![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > erclwwlkref | Structured version Visualization version GIF version |
Description: ∼ is a reflexive relation over the set of closed walks (defined as words). (Contributed by Alexander van der Vekens, 25-Mar-2018.) (Revised by AV, 29-Apr-2021.) |
Ref | Expression |
---|---|
erclwwlk.r | ⊢ ∼ = {〈𝑢, 𝑤〉 ∣ (𝑢 ∈ (ClWWalks‘𝐺) ∧ 𝑤 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑤))𝑢 = (𝑤 cyclShift 𝑛))} |
Ref | Expression |
---|---|
erclwwlkref | ⊢ (𝑥 ∈ (ClWWalks‘𝐺) ↔ 𝑥 ∼ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anidm 566 | . . . 4 ⊢ ((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑥 ∈ (ClWWalks‘𝐺)) ↔ 𝑥 ∈ (ClWWalks‘𝐺)) | |
2 | 1 | anbi1i 625 | . . 3 ⊢ (((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑥 ∈ (ClWWalks‘𝐺)) ∧ ∃𝑛 ∈ (0...(♯‘𝑥))𝑥 = (𝑥 cyclShift 𝑛)) ↔ (𝑥 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑥))𝑥 = (𝑥 cyclShift 𝑛))) |
3 | df-3an 1090 | . . 3 ⊢ ((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑥 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑥))𝑥 = (𝑥 cyclShift 𝑛)) ↔ ((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑥 ∈ (ClWWalks‘𝐺)) ∧ ∃𝑛 ∈ (0...(♯‘𝑥))𝑥 = (𝑥 cyclShift 𝑛))) | |
4 | eqid 2733 | . . . . . 6 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
5 | 4 | clwwlkbp 29205 | . . . . 5 ⊢ (𝑥 ∈ (ClWWalks‘𝐺) → (𝐺 ∈ V ∧ 𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑥 ≠ ∅)) |
6 | cshw0 14731 | . . . . . . 7 ⊢ (𝑥 ∈ Word (Vtx‘𝐺) → (𝑥 cyclShift 0) = 𝑥) | |
7 | 0nn0 12474 | . . . . . . . . . 10 ⊢ 0 ∈ ℕ0 | |
8 | 7 | a1i 11 | . . . . . . . . 9 ⊢ (𝑥 ∈ Word (Vtx‘𝐺) → 0 ∈ ℕ0) |
9 | lencl 14470 | . . . . . . . . 9 ⊢ (𝑥 ∈ Word (Vtx‘𝐺) → (♯‘𝑥) ∈ ℕ0) | |
10 | hashge0 14334 | . . . . . . . . 9 ⊢ (𝑥 ∈ Word (Vtx‘𝐺) → 0 ≤ (♯‘𝑥)) | |
11 | elfz2nn0 13579 | . . . . . . . . 9 ⊢ (0 ∈ (0...(♯‘𝑥)) ↔ (0 ∈ ℕ0 ∧ (♯‘𝑥) ∈ ℕ0 ∧ 0 ≤ (♯‘𝑥))) | |
12 | 8, 9, 10, 11 | syl3anbrc 1344 | . . . . . . . 8 ⊢ (𝑥 ∈ Word (Vtx‘𝐺) → 0 ∈ (0...(♯‘𝑥))) |
13 | eqcom 2740 | . . . . . . . . 9 ⊢ ((𝑥 cyclShift 0) = 𝑥 ↔ 𝑥 = (𝑥 cyclShift 0)) | |
14 | 13 | biimpi 215 | . . . . . . . 8 ⊢ ((𝑥 cyclShift 0) = 𝑥 → 𝑥 = (𝑥 cyclShift 0)) |
15 | oveq2 7404 | . . . . . . . . 9 ⊢ (𝑛 = 0 → (𝑥 cyclShift 𝑛) = (𝑥 cyclShift 0)) | |
16 | 15 | rspceeqv 3631 | . . . . . . . 8 ⊢ ((0 ∈ (0...(♯‘𝑥)) ∧ 𝑥 = (𝑥 cyclShift 0)) → ∃𝑛 ∈ (0...(♯‘𝑥))𝑥 = (𝑥 cyclShift 𝑛)) |
17 | 12, 14, 16 | syl2an 597 | . . . . . . 7 ⊢ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (𝑥 cyclShift 0) = 𝑥) → ∃𝑛 ∈ (0...(♯‘𝑥))𝑥 = (𝑥 cyclShift 𝑛)) |
18 | 6, 17 | mpdan 686 | . . . . . 6 ⊢ (𝑥 ∈ Word (Vtx‘𝐺) → ∃𝑛 ∈ (0...(♯‘𝑥))𝑥 = (𝑥 cyclShift 𝑛)) |
19 | 18 | 3ad2ant2 1135 | . . . . 5 ⊢ ((𝐺 ∈ V ∧ 𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑥 ≠ ∅) → ∃𝑛 ∈ (0...(♯‘𝑥))𝑥 = (𝑥 cyclShift 𝑛)) |
20 | 5, 19 | syl 17 | . . . 4 ⊢ (𝑥 ∈ (ClWWalks‘𝐺) → ∃𝑛 ∈ (0...(♯‘𝑥))𝑥 = (𝑥 cyclShift 𝑛)) |
21 | 20 | pm4.71i 561 | . . 3 ⊢ (𝑥 ∈ (ClWWalks‘𝐺) ↔ (𝑥 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑥))𝑥 = (𝑥 cyclShift 𝑛))) |
22 | 2, 3, 21 | 3bitr4ri 304 | . 2 ⊢ (𝑥 ∈ (ClWWalks‘𝐺) ↔ (𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑥 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑥))𝑥 = (𝑥 cyclShift 𝑛))) |
23 | erclwwlk.r | . . . 4 ⊢ ∼ = {〈𝑢, 𝑤〉 ∣ (𝑢 ∈ (ClWWalks‘𝐺) ∧ 𝑤 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑤))𝑢 = (𝑤 cyclShift 𝑛))} | |
24 | 23 | erclwwlkeq 29238 | . . 3 ⊢ ((𝑥 ∈ V ∧ 𝑥 ∈ V) → (𝑥 ∼ 𝑥 ↔ (𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑥 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑥))𝑥 = (𝑥 cyclShift 𝑛)))) |
25 | 24 | el2v 3483 | . 2 ⊢ (𝑥 ∼ 𝑥 ↔ (𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑥 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑥))𝑥 = (𝑥 cyclShift 𝑛))) |
26 | 22, 25 | bitr4i 278 | 1 ⊢ (𝑥 ∈ (ClWWalks‘𝐺) ↔ 𝑥 ∼ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ≠ wne 2941 ∃wrex 3071 Vcvv 3475 ∅c0 4320 class class class wbr 5144 {copab 5206 ‘cfv 6535 (class class class)co 7396 0cc0 11097 ≤ cle 11236 ℕ0cn0 12459 ...cfz 13471 ♯chash 14277 Word cword 14451 cyclShift ccsh 14725 Vtxcvtx 28223 ClWWalkscclwwlk 29201 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pow 5359 ax-pr 5423 ax-un 7712 ax-cnex 11153 ax-resscn 11154 ax-1cn 11155 ax-icn 11156 ax-addcl 11157 ax-addrcl 11158 ax-mulcl 11159 ax-mulrcl 11160 ax-mulcom 11161 ax-addass 11162 ax-mulass 11163 ax-distr 11164 ax-i2m1 11165 ax-1ne0 11166 ax-1rid 11167 ax-rnegex 11168 ax-rrecex 11169 ax-cnre 11170 ax-pre-lttri 11171 ax-pre-lttrn 11172 ax-pre-ltadd 11173 ax-pre-mulgt0 11174 ax-pre-sup 11175 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3965 df-nul 4321 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4905 df-int 4947 df-iun 4995 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6292 df-ord 6359 df-on 6360 df-lim 6361 df-suc 6362 df-iota 6487 df-fun 6537 df-fn 6538 df-f 6539 df-f1 6540 df-fo 6541 df-f1o 6542 df-fv 6543 df-riota 7352 df-ov 7399 df-oprab 7400 df-mpo 7401 df-om 7843 df-1st 7962 df-2nd 7963 df-frecs 8253 df-wrecs 8284 df-recs 8358 df-rdg 8397 df-1o 8453 df-oadd 8457 df-er 8691 df-map 8810 df-en 8928 df-dom 8929 df-sdom 8930 df-fin 8931 df-sup 9424 df-inf 9425 df-card 9921 df-pnf 11237 df-mnf 11238 df-xr 11239 df-ltxr 11240 df-le 11241 df-sub 11433 df-neg 11434 df-div 11859 df-nn 12200 df-n0 12460 df-xnn0 12532 df-z 12546 df-uz 12810 df-rp 12962 df-fz 13472 df-fzo 13615 df-fl 13744 df-mod 13822 df-hash 14278 df-word 14452 df-concat 14508 df-substr 14578 df-pfx 14608 df-csh 14726 df-clwwlk 29202 |
This theorem is referenced by: erclwwlk 29243 |
Copyright terms: Public domain | W3C validator |