MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  erclwwlkref Structured version   Visualization version   GIF version

Theorem erclwwlkref 30006
Description: is a reflexive relation over the set of closed walks (defined as words). (Contributed by Alexander van der Vekens, 25-Mar-2018.) (Revised by AV, 29-Apr-2021.)
Hypothesis
Ref Expression
erclwwlk.r = {⟨𝑢, 𝑤⟩ ∣ (𝑢 ∈ (ClWWalks‘𝐺) ∧ 𝑤 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑤))𝑢 = (𝑤 cyclShift 𝑛))}
Assertion
Ref Expression
erclwwlkref (𝑥 ∈ (ClWWalks‘𝐺) ↔ 𝑥 𝑥)
Distinct variable groups:   𝑛,𝐺,𝑢,𝑤   𝑥,𝑛,𝑢,𝑤
Allowed substitution hints:   (𝑥,𝑤,𝑢,𝑛)   𝐺(𝑥)

Proof of Theorem erclwwlkref
StepHypRef Expression
1 anidm 564 . . . 4 ((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑥 ∈ (ClWWalks‘𝐺)) ↔ 𝑥 ∈ (ClWWalks‘𝐺))
21anbi1i 624 . . 3 (((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑥 ∈ (ClWWalks‘𝐺)) ∧ ∃𝑛 ∈ (0...(♯‘𝑥))𝑥 = (𝑥 cyclShift 𝑛)) ↔ (𝑥 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑥))𝑥 = (𝑥 cyclShift 𝑛)))
3 df-3an 1088 . . 3 ((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑥 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑥))𝑥 = (𝑥 cyclShift 𝑛)) ↔ ((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑥 ∈ (ClWWalks‘𝐺)) ∧ ∃𝑛 ∈ (0...(♯‘𝑥))𝑥 = (𝑥 cyclShift 𝑛)))
4 eqid 2736 . . . . . 6 (Vtx‘𝐺) = (Vtx‘𝐺)
54clwwlkbp 29971 . . . . 5 (𝑥 ∈ (ClWWalks‘𝐺) → (𝐺 ∈ V ∧ 𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑥 ≠ ∅))
6 cshw0 14817 . . . . . . 7 (𝑥 ∈ Word (Vtx‘𝐺) → (𝑥 cyclShift 0) = 𝑥)
7 0nn0 12521 . . . . . . . . . 10 0 ∈ ℕ0
87a1i 11 . . . . . . . . 9 (𝑥 ∈ Word (Vtx‘𝐺) → 0 ∈ ℕ0)
9 lencl 14556 . . . . . . . . 9 (𝑥 ∈ Word (Vtx‘𝐺) → (♯‘𝑥) ∈ ℕ0)
10 hashge0 14410 . . . . . . . . 9 (𝑥 ∈ Word (Vtx‘𝐺) → 0 ≤ (♯‘𝑥))
11 elfz2nn0 13640 . . . . . . . . 9 (0 ∈ (0...(♯‘𝑥)) ↔ (0 ∈ ℕ0 ∧ (♯‘𝑥) ∈ ℕ0 ∧ 0 ≤ (♯‘𝑥)))
128, 9, 10, 11syl3anbrc 1344 . . . . . . . 8 (𝑥 ∈ Word (Vtx‘𝐺) → 0 ∈ (0...(♯‘𝑥)))
13 eqcom 2743 . . . . . . . . 9 ((𝑥 cyclShift 0) = 𝑥𝑥 = (𝑥 cyclShift 0))
1413biimpi 216 . . . . . . . 8 ((𝑥 cyclShift 0) = 𝑥𝑥 = (𝑥 cyclShift 0))
15 oveq2 7418 . . . . . . . . 9 (𝑛 = 0 → (𝑥 cyclShift 𝑛) = (𝑥 cyclShift 0))
1615rspceeqv 3629 . . . . . . . 8 ((0 ∈ (0...(♯‘𝑥)) ∧ 𝑥 = (𝑥 cyclShift 0)) → ∃𝑛 ∈ (0...(♯‘𝑥))𝑥 = (𝑥 cyclShift 𝑛))
1712, 14, 16syl2an 596 . . . . . . 7 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (𝑥 cyclShift 0) = 𝑥) → ∃𝑛 ∈ (0...(♯‘𝑥))𝑥 = (𝑥 cyclShift 𝑛))
186, 17mpdan 687 . . . . . 6 (𝑥 ∈ Word (Vtx‘𝐺) → ∃𝑛 ∈ (0...(♯‘𝑥))𝑥 = (𝑥 cyclShift 𝑛))
19183ad2ant2 1134 . . . . 5 ((𝐺 ∈ V ∧ 𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑥 ≠ ∅) → ∃𝑛 ∈ (0...(♯‘𝑥))𝑥 = (𝑥 cyclShift 𝑛))
205, 19syl 17 . . . 4 (𝑥 ∈ (ClWWalks‘𝐺) → ∃𝑛 ∈ (0...(♯‘𝑥))𝑥 = (𝑥 cyclShift 𝑛))
2120pm4.71i 559 . . 3 (𝑥 ∈ (ClWWalks‘𝐺) ↔ (𝑥 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑥))𝑥 = (𝑥 cyclShift 𝑛)))
222, 3, 213bitr4ri 304 . 2 (𝑥 ∈ (ClWWalks‘𝐺) ↔ (𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑥 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑥))𝑥 = (𝑥 cyclShift 𝑛)))
23 erclwwlk.r . . . 4 = {⟨𝑢, 𝑤⟩ ∣ (𝑢 ∈ (ClWWalks‘𝐺) ∧ 𝑤 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑤))𝑢 = (𝑤 cyclShift 𝑛))}
2423erclwwlkeq 30004 . . 3 ((𝑥 ∈ V ∧ 𝑥 ∈ V) → (𝑥 𝑥 ↔ (𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑥 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑥))𝑥 = (𝑥 cyclShift 𝑛))))
2524el2v 3471 . 2 (𝑥 𝑥 ↔ (𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑥 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑥))𝑥 = (𝑥 cyclShift 𝑛)))
2622, 25bitr4i 278 1 (𝑥 ∈ (ClWWalks‘𝐺) ↔ 𝑥 𝑥)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2933  wrex 3061  Vcvv 3464  c0 4313   class class class wbr 5124  {copab 5186  cfv 6536  (class class class)co 7410  0cc0 11134  cle 11275  0cn0 12506  ...cfz 13529  chash 14353  Word cword 14536   cyclShift ccsh 14811  Vtxcvtx 28980  ClWWalkscclwwlk 29967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-oadd 8489  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-inf 9460  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-n0 12507  df-xnn0 12580  df-z 12594  df-uz 12858  df-rp 13014  df-fz 13530  df-fzo 13677  df-fl 13814  df-mod 13892  df-hash 14354  df-word 14537  df-concat 14594  df-substr 14664  df-pfx 14694  df-csh 14812  df-clwwlk 29968
This theorem is referenced by:  erclwwlk  30009
  Copyright terms: Public domain W3C validator