Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngoueqz Structured version   Visualization version   GIF version

Theorem rngoueqz 36399
Description: Obsolete as of 23-Jan-2020. Use 0ring01eqbi 20743 instead. In a unital ring the zero equals the ring unity iff the ring is the zero ring. (Contributed by FL, 14-Feb-2010.) (New usage is discouraged.)
Hypotheses
Ref Expression
uznzr.1 𝐺 = (1st𝑅)
uznzr.2 𝐻 = (2nd𝑅)
uznzr.3 𝑍 = (GId‘𝐺)
uznzr.4 𝑈 = (GId‘𝐻)
uznzr.5 𝑋 = ran 𝐺
Assertion
Ref Expression
rngoueqz (𝑅 ∈ RingOps → (𝑋 ≈ 1o𝑈 = 𝑍))

Proof of Theorem rngoueqz
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 uznzr.1 . . . 4 𝐺 = (1st𝑅)
2 uznzr.5 . . . 4 𝑋 = ran 𝐺
3 uznzr.3 . . . 4 𝑍 = (GId‘𝐺)
41, 2, 3rngo0cl 36378 . . 3 (𝑅 ∈ RingOps → 𝑍𝑋)
5 en1eqsn 9218 . . . . . 6 ((𝑍𝑋𝑋 ≈ 1o) → 𝑋 = {𝑍})
61rneqi 5892 . . . . . . . 8 ran 𝐺 = ran (1st𝑅)
7 uznzr.2 . . . . . . . 8 𝐻 = (2nd𝑅)
8 uznzr.4 . . . . . . . 8 𝑈 = (GId‘𝐻)
96, 7, 8rngo1cl 36398 . . . . . . 7 (𝑅 ∈ RingOps → 𝑈 ∈ ran 𝐺)
10 eleq2 2826 . . . . . . . . . 10 (𝑋 = {𝑍} → (𝑈𝑋𝑈 ∈ {𝑍}))
1110biimpd 228 . . . . . . . . 9 (𝑋 = {𝑍} → (𝑈𝑋𝑈 ∈ {𝑍}))
12 elsni 4603 . . . . . . . . 9 (𝑈 ∈ {𝑍} → 𝑈 = 𝑍)
1311, 12syl6com 37 . . . . . . . 8 (𝑈𝑋 → (𝑋 = {𝑍} → 𝑈 = 𝑍))
142eqcomi 2745 . . . . . . . 8 ran 𝐺 = 𝑋
1513, 14eleq2s 2856 . . . . . . 7 (𝑈 ∈ ran 𝐺 → (𝑋 = {𝑍} → 𝑈 = 𝑍))
169, 15syl 17 . . . . . 6 (𝑅 ∈ RingOps → (𝑋 = {𝑍} → 𝑈 = 𝑍))
175, 16syl5com 31 . . . . 5 ((𝑍𝑋𝑋 ≈ 1o) → (𝑅 ∈ RingOps → 𝑈 = 𝑍))
1817ex 413 . . . 4 (𝑍𝑋 → (𝑋 ≈ 1o → (𝑅 ∈ RingOps → 𝑈 = 𝑍)))
1918com23 86 . . 3 (𝑍𝑋 → (𝑅 ∈ RingOps → (𝑋 ≈ 1o𝑈 = 𝑍)))
204, 19mpcom 38 . 2 (𝑅 ∈ RingOps → (𝑋 ≈ 1o𝑈 = 𝑍))
211, 2rngone0 36370 . . 3 (𝑅 ∈ RingOps → 𝑋 ≠ ∅)
22 oveq2 7365 . . . . . 6 (𝑈 = 𝑍 → (𝑥𝐻𝑈) = (𝑥𝐻𝑍))
2322ralrimivw 3147 . . . . 5 (𝑈 = 𝑍 → ∀𝑥𝑋 (𝑥𝐻𝑈) = (𝑥𝐻𝑍))
243, 2, 1, 7rngorz 36382 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝑥𝑋) → (𝑥𝐻𝑍) = 𝑍)
2524ralrimiva 3143 . . . . . 6 (𝑅 ∈ RingOps → ∀𝑥𝑋 (𝑥𝐻𝑍) = 𝑍)
262, 6eqtri 2764 . . . . . . . . 9 𝑋 = ran (1st𝑅)
277, 26, 8rngoridm 36397 . . . . . . . 8 ((𝑅 ∈ RingOps ∧ 𝑥𝑋) → (𝑥𝐻𝑈) = 𝑥)
2827ralrimiva 3143 . . . . . . 7 (𝑅 ∈ RingOps → ∀𝑥𝑋 (𝑥𝐻𝑈) = 𝑥)
29 r19.26 3114 . . . . . . . . . 10 (∀𝑥𝑋 ((𝑥𝐻𝑈) = 𝑥 ∧ (𝑥𝐻𝑈) = (𝑥𝐻𝑍)) ↔ (∀𝑥𝑋 (𝑥𝐻𝑈) = 𝑥 ∧ ∀𝑥𝑋 (𝑥𝐻𝑈) = (𝑥𝐻𝑍)))
30 r19.26 3114 . . . . . . . . . . . 12 (∀𝑥𝑋 (((𝑥𝐻𝑈) = 𝑥 ∧ (𝑥𝐻𝑈) = (𝑥𝐻𝑍)) ∧ (𝑥𝐻𝑍) = 𝑍) ↔ (∀𝑥𝑋 ((𝑥𝐻𝑈) = 𝑥 ∧ (𝑥𝐻𝑈) = (𝑥𝐻𝑍)) ∧ ∀𝑥𝑋 (𝑥𝐻𝑍) = 𝑍))
31 eqtr 2759 . . . . . . . . . . . . . . . . . 18 ((𝑥 = (𝑥𝐻𝑈) ∧ (𝑥𝐻𝑈) = (𝑥𝐻𝑍)) → 𝑥 = (𝑥𝐻𝑍))
32 eqtr 2759 . . . . . . . . . . . . . . . . . . 19 ((𝑥 = (𝑥𝐻𝑍) ∧ (𝑥𝐻𝑍) = 𝑍) → 𝑥 = 𝑍)
3332ex 413 . . . . . . . . . . . . . . . . . 18 (𝑥 = (𝑥𝐻𝑍) → ((𝑥𝐻𝑍) = 𝑍𝑥 = 𝑍))
3431, 33syl 17 . . . . . . . . . . . . . . . . 17 ((𝑥 = (𝑥𝐻𝑈) ∧ (𝑥𝐻𝑈) = (𝑥𝐻𝑍)) → ((𝑥𝐻𝑍) = 𝑍𝑥 = 𝑍))
3534ex 413 . . . . . . . . . . . . . . . 16 (𝑥 = (𝑥𝐻𝑈) → ((𝑥𝐻𝑈) = (𝑥𝐻𝑍) → ((𝑥𝐻𝑍) = 𝑍𝑥 = 𝑍)))
3635eqcoms 2744 . . . . . . . . . . . . . . 15 ((𝑥𝐻𝑈) = 𝑥 → ((𝑥𝐻𝑈) = (𝑥𝐻𝑍) → ((𝑥𝐻𝑍) = 𝑍𝑥 = 𝑍)))
3736imp31 418 . . . . . . . . . . . . . 14 ((((𝑥𝐻𝑈) = 𝑥 ∧ (𝑥𝐻𝑈) = (𝑥𝐻𝑍)) ∧ (𝑥𝐻𝑍) = 𝑍) → 𝑥 = 𝑍)
3837ralimi 3086 . . . . . . . . . . . . 13 (∀𝑥𝑋 (((𝑥𝐻𝑈) = 𝑥 ∧ (𝑥𝐻𝑈) = (𝑥𝐻𝑍)) ∧ (𝑥𝐻𝑍) = 𝑍) → ∀𝑥𝑋 𝑥 = 𝑍)
39 eqsn 4789 . . . . . . . . . . . . . . 15 (𝑋 ≠ ∅ → (𝑋 = {𝑍} ↔ ∀𝑥𝑋 𝑥 = 𝑍))
40 ensn1g 8963 . . . . . . . . . . . . . . . . 17 (𝑍𝑋 → {𝑍} ≈ 1o)
414, 40syl 17 . . . . . . . . . . . . . . . 16 (𝑅 ∈ RingOps → {𝑍} ≈ 1o)
42 breq1 5108 . . . . . . . . . . . . . . . 16 (𝑋 = {𝑍} → (𝑋 ≈ 1o ↔ {𝑍} ≈ 1o))
4341, 42syl5ibr 245 . . . . . . . . . . . . . . 15 (𝑋 = {𝑍} → (𝑅 ∈ RingOps → 𝑋 ≈ 1o))
4439, 43syl6bir 253 . . . . . . . . . . . . . 14 (𝑋 ≠ ∅ → (∀𝑥𝑋 𝑥 = 𝑍 → (𝑅 ∈ RingOps → 𝑋 ≈ 1o)))
4544com3l 89 . . . . . . . . . . . . 13 (∀𝑥𝑋 𝑥 = 𝑍 → (𝑅 ∈ RingOps → (𝑋 ≠ ∅ → 𝑋 ≈ 1o)))
4638, 45syl 17 . . . . . . . . . . . 12 (∀𝑥𝑋 (((𝑥𝐻𝑈) = 𝑥 ∧ (𝑥𝐻𝑈) = (𝑥𝐻𝑍)) ∧ (𝑥𝐻𝑍) = 𝑍) → (𝑅 ∈ RingOps → (𝑋 ≠ ∅ → 𝑋 ≈ 1o)))
4730, 46sylbir 234 . . . . . . . . . . 11 ((∀𝑥𝑋 ((𝑥𝐻𝑈) = 𝑥 ∧ (𝑥𝐻𝑈) = (𝑥𝐻𝑍)) ∧ ∀𝑥𝑋 (𝑥𝐻𝑍) = 𝑍) → (𝑅 ∈ RingOps → (𝑋 ≠ ∅ → 𝑋 ≈ 1o)))
4847ex 413 . . . . . . . . . 10 (∀𝑥𝑋 ((𝑥𝐻𝑈) = 𝑥 ∧ (𝑥𝐻𝑈) = (𝑥𝐻𝑍)) → (∀𝑥𝑋 (𝑥𝐻𝑍) = 𝑍 → (𝑅 ∈ RingOps → (𝑋 ≠ ∅ → 𝑋 ≈ 1o))))
4929, 48sylbir 234 . . . . . . . . 9 ((∀𝑥𝑋 (𝑥𝐻𝑈) = 𝑥 ∧ ∀𝑥𝑋 (𝑥𝐻𝑈) = (𝑥𝐻𝑍)) → (∀𝑥𝑋 (𝑥𝐻𝑍) = 𝑍 → (𝑅 ∈ RingOps → (𝑋 ≠ ∅ → 𝑋 ≈ 1o))))
5049ex 413 . . . . . . . 8 (∀𝑥𝑋 (𝑥𝐻𝑈) = 𝑥 → (∀𝑥𝑋 (𝑥𝐻𝑈) = (𝑥𝐻𝑍) → (∀𝑥𝑋 (𝑥𝐻𝑍) = 𝑍 → (𝑅 ∈ RingOps → (𝑋 ≠ ∅ → 𝑋 ≈ 1o)))))
5150com24 95 . . . . . . 7 (∀𝑥𝑋 (𝑥𝐻𝑈) = 𝑥 → (𝑅 ∈ RingOps → (∀𝑥𝑋 (𝑥𝐻𝑍) = 𝑍 → (∀𝑥𝑋 (𝑥𝐻𝑈) = (𝑥𝐻𝑍) → (𝑋 ≠ ∅ → 𝑋 ≈ 1o)))))
5228, 51mpcom 38 . . . . . 6 (𝑅 ∈ RingOps → (∀𝑥𝑋 (𝑥𝐻𝑍) = 𝑍 → (∀𝑥𝑋 (𝑥𝐻𝑈) = (𝑥𝐻𝑍) → (𝑋 ≠ ∅ → 𝑋 ≈ 1o))))
5325, 52mpd 15 . . . . 5 (𝑅 ∈ RingOps → (∀𝑥𝑋 (𝑥𝐻𝑈) = (𝑥𝐻𝑍) → (𝑋 ≠ ∅ → 𝑋 ≈ 1o)))
5423, 53syl5com 31 . . . 4 (𝑈 = 𝑍 → (𝑅 ∈ RingOps → (𝑋 ≠ ∅ → 𝑋 ≈ 1o)))
5554com13 88 . . 3 (𝑋 ≠ ∅ → (𝑅 ∈ RingOps → (𝑈 = 𝑍𝑋 ≈ 1o)))
5621, 55mpcom 38 . 2 (𝑅 ∈ RingOps → (𝑈 = 𝑍𝑋 ≈ 1o))
5720, 56impbid 211 1 (𝑅 ∈ RingOps → (𝑋 ≈ 1o𝑈 = 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wne 2943  wral 3064  c0 4282  {csn 4586   class class class wbr 5105  ran crn 5634  cfv 6496  (class class class)co 7357  1st c1st 7919  2nd c2nd 7920  1oc1o 8405  cen 8880  GIdcgi 29432  RingOpscrngo 36353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-1st 7921  df-2nd 7922  df-1o 8412  df-en 8884  df-grpo 29435  df-gid 29436  df-ablo 29487  df-ass 36302  df-exid 36304  df-mgmOLD 36308  df-sgrOLD 36320  df-mndo 36326  df-rngo 36354
This theorem is referenced by:  dvrunz  36413  isdmn3  36533
  Copyright terms: Public domain W3C validator