl 17 . . . . . 6 (𝑅 ∈ RingOps → (𝑋 = {𝑍} → 𝑈 = 𝑍))
175, 16syl5com 31 . . . . 5 ((𝑍𝑋𝑋 ≈ 1o) → (𝑅 ∈ RingOps → 𝑈 = 𝑍))
1817ex 412 . . . 4 (𝑍𝑋 → (𝑋 ≈ 1o → (𝑅 ∈ RingOps → 𝑈 = 𝑍)))
1918com23 86 . . 3 (𝑍𝑋 → (𝑅 ∈ RingOps → (𝑋 ≈ 1o𝑈 = 𝑍)))
204, 19mpcom 38 . 2 (𝑅 ∈ RingOps → (𝑋 ≈ 1o𝑈 = 𝑍))
211, 2rngone0 37905 . . 3 (𝑅 ∈ RingOps → 𝑋 ≠ ∅)
22 oveq2 7395 . . . . . 6 (𝑈 = 𝑍 → (𝑥𝐻𝑈) = (𝑥𝐻𝑍))
2322ralrimivw 3129 . . . . 5 (𝑈 = 𝑍 → ∀𝑥𝑋 (𝑥𝐻𝑈) = (𝑥𝐻𝑍))
243, 2, 1, 7rngorz 37917 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝑥𝑋) → (𝑥𝐻𝑍) = 𝑍)
2524ralrimiva 3125 . . . . . 6 (𝑅 ∈ RingOps → ∀𝑥𝑋 (𝑥𝐻𝑍) = 𝑍)
262, 6eqtri 2752 . . . . . . . . 9 𝑋 = ran (1st𝑅)
277, 26, 8rngoridm 37932 . . . . . . . 8 ((𝑅 ∈ RingOps ∧ 𝑥𝑋) → (𝑥𝐻𝑈) = 𝑥)
2827ralrimiva 3125 . . . . . . 7 (𝑅 ∈ RingOps → ∀𝑥𝑋 (𝑥𝐻𝑈) = 𝑥)
29 r19.26 3091 . . . . . . . . . 10 (∀𝑥𝑋 ((𝑥𝐻𝑈) = 𝑥 ∧ (𝑥𝐻𝑈) = (𝑥𝐻𝑍)) ↔ (∀𝑥𝑋 (𝑥𝐻𝑈) = 𝑥 ∧ ∀𝑥𝑋 (𝑥𝐻𝑈) = (𝑥𝐻𝑍)))
30 r19.26 3091 . . . . . . . . . . . 12 (∀𝑥𝑋 (((𝑥𝐻𝑈) = 𝑥 ∧ (𝑥𝐻𝑈) = (𝑥𝐻𝑍)) ∧ (𝑥𝐻𝑍) = 𝑍) ↔ (∀𝑥𝑋 ((𝑥𝐻𝑈) = 𝑥 ∧ (𝑥𝐻𝑈) = (𝑥𝐻𝑍)) ∧ ∀𝑥𝑋 (𝑥𝐻𝑍) = 𝑍))
31 eqtr 2749 . . . . . . . . . . . . . . . . . 18 ((𝑥 = (𝑥𝐻𝑈) ∧ (𝑥𝐻𝑈) = (𝑥𝐻𝑍)) → 𝑥 = (𝑥𝐻𝑍))
32 eqtr 2749 . . . . . . . . . . . . . . . . . . 19 ((𝑥 = (𝑥𝐻𝑍) ∧ (𝑥𝐻𝑍) = 𝑍) → 𝑥 = 𝑍)
3332ex 412 . . . . . . . . . . . . . . . . . 18 (𝑥 = (𝑥𝐻𝑍) → ((𝑥𝐻𝑍) = 𝑍𝑥 = 𝑍))
3431, 33syl 17 . . . . . . . . . . . . . . . . 17 ((𝑥 = (𝑥𝐻𝑈) ∧ (𝑥𝐻𝑈) = (𝑥𝐻𝑍)) → ((𝑥𝐻𝑍) = 𝑍𝑥 = 𝑍))
3534ex 412 . . . . . . . . . . . . . . . 16 (𝑥 = (𝑥𝐻𝑈) → ((𝑥𝐻𝑈) = (𝑥𝐻𝑍) → ((𝑥𝐻𝑍) = 𝑍𝑥 = 𝑍)))
3635eqcoms 2737 . . . . . . . . . . . . . . 15 ((𝑥𝐻𝑈) = 𝑥 → ((𝑥𝐻𝑈) = (𝑥𝐻𝑍) → ((𝑥𝐻𝑍) = 𝑍𝑥 = 𝑍)))
3736imp31 417 . . . . . . . . . . . . . 14 ((((𝑥𝐻𝑈) = 𝑥 ∧ (𝑥𝐻𝑈) = (𝑥𝐻𝑍)) ∧ (𝑥𝐻𝑍) = 𝑍) → 𝑥 = 𝑍)
3837ralimi 3066 . . . . . . . . . . . . 13 (∀𝑥𝑋 (((𝑥𝐻𝑈) = 𝑥 ∧ (𝑥𝐻𝑈) = (𝑥𝐻𝑍)) ∧ (𝑥𝐻𝑍) = 𝑍) → ∀𝑥𝑋 𝑥 = 𝑍)
39 eqsn 4793 . . . . . . . . . . . . . . 15 (𝑋 ≠ ∅ → (𝑋 = {𝑍} ↔ ∀𝑥𝑋 𝑥 = 𝑍))
40 ensn1g 8993 . . . . . . . . . . . . . . . . 17 (𝑍𝑋 → {𝑍} ≈ 1o)
414, 40syl 17 . . . . . . . . . . . . . . . 16 (𝑅 ∈ RingOps → {𝑍} ≈ 1o)
42 breq1 5110 . . . . . . . . . . . . . . . 16 (𝑋 = {𝑍} → (𝑋 ≈ 1o ↔ {𝑍} ≈ 1o))
4341, 42imbitrrid 246 . . . . . . . . . . . . . . 15 (𝑋 = {𝑍} → (𝑅 ∈ RingOps → 𝑋 ≈ 1o))
4439, 43biimtrrdi 254 . . . . . . . . . . . . . 14 (𝑋 ≠ ∅ → (∀𝑥𝑋 𝑥 = 𝑍 → (𝑅 ∈ RingOps → 𝑋 ≈ 1o)))
4544com3l 89 . . . . . . . . . . . . 13 (∀𝑥𝑋 𝑥 = 𝑍 → (𝑅 ∈ RingOps → (𝑋 ≠ ∅ → 𝑋 ≈ 1o)))
4638, 45syl 17 . . . . . . . . . . . 12 (∀𝑥𝑋 (((𝑥𝐻𝑈) = 𝑥 ∧ (𝑥𝐻𝑈) = (𝑥𝐻𝑍)) ∧ (𝑥𝐻𝑍) = 𝑍) → (𝑅 ∈ RingOps → (𝑋 ≠ ∅ → 𝑋 ≈ 1o)))
4730, 46sylbir 235 . . . . . . . . . . 11 ((∀𝑥𝑋 ((𝑥𝐻𝑈) = 𝑥 ∧ (𝑥𝐻𝑈) = (𝑥𝐻𝑍)) ∧ ∀𝑥𝑋 (𝑥𝐻𝑍) = 𝑍) → (𝑅 ∈ RingOps → (𝑋 ≠ ∅ → 𝑋 ≈ 1o)))
4847ex 412 . . . . . . . . . 10 (∀𝑥𝑋 ((𝑥𝐻𝑈) = 𝑥 ∧ (𝑥𝐻𝑈) = (𝑥𝐻𝑍)) → (∀𝑥𝑋 (𝑥𝐻𝑍) = 𝑍 → (𝑅 ∈ RingOps → (𝑋 ≠ ∅ → 𝑋 ≈ 1o))))
4929, 48sylbir 235 . . . . . . . . 9 ((∀𝑥𝑋 (𝑥𝐻𝑈) = 𝑥 ∧ ∀𝑥𝑋 (𝑥𝐻𝑈) = (𝑥𝐻𝑍)) → (∀𝑥𝑋 (𝑥𝐻𝑍) = 𝑍 → (𝑅 ∈ RingOps → (𝑋 ≠ ∅ → 𝑋 ≈ 1o))))
5049ex 412 . . . . . . . 8 (∀𝑥𝑋 (𝑥𝐻𝑈) = 𝑥 → (∀𝑥𝑋 (𝑥𝐻𝑈) = (𝑥𝐻𝑍) → (∀𝑥𝑋 (𝑥𝐻𝑍) = 𝑍 → (𝑅 ∈ RingOps → (𝑋 ≠ ∅ → 𝑋 ≈ 1o)))))
5150com24 95 . . . . . . 7 (∀𝑥𝑋 (𝑥𝐻𝑈) = 𝑥 → (𝑅 ∈ RingOps → (∀𝑥𝑋 (𝑥𝐻𝑍) = 𝑍 → (∀𝑥𝑋 (𝑥𝐻𝑈) = (𝑥𝐻𝑍) → (𝑋 ≠ ∅ → 𝑋 ≈ 1o)))))
5228, 51mpcom 38 . . . . . 6 (𝑅 ∈ RingOps → (∀𝑥𝑋 (𝑥𝐻𝑍) = 𝑍 → (∀𝑥𝑋 (𝑥𝐻𝑈) = (𝑥𝐻𝑍) → (𝑋 ≠ ∅ → 𝑋 ≈ 1o))))
5325, 52mpd 15 . . . . 5 (𝑅 ∈ RingOps → (∀𝑥𝑋 (𝑥𝐻𝑈) = (𝑥𝐻𝑍) → (𝑋 ≠ ∅ → 𝑋 ≈ 1o)))
5423, 53syl5com 31 . . . 4 (𝑈 = 𝑍 → (𝑅 ∈ RingOps → (𝑋 ≠ ∅ → 𝑋 ≈ 1o)))
5554com13 88 . . 3 (𝑋 ≠ ∅ → (𝑅 ∈ RingOps → (𝑈 = 𝑍𝑋 ≈ 1o)))
5621, 55mpcom 38 . 2 (𝑅 ∈ RingOps → (𝑈 = 𝑍𝑋 ≈ 1o))
5720, 56impbid 212 1 (𝑅 ∈ RingOps → (𝑋 ≈ 1o𝑈 = 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  c0 4296  {csn 4589   class class class wbr 5107  ran crn 5639  cfv 6511  (class class class)co 7387  1st c1st 7966  2nd c2nd 7967  1oc1o 8427  cen 8915  GIdcgi 30419  RingOpscrngo 37888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-1st 7968  df-2nd 7969  df-1o 8434  df-en 8919  df-grpo 30422  df-gid 30423  df-ablo 30474  df-ass 37837  df-exid 37839  df-mgmOLD 37843  df-sgrOLD 37855  df-mndo 37861  df-rngo 37889
This theorem is referenced by:  dvrunz  37948  isdmn3  38068
  Copyright terms: Public domain W3C validator