Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngoueqz Structured version   Visualization version   GIF version

Theorem rngoueqz 36098
Description: Obsolete as of 23-Jan-2020. Use 0ring01eqbi 20544 instead. In a unital ring the zero equals the unity iff the ring is the zero ring. (Contributed by FL, 14-Feb-2010.) (New usage is discouraged.)
Hypotheses
Ref Expression
uznzr.1 𝐺 = (1st𝑅)
uznzr.2 𝐻 = (2nd𝑅)
uznzr.3 𝑍 = (GId‘𝐺)
uznzr.4 𝑈 = (GId‘𝐻)
uznzr.5 𝑋 = ran 𝐺
Assertion
Ref Expression
rngoueqz (𝑅 ∈ RingOps → (𝑋 ≈ 1o𝑈 = 𝑍))

Proof of Theorem rngoueqz
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 uznzr.1 . . . 4 𝐺 = (1st𝑅)
2 uznzr.5 . . . 4 𝑋 = ran 𝐺
3 uznzr.3 . . . 4 𝑍 = (GId‘𝐺)
41, 2, 3rngo0cl 36077 . . 3 (𝑅 ∈ RingOps → 𝑍𝑋)
5 en1eqsn 9048 . . . . . 6 ((𝑍𝑋𝑋 ≈ 1o) → 𝑋 = {𝑍})
61rneqi 5846 . . . . . . . 8 ran 𝐺 = ran (1st𝑅)
7 uznzr.2 . . . . . . . 8 𝐻 = (2nd𝑅)
8 uznzr.4 . . . . . . . 8 𝑈 = (GId‘𝐻)
96, 7, 8rngo1cl 36097 . . . . . . 7 (𝑅 ∈ RingOps → 𝑈 ∈ ran 𝐺)
10 eleq2 2827 . . . . . . . . . 10 (𝑋 = {𝑍} → (𝑈𝑋𝑈 ∈ {𝑍}))
1110biimpd 228 . . . . . . . . 9 (𝑋 = {𝑍} → (𝑈𝑋𝑈 ∈ {𝑍}))
12 elsni 4578 . . . . . . . . 9 (𝑈 ∈ {𝑍} → 𝑈 = 𝑍)
1311, 12syl6com 37 . . . . . . . 8 (𝑈𝑋 → (𝑋 = {𝑍} → 𝑈 = 𝑍))
142eqcomi 2747 . . . . . . . 8 ran 𝐺 = 𝑋
1513, 14eleq2s 2857 . . . . . . 7 (𝑈 ∈ ran 𝐺 → (𝑋 = {𝑍} → 𝑈 = 𝑍))
169, 15syl 17 . . . . . 6 (𝑅 ∈ RingOps → (𝑋 = {𝑍} → 𝑈 = 𝑍))
175, 16syl5com 31 . . . . 5 ((𝑍𝑋𝑋 ≈ 1o) → (𝑅 ∈ RingOps → 𝑈 = 𝑍))
1817ex 413 . . . 4 (𝑍𝑋 → (𝑋 ≈ 1o → (𝑅 ∈ RingOps → 𝑈 = 𝑍)))
1918com23 86 . . 3 (𝑍𝑋 → (𝑅 ∈ RingOps → (𝑋 ≈ 1o𝑈 = 𝑍)))
204, 19mpcom 38 . 2 (𝑅 ∈ RingOps → (𝑋 ≈ 1o𝑈 = 𝑍))
211, 2rngone0 36069 . . 3 (𝑅 ∈ RingOps → 𝑋 ≠ ∅)
22 oveq2 7283 . . . . . 6 (𝑈 = 𝑍 → (𝑥𝐻𝑈) = (𝑥𝐻𝑍))
2322ralrimivw 3104 . . . . 5 (𝑈 = 𝑍 → ∀𝑥𝑋 (𝑥𝐻𝑈) = (𝑥𝐻𝑍))
243, 2, 1, 7rngorz 36081 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝑥𝑋) → (𝑥𝐻𝑍) = 𝑍)
2524ralrimiva 3103 . . . . . 6 (𝑅 ∈ RingOps → ∀𝑥𝑋 (𝑥𝐻𝑍) = 𝑍)
262, 6eqtri 2766 . . . . . . . . 9 𝑋 = ran (1st𝑅)
277, 26, 8rngoridm 36096 . . . . . . . 8 ((𝑅 ∈ RingOps ∧ 𝑥𝑋) → (𝑥𝐻𝑈) = 𝑥)
2827ralrimiva 3103 . . . . . . 7 (𝑅 ∈ RingOps → ∀𝑥𝑋 (𝑥𝐻𝑈) = 𝑥)
29 r19.26 3095 . . . . . . . . . 10 (∀𝑥𝑋 ((𝑥𝐻𝑈) = 𝑥 ∧ (𝑥𝐻𝑈) = (𝑥𝐻𝑍)) ↔ (∀𝑥𝑋 (𝑥𝐻𝑈) = 𝑥 ∧ ∀𝑥𝑋 (𝑥𝐻𝑈) = (𝑥𝐻𝑍)))
30 r19.26 3095 . . . . . . . . . . . 12 (∀𝑥𝑋 (((𝑥𝐻𝑈) = 𝑥 ∧ (𝑥𝐻𝑈) = (𝑥𝐻𝑍)) ∧ (𝑥𝐻𝑍) = 𝑍) ↔ (∀𝑥𝑋 ((𝑥𝐻𝑈) = 𝑥 ∧ (𝑥𝐻𝑈) = (𝑥𝐻𝑍)) ∧ ∀𝑥𝑋 (𝑥𝐻𝑍) = 𝑍))
31 eqtr 2761 . . . . . . . . . . . . . . . . . 18 ((𝑥 = (𝑥𝐻𝑈) ∧ (𝑥𝐻𝑈) = (𝑥𝐻𝑍)) → 𝑥 = (𝑥𝐻𝑍))
32 eqtr 2761 . . . . . . . . . . . . . . . . . . 19 ((𝑥 = (𝑥𝐻𝑍) ∧ (𝑥𝐻𝑍) = 𝑍) → 𝑥 = 𝑍)
3332ex 413 . . . . . . . . . . . . . . . . . 18 (𝑥 = (𝑥𝐻𝑍) → ((𝑥𝐻𝑍) = 𝑍𝑥 = 𝑍))
3431, 33syl 17 . . . . . . . . . . . . . . . . 17 ((𝑥 = (𝑥𝐻𝑈) ∧ (𝑥𝐻𝑈) = (𝑥𝐻𝑍)) → ((𝑥𝐻𝑍) = 𝑍𝑥 = 𝑍))
3534ex 413 . . . . . . . . . . . . . . . 16 (𝑥 = (𝑥𝐻𝑈) → ((𝑥𝐻𝑈) = (𝑥𝐻𝑍) → ((𝑥𝐻𝑍) = 𝑍𝑥 = 𝑍)))
3635eqcoms 2746 . . . . . . . . . . . . . . 15 ((𝑥𝐻𝑈) = 𝑥 → ((𝑥𝐻𝑈) = (𝑥𝐻𝑍) → ((𝑥𝐻𝑍) = 𝑍𝑥 = 𝑍)))
3736imp31 418 . . . . . . . . . . . . . 14 ((((𝑥𝐻𝑈) = 𝑥 ∧ (𝑥𝐻𝑈) = (𝑥𝐻𝑍)) ∧ (𝑥𝐻𝑍) = 𝑍) → 𝑥 = 𝑍)
3837ralimi 3087 . . . . . . . . . . . . 13 (∀𝑥𝑋 (((𝑥𝐻𝑈) = 𝑥 ∧ (𝑥𝐻𝑈) = (𝑥𝐻𝑍)) ∧ (𝑥𝐻𝑍) = 𝑍) → ∀𝑥𝑋 𝑥 = 𝑍)
39 eqsn 4762 . . . . . . . . . . . . . . 15 (𝑋 ≠ ∅ → (𝑋 = {𝑍} ↔ ∀𝑥𝑋 𝑥 = 𝑍))
40 ensn1g 8809 . . . . . . . . . . . . . . . . 17 (𝑍𝑋 → {𝑍} ≈ 1o)
414, 40syl 17 . . . . . . . . . . . . . . . 16 (𝑅 ∈ RingOps → {𝑍} ≈ 1o)
42 breq1 5077 . . . . . . . . . . . . . . . 16 (𝑋 = {𝑍} → (𝑋 ≈ 1o ↔ {𝑍} ≈ 1o))
4341, 42syl5ibr 245 . . . . . . . . . . . . . . 15 (𝑋 = {𝑍} → (𝑅 ∈ RingOps → 𝑋 ≈ 1o))
4439, 43syl6bir 253 . . . . . . . . . . . . . 14 (𝑋 ≠ ∅ → (∀𝑥𝑋 𝑥 = 𝑍 → (𝑅 ∈ RingOps → 𝑋 ≈ 1o)))
4544com3l 89 . . . . . . . . . . . . 13 (∀𝑥𝑋 𝑥 = 𝑍 → (𝑅 ∈ RingOps → (𝑋 ≠ ∅ → 𝑋 ≈ 1o)))
4638, 45syl 17 . . . . . . . . . . . 12 (∀𝑥𝑋 (((𝑥𝐻𝑈) = 𝑥 ∧ (𝑥𝐻𝑈) = (𝑥𝐻𝑍)) ∧ (𝑥𝐻𝑍) = 𝑍) → (𝑅 ∈ RingOps → (𝑋 ≠ ∅ → 𝑋 ≈ 1o)))
4730, 46sylbir 234 . . . . . . . . . . 11 ((∀𝑥𝑋 ((𝑥𝐻𝑈) = 𝑥 ∧ (𝑥𝐻𝑈) = (𝑥𝐻𝑍)) ∧ ∀𝑥𝑋 (𝑥𝐻𝑍) = 𝑍) → (𝑅 ∈ RingOps → (𝑋 ≠ ∅ → 𝑋 ≈ 1o)))
4847ex 413 . . . . . . . . . 10 (∀𝑥𝑋 ((𝑥𝐻𝑈) = 𝑥 ∧ (𝑥𝐻𝑈) = (𝑥𝐻𝑍)) → (∀𝑥𝑋 (𝑥𝐻𝑍) = 𝑍 → (𝑅 ∈ RingOps → (𝑋 ≠ ∅ → 𝑋 ≈ 1o))))
4929, 48sylbir 234 . . . . . . . . 9 ((∀𝑥𝑋 (𝑥𝐻𝑈) = 𝑥 ∧ ∀𝑥𝑋 (𝑥𝐻𝑈) = (𝑥𝐻𝑍)) → (∀𝑥𝑋 (𝑥𝐻𝑍) = 𝑍 → (𝑅 ∈ RingOps → (𝑋 ≠ ∅ → 𝑋 ≈ 1o))))
5049ex 413 . . . . . . . 8 (∀𝑥𝑋 (𝑥𝐻𝑈) = 𝑥 → (∀𝑥𝑋 (𝑥𝐻𝑈) = (𝑥𝐻𝑍) → (∀𝑥𝑋 (𝑥𝐻𝑍) = 𝑍 → (𝑅 ∈ RingOps → (𝑋 ≠ ∅ → 𝑋 ≈ 1o)))))
5150com24 95 . . . . . . 7 (∀𝑥𝑋 (𝑥𝐻𝑈) = 𝑥 → (𝑅 ∈ RingOps → (∀𝑥𝑋 (𝑥𝐻𝑍) = 𝑍 → (∀𝑥𝑋 (𝑥𝐻𝑈) = (𝑥𝐻𝑍) → (𝑋 ≠ ∅ → 𝑋 ≈ 1o)))))
5228, 51mpcom 38 . . . . . 6 (𝑅 ∈ RingOps → (∀𝑥𝑋 (𝑥𝐻𝑍) = 𝑍 → (∀𝑥𝑋 (𝑥𝐻𝑈) = (𝑥𝐻𝑍) → (𝑋 ≠ ∅ → 𝑋 ≈ 1o))))
5325, 52mpd 15 . . . . 5 (𝑅 ∈ RingOps → (∀𝑥𝑋 (𝑥𝐻𝑈) = (𝑥𝐻𝑍) → (𝑋 ≠ ∅ → 𝑋 ≈ 1o)))
5423, 53syl5com 31 . . . 4 (𝑈 = 𝑍 → (𝑅 ∈ RingOps → (𝑋 ≠ ∅ → 𝑋 ≈ 1o)))
5554com13 88 . . 3 (𝑋 ≠ ∅ → (𝑅 ∈ RingOps → (𝑈 = 𝑍𝑋 ≈ 1o)))
5621, 55mpcom 38 . 2 (𝑅 ∈ RingOps → (𝑈 = 𝑍𝑋 ≈ 1o))
5720, 56impbid 211 1 (𝑅 ∈ RingOps → (𝑋 ≈ 1o𝑈 = 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  wral 3064  c0 4256  {csn 4561   class class class wbr 5074  ran crn 5590  cfv 6433  (class class class)co 7275  1st c1st 7829  2nd c2nd 7830  1oc1o 8290  cen 8730  GIdcgi 28852  RingOpscrngo 36052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-om 7713  df-1st 7831  df-2nd 7832  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-grpo 28855  df-gid 28856  df-ablo 28907  df-ass 36001  df-exid 36003  df-mgmOLD 36007  df-sgrOLD 36019  df-mndo 36025  df-rngo 36053
This theorem is referenced by:  dvrunz  36112  isdmn3  36232
  Copyright terms: Public domain W3C validator