Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngoueqz Structured version   Visualization version   GIF version

Theorem rngoueqz 38053
Description: Obsolete as of 23-Jan-2020. Use 0ring01eqbi 20456 instead. In a unital ring the zero equals the ring unity iff the ring is the zero ring. (Contributed by FL, 14-Feb-2010.) (New usage is discouraged.)
Hypotheses
Ref Expression
uznzr.1 𝐺 = (1st𝑅)
uznzr.2 𝐻 = (2nd𝑅)
uznzr.3 𝑍 = (GId‘𝐺)
uznzr.4 𝑈 = (GId‘𝐻)
uznzr.5 𝑋 = ran 𝐺
Assertion
Ref Expression
rngoueqz (𝑅 ∈ RingOps → (𝑋 ≈ 1o𝑈 = 𝑍))

Proof of Theorem rngoueqz
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 uznzr.1 . . . 4 𝐺 = (1st𝑅)
2 uznzr.5 . . . 4 𝑋 = ran 𝐺
3 uznzr.3 . . . 4 𝑍 = (GId‘𝐺)
41, 2, 3rngo0cl 38032 . . 3 (𝑅 ∈ RingOps → 𝑍𝑋)
5 en1eqsn 9170 . . . . . 6 ((𝑍𝑋𝑋 ≈ 1o) → 𝑋 = {𝑍})
61rneqi 5883 . . . . . . . 8 ran 𝐺 = ran (1st𝑅)
7 uznzr.2 . . . . . . . 8 𝐻 = (2nd𝑅)
8 uznzr.4 . . . . . . . 8 𝑈 = (GId‘𝐻)
96, 7, 8rngo1cl 38052 . . . . . . 7 (𝑅 ∈ RingOps → 𝑈 ∈ ran 𝐺)
10 eleq2 2822 . . . . . . . . . 10 (𝑋 = {𝑍} → (𝑈𝑋𝑈 ∈ {𝑍}))
1110biimpd 229 . . . . . . . . 9 (𝑋 = {𝑍} → (𝑈𝑋𝑈 ∈ {𝑍}))
12 elsni 4594 . . . . . . . . 9 (𝑈 ∈ {𝑍} → 𝑈 = 𝑍)
1311, 12syl6com 37 . . . . . . . 8 (𝑈𝑋 → (𝑋 = {𝑍} → 𝑈 = 𝑍))
142eqcomi 2742 . . . . . . . 8 ran 𝐺 = 𝑋
1513, 14eleq2s 2851 . . . . . . 7 (𝑈 ∈ ran 𝐺 → (𝑋 = {𝑍} → 𝑈 = 𝑍))
169, 15syl 17 . . . . . 6 (𝑅 ∈ RingOps → (𝑋 = {𝑍} → 𝑈 = 𝑍))
175, 16syl5com 31 . . . . 5 ((𝑍𝑋𝑋 ≈ 1o) → (𝑅 ∈ RingOps → 𝑈 = 𝑍))
1817ex 412 . . . 4 (𝑍𝑋 → (𝑋 ≈ 1o → (𝑅 ∈ RingOps → 𝑈 = 𝑍)))
1918com23 86 . . 3 (𝑍𝑋 → (𝑅 ∈ RingOps → (𝑋 ≈ 1o𝑈 = 𝑍)))
204, 19mpcom 38 . 2 (𝑅 ∈ RingOps → (𝑋 ≈ 1o𝑈 = 𝑍))
211, 2rngone0 38024 . . 3 (𝑅 ∈ RingOps → 𝑋 ≠ ∅)
22 oveq2 7363 . . . . . 6 (𝑈 = 𝑍 → (𝑥𝐻𝑈) = (𝑥𝐻𝑍))
2322ralrimivw 3129 . . . . 5 (𝑈 = 𝑍 → ∀𝑥𝑋 (𝑥𝐻𝑈) = (𝑥𝐻𝑍))
243, 2, 1, 7rngorz 38036 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝑥𝑋) → (𝑥𝐻𝑍) = 𝑍)
2524ralrimiva 3125 . . . . . 6 (𝑅 ∈ RingOps → ∀𝑥𝑋 (𝑥𝐻𝑍) = 𝑍)
262, 6eqtri 2756 . . . . . . . . 9 𝑋 = ran (1st𝑅)
277, 26, 8rngoridm 38051 . . . . . . . 8 ((𝑅 ∈ RingOps ∧ 𝑥𝑋) → (𝑥𝐻𝑈) = 𝑥)
2827ralrimiva 3125 . . . . . . 7 (𝑅 ∈ RingOps → ∀𝑥𝑋 (𝑥𝐻𝑈) = 𝑥)
29 r19.26 3093 . . . . . . . . . 10 (∀𝑥𝑋 ((𝑥𝐻𝑈) = 𝑥 ∧ (𝑥𝐻𝑈) = (𝑥𝐻𝑍)) ↔ (∀𝑥𝑋 (𝑥𝐻𝑈) = 𝑥 ∧ ∀𝑥𝑋 (𝑥𝐻𝑈) = (𝑥𝐻𝑍)))
30 r19.26 3093 . . . . . . . . . . . 12 (∀𝑥𝑋 (((𝑥𝐻𝑈) = 𝑥 ∧ (𝑥𝐻𝑈) = (𝑥𝐻𝑍)) ∧ (𝑥𝐻𝑍) = 𝑍) ↔ (∀𝑥𝑋 ((𝑥𝐻𝑈) = 𝑥 ∧ (𝑥𝐻𝑈) = (𝑥𝐻𝑍)) ∧ ∀𝑥𝑋 (𝑥𝐻𝑍) = 𝑍))
31 eqtr 2753 . . . . . . . . . . . . . . . . . 18 ((𝑥 = (𝑥𝐻𝑈) ∧ (𝑥𝐻𝑈) = (𝑥𝐻𝑍)) → 𝑥 = (𝑥𝐻𝑍))
32 eqtr 2753 . . . . . . . . . . . . . . . . . . 19 ((𝑥 = (𝑥𝐻𝑍) ∧ (𝑥𝐻𝑍) = 𝑍) → 𝑥 = 𝑍)
3332ex 412 . . . . . . . . . . . . . . . . . 18 (𝑥 = (𝑥𝐻𝑍) → ((𝑥𝐻𝑍) = 𝑍𝑥 = 𝑍))
3431, 33syl 17 . . . . . . . . . . . . . . . . 17 ((𝑥 = (𝑥𝐻𝑈) ∧ (𝑥𝐻𝑈) = (𝑥𝐻𝑍)) → ((𝑥𝐻𝑍) = 𝑍𝑥 = 𝑍))
3534ex 412 . . . . . . . . . . . . . . . 16 (𝑥 = (𝑥𝐻𝑈) → ((𝑥𝐻𝑈) = (𝑥𝐻𝑍) → ((𝑥𝐻𝑍) = 𝑍𝑥 = 𝑍)))
3635eqcoms 2741 . . . . . . . . . . . . . . 15 ((𝑥𝐻𝑈) = 𝑥 → ((𝑥𝐻𝑈) = (𝑥𝐻𝑍) → ((𝑥𝐻𝑍) = 𝑍𝑥 = 𝑍)))
3736imp31 417 . . . . . . . . . . . . . 14 ((((𝑥𝐻𝑈) = 𝑥 ∧ (𝑥𝐻𝑈) = (𝑥𝐻𝑍)) ∧ (𝑥𝐻𝑍) = 𝑍) → 𝑥 = 𝑍)
3837ralimi 3070 . . . . . . . . . . . . 13 (∀𝑥𝑋 (((𝑥𝐻𝑈) = 𝑥 ∧ (𝑥𝐻𝑈) = (𝑥𝐻𝑍)) ∧ (𝑥𝐻𝑍) = 𝑍) → ∀𝑥𝑋 𝑥 = 𝑍)
39 eqsn 4782 . . . . . . . . . . . . . . 15 (𝑋 ≠ ∅ → (𝑋 = {𝑍} ↔ ∀𝑥𝑋 𝑥 = 𝑍))
40 ensn1g 8955 . . . . . . . . . . . . . . . . 17 (𝑍𝑋 → {𝑍} ≈ 1o)
414, 40syl 17 . . . . . . . . . . . . . . . 16 (𝑅 ∈ RingOps → {𝑍} ≈ 1o)
42 breq1 5098 . . . . . . . . . . . . . . . 16 (𝑋 = {𝑍} → (𝑋 ≈ 1o ↔ {𝑍} ≈ 1o))
4341, 42imbitrrid 246 . . . . . . . . . . . . . . 15 (𝑋 = {𝑍} → (𝑅 ∈ RingOps → 𝑋 ≈ 1o))
4439, 43biimtrrdi 254 . . . . . . . . . . . . . 14 (𝑋 ≠ ∅ → (∀𝑥𝑋 𝑥 = 𝑍 → (𝑅 ∈ RingOps → 𝑋 ≈ 1o)))
4544com3l 89 . . . . . . . . . . . . 13 (∀𝑥𝑋 𝑥 = 𝑍 → (𝑅 ∈ RingOps → (𝑋 ≠ ∅ → 𝑋 ≈ 1o)))
4638, 45syl 17 . . . . . . . . . . . 12 (∀𝑥𝑋 (((𝑥𝐻𝑈) = 𝑥 ∧ (𝑥𝐻𝑈) = (𝑥𝐻𝑍)) ∧ (𝑥𝐻𝑍) = 𝑍) → (𝑅 ∈ RingOps → (𝑋 ≠ ∅ → 𝑋 ≈ 1o)))
4730, 46sylbir 235 . . . . . . . . . . 11 ((∀𝑥𝑋 ((𝑥𝐻𝑈) = 𝑥 ∧ (𝑥𝐻𝑈) = (𝑥𝐻𝑍)) ∧ ∀𝑥𝑋 (𝑥𝐻𝑍) = 𝑍) → (𝑅 ∈ RingOps → (𝑋 ≠ ∅ → 𝑋 ≈ 1o)))
4847ex 412 . . . . . . . . . 10 (∀𝑥𝑋 ((𝑥𝐻𝑈) = 𝑥 ∧ (𝑥𝐻𝑈) = (𝑥𝐻𝑍)) → (∀𝑥𝑋 (𝑥𝐻𝑍) = 𝑍 → (𝑅 ∈ RingOps → (𝑋 ≠ ∅ → 𝑋 ≈ 1o))))
4929, 48sylbir 235 . . . . . . . . 9 ((∀𝑥𝑋 (𝑥𝐻𝑈) = 𝑥 ∧ ∀𝑥𝑋 (𝑥𝐻𝑈) = (𝑥𝐻𝑍)) → (∀𝑥𝑋 (𝑥𝐻𝑍) = 𝑍 → (𝑅 ∈ RingOps → (𝑋 ≠ ∅ → 𝑋 ≈ 1o))))
5049ex 412 . . . . . . . 8 (∀𝑥𝑋 (𝑥𝐻𝑈) = 𝑥 → (∀𝑥𝑋 (𝑥𝐻𝑈) = (𝑥𝐻𝑍) → (∀𝑥𝑋 (𝑥𝐻𝑍) = 𝑍 → (𝑅 ∈ RingOps → (𝑋 ≠ ∅ → 𝑋 ≈ 1o)))))
5150com24 95 . . . . . . 7 (∀𝑥𝑋 (𝑥𝐻𝑈) = 𝑥 → (𝑅 ∈ RingOps → (∀𝑥𝑋 (𝑥𝐻𝑍) = 𝑍 → (∀𝑥𝑋 (𝑥𝐻𝑈) = (𝑥𝐻𝑍) → (𝑋 ≠ ∅ → 𝑋 ≈ 1o)))))
5228, 51mpcom 38 . . . . . 6 (𝑅 ∈ RingOps → (∀𝑥𝑋 (𝑥𝐻𝑍) = 𝑍 → (∀𝑥𝑋 (𝑥𝐻𝑈) = (𝑥𝐻𝑍) → (𝑋 ≠ ∅ → 𝑋 ≈ 1o))))
5325, 52mpd 15 . . . . 5 (𝑅 ∈ RingOps → (∀𝑥𝑋 (𝑥𝐻𝑈) = (𝑥𝐻𝑍) → (𝑋 ≠ ∅ → 𝑋 ≈ 1o)))
5423, 53syl5com 31 . . . 4 (𝑈 = 𝑍 → (𝑅 ∈ RingOps → (𝑋 ≠ ∅ → 𝑋 ≈ 1o)))
5554com13 88 . . 3 (𝑋 ≠ ∅ → (𝑅 ∈ RingOps → (𝑈 = 𝑍𝑋 ≈ 1o)))
5621, 55mpcom 38 . 2 (𝑅 ∈ RingOps → (𝑈 = 𝑍𝑋 ≈ 1o))
5720, 56impbid 212 1 (𝑅 ∈ RingOps → (𝑋 ≈ 1o𝑈 = 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wne 2929  wral 3048  c0 4282  {csn 4577   class class class wbr 5095  ran crn 5622  cfv 6489  (class class class)co 7355  1st c1st 7928  2nd c2nd 7929  1oc1o 8387  cen 8876  GIdcgi 30491  RingOpscrngo 38007
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-1st 7930  df-2nd 7931  df-1o 8394  df-en 8880  df-grpo 30494  df-gid 30495  df-ablo 30546  df-ass 37956  df-exid 37958  df-mgmOLD 37962  df-sgrOLD 37974  df-mndo 37980  df-rngo 38008
This theorem is referenced by:  dvrunz  38067  isdmn3  38187
  Copyright terms: Public domain W3C validator