MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  erclwwlksym Structured version   Visualization version   GIF version

Theorem erclwwlksym 30000
Description: is a symmetric relation over the set of closed walks (defined as words). (Contributed by Alexander van der Vekens, 8-Apr-2018.) (Revised by AV, 29-Apr-2021.)
Hypothesis
Ref Expression
erclwwlk.r = {⟨𝑢, 𝑤⟩ ∣ (𝑢 ∈ (ClWWalks‘𝐺) ∧ 𝑤 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑤))𝑢 = (𝑤 cyclShift 𝑛))}
Assertion
Ref Expression
erclwwlksym (𝑥 𝑦𝑦 𝑥)
Distinct variable groups:   𝑛,𝐺,𝑢,𝑤   𝑥,𝑛,𝑢,𝑤,𝑦
Allowed substitution hints:   (𝑥,𝑦,𝑤,𝑢,𝑛)   𝐺(𝑥,𝑦)

Proof of Theorem erclwwlksym
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 erclwwlk.r . . . 4 = {⟨𝑢, 𝑤⟩ ∣ (𝑢 ∈ (ClWWalks‘𝐺) ∧ 𝑤 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑤))𝑢 = (𝑤 cyclShift 𝑛))}
21erclwwlkeqlen 29998 . . 3 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥 𝑦 → (♯‘𝑥) = (♯‘𝑦)))
31erclwwlkeq 29997 . . . 4 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥 𝑦 ↔ (𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑦))𝑥 = (𝑦 cyclShift 𝑛))))
4 simpl2 1193 . . . . . . 7 (((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑦))𝑥 = (𝑦 cyclShift 𝑛)) ∧ (♯‘𝑥) = (♯‘𝑦)) → 𝑦 ∈ (ClWWalks‘𝐺))
5 simpl1 1192 . . . . . . 7 (((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑦))𝑥 = (𝑦 cyclShift 𝑛)) ∧ (♯‘𝑥) = (♯‘𝑦)) → 𝑥 ∈ (ClWWalks‘𝐺))
6 eqid 2729 . . . . . . . . . . . . . . . . . 18 (Vtx‘𝐺) = (Vtx‘𝐺)
76clwwlkbp 29964 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (ClWWalks‘𝐺) → (𝐺 ∈ V ∧ 𝑦 ∈ Word (Vtx‘𝐺) ∧ 𝑦 ≠ ∅))
87simp2d 1143 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (ClWWalks‘𝐺) → 𝑦 ∈ Word (Vtx‘𝐺))
98ad2antlr 727 . . . . . . . . . . . . . . 15 (((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺)) ∧ (♯‘𝑥) = (♯‘𝑦)) → 𝑦 ∈ Word (Vtx‘𝐺))
10 simpr 484 . . . . . . . . . . . . . . 15 (((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺)) ∧ (♯‘𝑥) = (♯‘𝑦)) → (♯‘𝑥) = (♯‘𝑦))
119, 10cshwcshid 14769 . . . . . . . . . . . . . 14 (((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺)) ∧ (♯‘𝑥) = (♯‘𝑦)) → ((𝑛 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑛)) → ∃𝑚 ∈ (0...(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑚)))
1211expd 415 . . . . . . . . . . . . 13 (((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺)) ∧ (♯‘𝑥) = (♯‘𝑦)) → (𝑛 ∈ (0...(♯‘𝑦)) → (𝑥 = (𝑦 cyclShift 𝑛) → ∃𝑚 ∈ (0...(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑚))))
1312rexlimdv 3132 . . . . . . . . . . . 12 (((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺)) ∧ (♯‘𝑥) = (♯‘𝑦)) → (∃𝑛 ∈ (0...(♯‘𝑦))𝑥 = (𝑦 cyclShift 𝑛) → ∃𝑚 ∈ (0...(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑚)))
1413ex 412 . . . . . . . . . . 11 ((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺)) → ((♯‘𝑥) = (♯‘𝑦) → (∃𝑛 ∈ (0...(♯‘𝑦))𝑥 = (𝑦 cyclShift 𝑛) → ∃𝑚 ∈ (0...(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑚))))
1514com23 86 . . . . . . . . . 10 ((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺)) → (∃𝑛 ∈ (0...(♯‘𝑦))𝑥 = (𝑦 cyclShift 𝑛) → ((♯‘𝑥) = (♯‘𝑦) → ∃𝑚 ∈ (0...(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑚))))
16153impia 1117 . . . . . . . . 9 ((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑦))𝑥 = (𝑦 cyclShift 𝑛)) → ((♯‘𝑥) = (♯‘𝑦) → ∃𝑚 ∈ (0...(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑚)))
1716imp 406 . . . . . . . 8 (((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑦))𝑥 = (𝑦 cyclShift 𝑛)) ∧ (♯‘𝑥) = (♯‘𝑦)) → ∃𝑚 ∈ (0...(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑚))
18 oveq2 7377 . . . . . . . . . 10 (𝑛 = 𝑚 → (𝑥 cyclShift 𝑛) = (𝑥 cyclShift 𝑚))
1918eqeq2d 2740 . . . . . . . . 9 (𝑛 = 𝑚 → (𝑦 = (𝑥 cyclShift 𝑛) ↔ 𝑦 = (𝑥 cyclShift 𝑚)))
2019cbvrexvw 3214 . . . . . . . 8 (∃𝑛 ∈ (0...(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛) ↔ ∃𝑚 ∈ (0...(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑚))
2117, 20sylibr 234 . . . . . . 7 (((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑦))𝑥 = (𝑦 cyclShift 𝑛)) ∧ (♯‘𝑥) = (♯‘𝑦)) → ∃𝑛 ∈ (0...(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛))
224, 5, 213jca 1128 . . . . . 6 (((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑦))𝑥 = (𝑦 cyclShift 𝑛)) ∧ (♯‘𝑥) = (♯‘𝑦)) → (𝑦 ∈ (ClWWalks‘𝐺) ∧ 𝑥 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)))
231erclwwlkeq 29997 . . . . . . 7 ((𝑦 ∈ V ∧ 𝑥 ∈ V) → (𝑦 𝑥 ↔ (𝑦 ∈ (ClWWalks‘𝐺) ∧ 𝑥 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛))))
2423ancoms 458 . . . . . 6 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑦 𝑥 ↔ (𝑦 ∈ (ClWWalks‘𝐺) ∧ 𝑥 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛))))
2522, 24imbitrrid 246 . . . . 5 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑦))𝑥 = (𝑦 cyclShift 𝑛)) ∧ (♯‘𝑥) = (♯‘𝑦)) → 𝑦 𝑥))
2625expd 415 . . . 4 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → ((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑦))𝑥 = (𝑦 cyclShift 𝑛)) → ((♯‘𝑥) = (♯‘𝑦) → 𝑦 𝑥)))
273, 26sylbid 240 . . 3 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥 𝑦 → ((♯‘𝑥) = (♯‘𝑦) → 𝑦 𝑥)))
282, 27mpdd 43 . 2 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥 𝑦𝑦 𝑥))
2928el2v 3451 1 (𝑥 𝑦𝑦 𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053  Vcvv 3444  c0 4292   class class class wbr 5102  {copab 5164  cfv 6499  (class class class)co 7369  0cc0 11044  ...cfz 13444  chash 14271  Word cword 14454   cyclShift ccsh 14729  Vtxcvtx 28976  ClWWalkscclwwlk 29960
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-fz 13445  df-fzo 13592  df-fl 13730  df-mod 13808  df-hash 14272  df-word 14455  df-concat 14512  df-substr 14582  df-pfx 14612  df-csh 14730  df-clwwlk 29961
This theorem is referenced by:  erclwwlk  30002
  Copyright terms: Public domain W3C validator