MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  erclwwlksym Structured version   Visualization version   GIF version

Theorem erclwwlksym 29873
Description: ∼ is a symmetric relation over the set of closed walks (defined as words). (Contributed by Alexander van der Vekens, 8-Apr-2018.) (Revised by AV, 29-Apr-2021.)
Hypothesis
Ref Expression
erclwwlk.r ∼ = {βŸ¨π‘’, π‘€βŸ© ∣ (𝑒 ∈ (ClWWalksβ€˜πΊ) ∧ 𝑀 ∈ (ClWWalksβ€˜πΊ) ∧ βˆƒπ‘› ∈ (0...(β™―β€˜π‘€))𝑒 = (𝑀 cyclShift 𝑛))}
Assertion
Ref Expression
erclwwlksym (π‘₯ ∼ 𝑦 β†’ 𝑦 ∼ π‘₯)
Distinct variable groups:   𝑛,𝐺,𝑒,𝑀   π‘₯,𝑛,𝑒,𝑀,𝑦
Allowed substitution hints:   ∼ (π‘₯,𝑦,𝑀,𝑒,𝑛)   𝐺(π‘₯,𝑦)

Proof of Theorem erclwwlksym
Dummy variable π‘š is distinct from all other variables.
StepHypRef Expression
1 erclwwlk.r . . . 4 ∼ = {βŸ¨π‘’, π‘€βŸ© ∣ (𝑒 ∈ (ClWWalksβ€˜πΊ) ∧ 𝑀 ∈ (ClWWalksβ€˜πΊ) ∧ βˆƒπ‘› ∈ (0...(β™―β€˜π‘€))𝑒 = (𝑀 cyclShift 𝑛))}
21erclwwlkeqlen 29871 . . 3 ((π‘₯ ∈ V ∧ 𝑦 ∈ V) β†’ (π‘₯ ∼ 𝑦 β†’ (β™―β€˜π‘₯) = (β™―β€˜π‘¦)))
31erclwwlkeq 29870 . . . 4 ((π‘₯ ∈ V ∧ 𝑦 ∈ V) β†’ (π‘₯ ∼ 𝑦 ↔ (π‘₯ ∈ (ClWWalksβ€˜πΊ) ∧ 𝑦 ∈ (ClWWalksβ€˜πΊ) ∧ βˆƒπ‘› ∈ (0...(β™―β€˜π‘¦))π‘₯ = (𝑦 cyclShift 𝑛))))
4 simpl2 1189 . . . . . . 7 (((π‘₯ ∈ (ClWWalksβ€˜πΊ) ∧ 𝑦 ∈ (ClWWalksβ€˜πΊ) ∧ βˆƒπ‘› ∈ (0...(β™―β€˜π‘¦))π‘₯ = (𝑦 cyclShift 𝑛)) ∧ (β™―β€˜π‘₯) = (β™―β€˜π‘¦)) β†’ 𝑦 ∈ (ClWWalksβ€˜πΊ))
5 simpl1 1188 . . . . . . 7 (((π‘₯ ∈ (ClWWalksβ€˜πΊ) ∧ 𝑦 ∈ (ClWWalksβ€˜πΊ) ∧ βˆƒπ‘› ∈ (0...(β™―β€˜π‘¦))π‘₯ = (𝑦 cyclShift 𝑛)) ∧ (β™―β€˜π‘₯) = (β™―β€˜π‘¦)) β†’ π‘₯ ∈ (ClWWalksβ€˜πΊ))
6 eqid 2725 . . . . . . . . . . . . . . . . . 18 (Vtxβ€˜πΊ) = (Vtxβ€˜πΊ)
76clwwlkbp 29837 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (ClWWalksβ€˜πΊ) β†’ (𝐺 ∈ V ∧ 𝑦 ∈ Word (Vtxβ€˜πΊ) ∧ 𝑦 β‰  βˆ…))
87simp2d 1140 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (ClWWalksβ€˜πΊ) β†’ 𝑦 ∈ Word (Vtxβ€˜πΊ))
98ad2antlr 725 . . . . . . . . . . . . . . 15 (((π‘₯ ∈ (ClWWalksβ€˜πΊ) ∧ 𝑦 ∈ (ClWWalksβ€˜πΊ)) ∧ (β™―β€˜π‘₯) = (β™―β€˜π‘¦)) β†’ 𝑦 ∈ Word (Vtxβ€˜πΊ))
10 simpr 483 . . . . . . . . . . . . . . 15 (((π‘₯ ∈ (ClWWalksβ€˜πΊ) ∧ 𝑦 ∈ (ClWWalksβ€˜πΊ)) ∧ (β™―β€˜π‘₯) = (β™―β€˜π‘¦)) β†’ (β™―β€˜π‘₯) = (β™―β€˜π‘¦))
119, 10cshwcshid 14808 . . . . . . . . . . . . . 14 (((π‘₯ ∈ (ClWWalksβ€˜πΊ) ∧ 𝑦 ∈ (ClWWalksβ€˜πΊ)) ∧ (β™―β€˜π‘₯) = (β™―β€˜π‘¦)) β†’ ((𝑛 ∈ (0...(β™―β€˜π‘¦)) ∧ π‘₯ = (𝑦 cyclShift 𝑛)) β†’ βˆƒπ‘š ∈ (0...(β™―β€˜π‘₯))𝑦 = (π‘₯ cyclShift π‘š)))
1211expd 414 . . . . . . . . . . . . 13 (((π‘₯ ∈ (ClWWalksβ€˜πΊ) ∧ 𝑦 ∈ (ClWWalksβ€˜πΊ)) ∧ (β™―β€˜π‘₯) = (β™―β€˜π‘¦)) β†’ (𝑛 ∈ (0...(β™―β€˜π‘¦)) β†’ (π‘₯ = (𝑦 cyclShift 𝑛) β†’ βˆƒπ‘š ∈ (0...(β™―β€˜π‘₯))𝑦 = (π‘₯ cyclShift π‘š))))
1312rexlimdv 3143 . . . . . . . . . . . 12 (((π‘₯ ∈ (ClWWalksβ€˜πΊ) ∧ 𝑦 ∈ (ClWWalksβ€˜πΊ)) ∧ (β™―β€˜π‘₯) = (β™―β€˜π‘¦)) β†’ (βˆƒπ‘› ∈ (0...(β™―β€˜π‘¦))π‘₯ = (𝑦 cyclShift 𝑛) β†’ βˆƒπ‘š ∈ (0...(β™―β€˜π‘₯))𝑦 = (π‘₯ cyclShift π‘š)))
1413ex 411 . . . . . . . . . . 11 ((π‘₯ ∈ (ClWWalksβ€˜πΊ) ∧ 𝑦 ∈ (ClWWalksβ€˜πΊ)) β†’ ((β™―β€˜π‘₯) = (β™―β€˜π‘¦) β†’ (βˆƒπ‘› ∈ (0...(β™―β€˜π‘¦))π‘₯ = (𝑦 cyclShift 𝑛) β†’ βˆƒπ‘š ∈ (0...(β™―β€˜π‘₯))𝑦 = (π‘₯ cyclShift π‘š))))
1514com23 86 . . . . . . . . . 10 ((π‘₯ ∈ (ClWWalksβ€˜πΊ) ∧ 𝑦 ∈ (ClWWalksβ€˜πΊ)) β†’ (βˆƒπ‘› ∈ (0...(β™―β€˜π‘¦))π‘₯ = (𝑦 cyclShift 𝑛) β†’ ((β™―β€˜π‘₯) = (β™―β€˜π‘¦) β†’ βˆƒπ‘š ∈ (0...(β™―β€˜π‘₯))𝑦 = (π‘₯ cyclShift π‘š))))
16153impia 1114 . . . . . . . . 9 ((π‘₯ ∈ (ClWWalksβ€˜πΊ) ∧ 𝑦 ∈ (ClWWalksβ€˜πΊ) ∧ βˆƒπ‘› ∈ (0...(β™―β€˜π‘¦))π‘₯ = (𝑦 cyclShift 𝑛)) β†’ ((β™―β€˜π‘₯) = (β™―β€˜π‘¦) β†’ βˆƒπ‘š ∈ (0...(β™―β€˜π‘₯))𝑦 = (π‘₯ cyclShift π‘š)))
1716imp 405 . . . . . . . 8 (((π‘₯ ∈ (ClWWalksβ€˜πΊ) ∧ 𝑦 ∈ (ClWWalksβ€˜πΊ) ∧ βˆƒπ‘› ∈ (0...(β™―β€˜π‘¦))π‘₯ = (𝑦 cyclShift 𝑛)) ∧ (β™―β€˜π‘₯) = (β™―β€˜π‘¦)) β†’ βˆƒπ‘š ∈ (0...(β™―β€˜π‘₯))𝑦 = (π‘₯ cyclShift π‘š))
18 oveq2 7423 . . . . . . . . . 10 (𝑛 = π‘š β†’ (π‘₯ cyclShift 𝑛) = (π‘₯ cyclShift π‘š))
1918eqeq2d 2736 . . . . . . . . 9 (𝑛 = π‘š β†’ (𝑦 = (π‘₯ cyclShift 𝑛) ↔ 𝑦 = (π‘₯ cyclShift π‘š)))
2019cbvrexvw 3226 . . . . . . . 8 (βˆƒπ‘› ∈ (0...(β™―β€˜π‘₯))𝑦 = (π‘₯ cyclShift 𝑛) ↔ βˆƒπ‘š ∈ (0...(β™―β€˜π‘₯))𝑦 = (π‘₯ cyclShift π‘š))
2117, 20sylibr 233 . . . . . . 7 (((π‘₯ ∈ (ClWWalksβ€˜πΊ) ∧ 𝑦 ∈ (ClWWalksβ€˜πΊ) ∧ βˆƒπ‘› ∈ (0...(β™―β€˜π‘¦))π‘₯ = (𝑦 cyclShift 𝑛)) ∧ (β™―β€˜π‘₯) = (β™―β€˜π‘¦)) β†’ βˆƒπ‘› ∈ (0...(β™―β€˜π‘₯))𝑦 = (π‘₯ cyclShift 𝑛))
224, 5, 213jca 1125 . . . . . 6 (((π‘₯ ∈ (ClWWalksβ€˜πΊ) ∧ 𝑦 ∈ (ClWWalksβ€˜πΊ) ∧ βˆƒπ‘› ∈ (0...(β™―β€˜π‘¦))π‘₯ = (𝑦 cyclShift 𝑛)) ∧ (β™―β€˜π‘₯) = (β™―β€˜π‘¦)) β†’ (𝑦 ∈ (ClWWalksβ€˜πΊ) ∧ π‘₯ ∈ (ClWWalksβ€˜πΊ) ∧ βˆƒπ‘› ∈ (0...(β™―β€˜π‘₯))𝑦 = (π‘₯ cyclShift 𝑛)))
231erclwwlkeq 29870 . . . . . . 7 ((𝑦 ∈ V ∧ π‘₯ ∈ V) β†’ (𝑦 ∼ π‘₯ ↔ (𝑦 ∈ (ClWWalksβ€˜πΊ) ∧ π‘₯ ∈ (ClWWalksβ€˜πΊ) ∧ βˆƒπ‘› ∈ (0...(β™―β€˜π‘₯))𝑦 = (π‘₯ cyclShift 𝑛))))
2423ancoms 457 . . . . . 6 ((π‘₯ ∈ V ∧ 𝑦 ∈ V) β†’ (𝑦 ∼ π‘₯ ↔ (𝑦 ∈ (ClWWalksβ€˜πΊ) ∧ π‘₯ ∈ (ClWWalksβ€˜πΊ) ∧ βˆƒπ‘› ∈ (0...(β™―β€˜π‘₯))𝑦 = (π‘₯ cyclShift 𝑛))))
2522, 24imbitrrid 245 . . . . 5 ((π‘₯ ∈ V ∧ 𝑦 ∈ V) β†’ (((π‘₯ ∈ (ClWWalksβ€˜πΊ) ∧ 𝑦 ∈ (ClWWalksβ€˜πΊ) ∧ βˆƒπ‘› ∈ (0...(β™―β€˜π‘¦))π‘₯ = (𝑦 cyclShift 𝑛)) ∧ (β™―β€˜π‘₯) = (β™―β€˜π‘¦)) β†’ 𝑦 ∼ π‘₯))
2625expd 414 . . . 4 ((π‘₯ ∈ V ∧ 𝑦 ∈ V) β†’ ((π‘₯ ∈ (ClWWalksβ€˜πΊ) ∧ 𝑦 ∈ (ClWWalksβ€˜πΊ) ∧ βˆƒπ‘› ∈ (0...(β™―β€˜π‘¦))π‘₯ = (𝑦 cyclShift 𝑛)) β†’ ((β™―β€˜π‘₯) = (β™―β€˜π‘¦) β†’ 𝑦 ∼ π‘₯)))
273, 26sylbid 239 . . 3 ((π‘₯ ∈ V ∧ 𝑦 ∈ V) β†’ (π‘₯ ∼ 𝑦 β†’ ((β™―β€˜π‘₯) = (β™―β€˜π‘¦) β†’ 𝑦 ∼ π‘₯)))
282, 27mpdd 43 . 2 ((π‘₯ ∈ V ∧ 𝑦 ∈ V) β†’ (π‘₯ ∼ 𝑦 β†’ 𝑦 ∼ π‘₯))
2928el2v 3471 1 (π‘₯ ∼ 𝑦 β†’ 𝑦 ∼ π‘₯)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   β‰  wne 2930  βˆƒwrex 3060  Vcvv 3463  βˆ…c0 4318   class class class wbr 5143  {copab 5205  β€˜cfv 6542  (class class class)co 7415  0cc0 11136  ...cfz 13514  β™―chash 14319  Word cword 14494   cyclShift ccsh 14768  Vtxcvtx 28851  ClWWalkscclwwlk 29833
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7737  ax-cnex 11192  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212  ax-pre-mulgt0 11213  ax-pre-sup 11214
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3960  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-om 7868  df-1st 7989  df-2nd 7990  df-frecs 8283  df-wrecs 8314  df-recs 8388  df-rdg 8427  df-1o 8483  df-er 8721  df-map 8843  df-en 8961  df-dom 8962  df-sdom 8963  df-fin 8964  df-sup 9463  df-inf 9464  df-card 9960  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11474  df-neg 11475  df-div 11900  df-nn 12241  df-2 12303  df-n0 12501  df-z 12587  df-uz 12851  df-rp 13005  df-fz 13515  df-fzo 13658  df-fl 13787  df-mod 13865  df-hash 14320  df-word 14495  df-concat 14551  df-substr 14621  df-pfx 14651  df-csh 14769  df-clwwlk 29834
This theorem is referenced by:  erclwwlk  29875
  Copyright terms: Public domain W3C validator