MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  erclwwlksym Structured version   Visualization version   GIF version

Theorem erclwwlksym 30002
Description: is a symmetric relation over the set of closed walks (defined as words). (Contributed by Alexander van der Vekens, 8-Apr-2018.) (Revised by AV, 29-Apr-2021.)
Hypothesis
Ref Expression
erclwwlk.r = {⟨𝑢, 𝑤⟩ ∣ (𝑢 ∈ (ClWWalks‘𝐺) ∧ 𝑤 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑤))𝑢 = (𝑤 cyclShift 𝑛))}
Assertion
Ref Expression
erclwwlksym (𝑥 𝑦𝑦 𝑥)
Distinct variable groups:   𝑛,𝐺,𝑢,𝑤   𝑥,𝑛,𝑢,𝑤,𝑦
Allowed substitution hints:   (𝑥,𝑦,𝑤,𝑢,𝑛)   𝐺(𝑥,𝑦)

Proof of Theorem erclwwlksym
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 erclwwlk.r . . . 4 = {⟨𝑢, 𝑤⟩ ∣ (𝑢 ∈ (ClWWalks‘𝐺) ∧ 𝑤 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑤))𝑢 = (𝑤 cyclShift 𝑛))}
21erclwwlkeqlen 30000 . . 3 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥 𝑦 → (♯‘𝑥) = (♯‘𝑦)))
31erclwwlkeq 29999 . . . 4 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥 𝑦 ↔ (𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑦))𝑥 = (𝑦 cyclShift 𝑛))))
4 simpl2 1193 . . . . . . 7 (((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑦))𝑥 = (𝑦 cyclShift 𝑛)) ∧ (♯‘𝑥) = (♯‘𝑦)) → 𝑦 ∈ (ClWWalks‘𝐺))
5 simpl1 1192 . . . . . . 7 (((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑦))𝑥 = (𝑦 cyclShift 𝑛)) ∧ (♯‘𝑥) = (♯‘𝑦)) → 𝑥 ∈ (ClWWalks‘𝐺))
6 eqid 2735 . . . . . . . . . . . . . . . . . 18 (Vtx‘𝐺) = (Vtx‘𝐺)
76clwwlkbp 29966 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (ClWWalks‘𝐺) → (𝐺 ∈ V ∧ 𝑦 ∈ Word (Vtx‘𝐺) ∧ 𝑦 ≠ ∅))
87simp2d 1143 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (ClWWalks‘𝐺) → 𝑦 ∈ Word (Vtx‘𝐺))
98ad2antlr 727 . . . . . . . . . . . . . . 15 (((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺)) ∧ (♯‘𝑥) = (♯‘𝑦)) → 𝑦 ∈ Word (Vtx‘𝐺))
10 simpr 484 . . . . . . . . . . . . . . 15 (((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺)) ∧ (♯‘𝑥) = (♯‘𝑦)) → (♯‘𝑥) = (♯‘𝑦))
119, 10cshwcshid 14846 . . . . . . . . . . . . . 14 (((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺)) ∧ (♯‘𝑥) = (♯‘𝑦)) → ((𝑛 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑛)) → ∃𝑚 ∈ (0...(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑚)))
1211expd 415 . . . . . . . . . . . . 13 (((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺)) ∧ (♯‘𝑥) = (♯‘𝑦)) → (𝑛 ∈ (0...(♯‘𝑦)) → (𝑥 = (𝑦 cyclShift 𝑛) → ∃𝑚 ∈ (0...(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑚))))
1312rexlimdv 3139 . . . . . . . . . . . 12 (((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺)) ∧ (♯‘𝑥) = (♯‘𝑦)) → (∃𝑛 ∈ (0...(♯‘𝑦))𝑥 = (𝑦 cyclShift 𝑛) → ∃𝑚 ∈ (0...(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑚)))
1413ex 412 . . . . . . . . . . 11 ((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺)) → ((♯‘𝑥) = (♯‘𝑦) → (∃𝑛 ∈ (0...(♯‘𝑦))𝑥 = (𝑦 cyclShift 𝑛) → ∃𝑚 ∈ (0...(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑚))))
1514com23 86 . . . . . . . . . 10 ((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺)) → (∃𝑛 ∈ (0...(♯‘𝑦))𝑥 = (𝑦 cyclShift 𝑛) → ((♯‘𝑥) = (♯‘𝑦) → ∃𝑚 ∈ (0...(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑚))))
16153impia 1117 . . . . . . . . 9 ((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑦))𝑥 = (𝑦 cyclShift 𝑛)) → ((♯‘𝑥) = (♯‘𝑦) → ∃𝑚 ∈ (0...(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑚)))
1716imp 406 . . . . . . . 8 (((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑦))𝑥 = (𝑦 cyclShift 𝑛)) ∧ (♯‘𝑥) = (♯‘𝑦)) → ∃𝑚 ∈ (0...(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑚))
18 oveq2 7413 . . . . . . . . . 10 (𝑛 = 𝑚 → (𝑥 cyclShift 𝑛) = (𝑥 cyclShift 𝑚))
1918eqeq2d 2746 . . . . . . . . 9 (𝑛 = 𝑚 → (𝑦 = (𝑥 cyclShift 𝑛) ↔ 𝑦 = (𝑥 cyclShift 𝑚)))
2019cbvrexvw 3221 . . . . . . . 8 (∃𝑛 ∈ (0...(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛) ↔ ∃𝑚 ∈ (0...(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑚))
2117, 20sylibr 234 . . . . . . 7 (((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑦))𝑥 = (𝑦 cyclShift 𝑛)) ∧ (♯‘𝑥) = (♯‘𝑦)) → ∃𝑛 ∈ (0...(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛))
224, 5, 213jca 1128 . . . . . 6 (((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑦))𝑥 = (𝑦 cyclShift 𝑛)) ∧ (♯‘𝑥) = (♯‘𝑦)) → (𝑦 ∈ (ClWWalks‘𝐺) ∧ 𝑥 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)))
231erclwwlkeq 29999 . . . . . . 7 ((𝑦 ∈ V ∧ 𝑥 ∈ V) → (𝑦 𝑥 ↔ (𝑦 ∈ (ClWWalks‘𝐺) ∧ 𝑥 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛))))
2423ancoms 458 . . . . . 6 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑦 𝑥 ↔ (𝑦 ∈ (ClWWalks‘𝐺) ∧ 𝑥 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛))))
2522, 24imbitrrid 246 . . . . 5 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑦))𝑥 = (𝑦 cyclShift 𝑛)) ∧ (♯‘𝑥) = (♯‘𝑦)) → 𝑦 𝑥))
2625expd 415 . . . 4 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → ((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑦))𝑥 = (𝑦 cyclShift 𝑛)) → ((♯‘𝑥) = (♯‘𝑦) → 𝑦 𝑥)))
273, 26sylbid 240 . . 3 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥 𝑦 → ((♯‘𝑥) = (♯‘𝑦) → 𝑦 𝑥)))
282, 27mpdd 43 . 2 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥 𝑦𝑦 𝑥))
2928el2v 3466 1 (𝑥 𝑦𝑦 𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932  wrex 3060  Vcvv 3459  c0 4308   class class class wbr 5119  {copab 5181  cfv 6531  (class class class)co 7405  0cc0 11129  ...cfz 13524  chash 14348  Word cword 14531   cyclShift ccsh 14806  Vtxcvtx 28975  ClWWalkscclwwlk 29962
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-sup 9454  df-inf 9455  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-n0 12502  df-z 12589  df-uz 12853  df-rp 13009  df-fz 13525  df-fzo 13672  df-fl 13809  df-mod 13887  df-hash 14349  df-word 14532  df-concat 14589  df-substr 14659  df-pfx 14689  df-csh 14807  df-clwwlk 29963
This theorem is referenced by:  erclwwlk  30004
  Copyright terms: Public domain W3C validator