Step | Hyp | Ref
| Expression |
1 | | anidm 565 |
. . . 4
β’ ((π₯ β (ClWWalksβπΊ) β§ π₯ β (ClWWalksβπΊ)) β π₯ β (ClWWalksβπΊ)) |
2 | 1 | anbi1i 624 |
. . 3
β’ (((π₯ β (ClWWalksβπΊ) β§ π₯ β (ClWWalksβπΊ)) β§ βπ β (0...(β―βπ₯))π₯ = (π₯ cyclShift π)) β (π₯ β (ClWWalksβπΊ) β§ βπ β (0...(β―βπ₯))π₯ = (π₯ cyclShift π))) |
3 | | df-3an 1089 |
. . 3
β’ ((π₯ β (ClWWalksβπΊ) β§ π₯ β (ClWWalksβπΊ) β§ βπ β (0...(β―βπ₯))π₯ = (π₯ cyclShift π)) β ((π₯ β (ClWWalksβπΊ) β§ π₯ β (ClWWalksβπΊ)) β§ βπ β (0...(β―βπ₯))π₯ = (π₯ cyclShift π))) |
4 | | eqid 2732 |
. . . . . 6
β’
(VtxβπΊ) =
(VtxβπΊ) |
5 | 4 | clwwlkbp 29227 |
. . . . 5
β’ (π₯ β (ClWWalksβπΊ) β (πΊ β V β§ π₯ β Word (VtxβπΊ) β§ π₯ β β
)) |
6 | | cshw0 14740 |
. . . . . . 7
β’ (π₯ β Word (VtxβπΊ) β (π₯ cyclShift 0) = π₯) |
7 | | 0nn0 12483 |
. . . . . . . . . 10
β’ 0 β
β0 |
8 | 7 | a1i 11 |
. . . . . . . . 9
β’ (π₯ β Word (VtxβπΊ) β 0 β
β0) |
9 | | lencl 14479 |
. . . . . . . . 9
β’ (π₯ β Word (VtxβπΊ) β (β―βπ₯) β
β0) |
10 | | hashge0 14343 |
. . . . . . . . 9
β’ (π₯ β Word (VtxβπΊ) β 0 β€
(β―βπ₯)) |
11 | | elfz2nn0 13588 |
. . . . . . . . 9
β’ (0 β
(0...(β―βπ₯))
β (0 β β0 β§ (β―βπ₯) β β0 β§ 0 β€
(β―βπ₯))) |
12 | 8, 9, 10, 11 | syl3anbrc 1343 |
. . . . . . . 8
β’ (π₯ β Word (VtxβπΊ) β 0 β
(0...(β―βπ₯))) |
13 | | eqcom 2739 |
. . . . . . . . 9
β’ ((π₯ cyclShift 0) = π₯ β π₯ = (π₯ cyclShift 0)) |
14 | 13 | biimpi 215 |
. . . . . . . 8
β’ ((π₯ cyclShift 0) = π₯ β π₯ = (π₯ cyclShift 0)) |
15 | | oveq2 7413 |
. . . . . . . . 9
β’ (π = 0 β (π₯ cyclShift π) = (π₯ cyclShift 0)) |
16 | 15 | rspceeqv 3632 |
. . . . . . . 8
β’ ((0
β (0...(β―βπ₯)) β§ π₯ = (π₯ cyclShift 0)) β βπ β
(0...(β―βπ₯))π₯ = (π₯ cyclShift π)) |
17 | 12, 14, 16 | syl2an 596 |
. . . . . . 7
β’ ((π₯ β Word (VtxβπΊ) β§ (π₯ cyclShift 0) = π₯) β βπ β (0...(β―βπ₯))π₯ = (π₯ cyclShift π)) |
18 | 6, 17 | mpdan 685 |
. . . . . 6
β’ (π₯ β Word (VtxβπΊ) β βπ β
(0...(β―βπ₯))π₯ = (π₯ cyclShift π)) |
19 | 18 | 3ad2ant2 1134 |
. . . . 5
β’ ((πΊ β V β§ π₯ β Word (VtxβπΊ) β§ π₯ β β
) β βπ β
(0...(β―βπ₯))π₯ = (π₯ cyclShift π)) |
20 | 5, 19 | syl 17 |
. . . 4
β’ (π₯ β (ClWWalksβπΊ) β βπ β
(0...(β―βπ₯))π₯ = (π₯ cyclShift π)) |
21 | 20 | pm4.71i 560 |
. . 3
β’ (π₯ β (ClWWalksβπΊ) β (π₯ β (ClWWalksβπΊ) β§ βπ β (0...(β―βπ₯))π₯ = (π₯ cyclShift π))) |
22 | 2, 3, 21 | 3bitr4ri 303 |
. 2
β’ (π₯ β (ClWWalksβπΊ) β (π₯ β (ClWWalksβπΊ) β§ π₯ β (ClWWalksβπΊ) β§ βπ β (0...(β―βπ₯))π₯ = (π₯ cyclShift π))) |
23 | | erclwwlk.r |
. . . 4
β’ βΌ =
{β¨π’, π€β© β£ (π’ β (ClWWalksβπΊ) β§ π€ β (ClWWalksβπΊ) β§ βπ β (0...(β―βπ€))π’ = (π€ cyclShift π))} |
24 | 23 | erclwwlkeq 29260 |
. . 3
β’ ((π₯ β V β§ π₯ β V) β (π₯ βΌ π₯ β (π₯ β (ClWWalksβπΊ) β§ π₯ β (ClWWalksβπΊ) β§ βπ β (0...(β―βπ₯))π₯ = (π₯ cyclShift π)))) |
25 | 24 | el2v 3482 |
. 2
β’ (π₯ βΌ π₯ β (π₯ β (ClWWalksβπΊ) β§ π₯ β (ClWWalksβπΊ) β§ βπ β (0...(β―βπ₯))π₯ = (π₯ cyclShift π))) |
26 | 22, 25 | bitr4i 277 |
1
β’ (π₯ β (ClWWalksβπΊ) β π₯ βΌ π₯) |