MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  erclwwlkref Structured version   Visualization version   GIF version

Theorem erclwwlkref 29262
Description: ∼ is a reflexive relation over the set of closed walks (defined as words). (Contributed by Alexander van der Vekens, 25-Mar-2018.) (Revised by AV, 29-Apr-2021.)
Hypothesis
Ref Expression
erclwwlk.r ∼ = {βŸ¨π‘’, π‘€βŸ© ∣ (𝑒 ∈ (ClWWalksβ€˜πΊ) ∧ 𝑀 ∈ (ClWWalksβ€˜πΊ) ∧ βˆƒπ‘› ∈ (0...(β™―β€˜π‘€))𝑒 = (𝑀 cyclShift 𝑛))}
Assertion
Ref Expression
erclwwlkref (π‘₯ ∈ (ClWWalksβ€˜πΊ) ↔ π‘₯ ∼ π‘₯)
Distinct variable groups:   𝑛,𝐺,𝑒,𝑀   π‘₯,𝑛,𝑒,𝑀
Allowed substitution hints:   ∼ (π‘₯,𝑀,𝑒,𝑛)   𝐺(π‘₯)

Proof of Theorem erclwwlkref
StepHypRef Expression
1 anidm 565 . . . 4 ((π‘₯ ∈ (ClWWalksβ€˜πΊ) ∧ π‘₯ ∈ (ClWWalksβ€˜πΊ)) ↔ π‘₯ ∈ (ClWWalksβ€˜πΊ))
21anbi1i 624 . . 3 (((π‘₯ ∈ (ClWWalksβ€˜πΊ) ∧ π‘₯ ∈ (ClWWalksβ€˜πΊ)) ∧ βˆƒπ‘› ∈ (0...(β™―β€˜π‘₯))π‘₯ = (π‘₯ cyclShift 𝑛)) ↔ (π‘₯ ∈ (ClWWalksβ€˜πΊ) ∧ βˆƒπ‘› ∈ (0...(β™―β€˜π‘₯))π‘₯ = (π‘₯ cyclShift 𝑛)))
3 df-3an 1089 . . 3 ((π‘₯ ∈ (ClWWalksβ€˜πΊ) ∧ π‘₯ ∈ (ClWWalksβ€˜πΊ) ∧ βˆƒπ‘› ∈ (0...(β™―β€˜π‘₯))π‘₯ = (π‘₯ cyclShift 𝑛)) ↔ ((π‘₯ ∈ (ClWWalksβ€˜πΊ) ∧ π‘₯ ∈ (ClWWalksβ€˜πΊ)) ∧ βˆƒπ‘› ∈ (0...(β™―β€˜π‘₯))π‘₯ = (π‘₯ cyclShift 𝑛)))
4 eqid 2732 . . . . . 6 (Vtxβ€˜πΊ) = (Vtxβ€˜πΊ)
54clwwlkbp 29227 . . . . 5 (π‘₯ ∈ (ClWWalksβ€˜πΊ) β†’ (𝐺 ∈ V ∧ π‘₯ ∈ Word (Vtxβ€˜πΊ) ∧ π‘₯ β‰  βˆ…))
6 cshw0 14740 . . . . . . 7 (π‘₯ ∈ Word (Vtxβ€˜πΊ) β†’ (π‘₯ cyclShift 0) = π‘₯)
7 0nn0 12483 . . . . . . . . . 10 0 ∈ β„•0
87a1i 11 . . . . . . . . 9 (π‘₯ ∈ Word (Vtxβ€˜πΊ) β†’ 0 ∈ β„•0)
9 lencl 14479 . . . . . . . . 9 (π‘₯ ∈ Word (Vtxβ€˜πΊ) β†’ (β™―β€˜π‘₯) ∈ β„•0)
10 hashge0 14343 . . . . . . . . 9 (π‘₯ ∈ Word (Vtxβ€˜πΊ) β†’ 0 ≀ (β™―β€˜π‘₯))
11 elfz2nn0 13588 . . . . . . . . 9 (0 ∈ (0...(β™―β€˜π‘₯)) ↔ (0 ∈ β„•0 ∧ (β™―β€˜π‘₯) ∈ β„•0 ∧ 0 ≀ (β™―β€˜π‘₯)))
128, 9, 10, 11syl3anbrc 1343 . . . . . . . 8 (π‘₯ ∈ Word (Vtxβ€˜πΊ) β†’ 0 ∈ (0...(β™―β€˜π‘₯)))
13 eqcom 2739 . . . . . . . . 9 ((π‘₯ cyclShift 0) = π‘₯ ↔ π‘₯ = (π‘₯ cyclShift 0))
1413biimpi 215 . . . . . . . 8 ((π‘₯ cyclShift 0) = π‘₯ β†’ π‘₯ = (π‘₯ cyclShift 0))
15 oveq2 7413 . . . . . . . . 9 (𝑛 = 0 β†’ (π‘₯ cyclShift 𝑛) = (π‘₯ cyclShift 0))
1615rspceeqv 3632 . . . . . . . 8 ((0 ∈ (0...(β™―β€˜π‘₯)) ∧ π‘₯ = (π‘₯ cyclShift 0)) β†’ βˆƒπ‘› ∈ (0...(β™―β€˜π‘₯))π‘₯ = (π‘₯ cyclShift 𝑛))
1712, 14, 16syl2an 596 . . . . . . 7 ((π‘₯ ∈ Word (Vtxβ€˜πΊ) ∧ (π‘₯ cyclShift 0) = π‘₯) β†’ βˆƒπ‘› ∈ (0...(β™―β€˜π‘₯))π‘₯ = (π‘₯ cyclShift 𝑛))
186, 17mpdan 685 . . . . . 6 (π‘₯ ∈ Word (Vtxβ€˜πΊ) β†’ βˆƒπ‘› ∈ (0...(β™―β€˜π‘₯))π‘₯ = (π‘₯ cyclShift 𝑛))
19183ad2ant2 1134 . . . . 5 ((𝐺 ∈ V ∧ π‘₯ ∈ Word (Vtxβ€˜πΊ) ∧ π‘₯ β‰  βˆ…) β†’ βˆƒπ‘› ∈ (0...(β™―β€˜π‘₯))π‘₯ = (π‘₯ cyclShift 𝑛))
205, 19syl 17 . . . 4 (π‘₯ ∈ (ClWWalksβ€˜πΊ) β†’ βˆƒπ‘› ∈ (0...(β™―β€˜π‘₯))π‘₯ = (π‘₯ cyclShift 𝑛))
2120pm4.71i 560 . . 3 (π‘₯ ∈ (ClWWalksβ€˜πΊ) ↔ (π‘₯ ∈ (ClWWalksβ€˜πΊ) ∧ βˆƒπ‘› ∈ (0...(β™―β€˜π‘₯))π‘₯ = (π‘₯ cyclShift 𝑛)))
222, 3, 213bitr4ri 303 . 2 (π‘₯ ∈ (ClWWalksβ€˜πΊ) ↔ (π‘₯ ∈ (ClWWalksβ€˜πΊ) ∧ π‘₯ ∈ (ClWWalksβ€˜πΊ) ∧ βˆƒπ‘› ∈ (0...(β™―β€˜π‘₯))π‘₯ = (π‘₯ cyclShift 𝑛)))
23 erclwwlk.r . . . 4 ∼ = {βŸ¨π‘’, π‘€βŸ© ∣ (𝑒 ∈ (ClWWalksβ€˜πΊ) ∧ 𝑀 ∈ (ClWWalksβ€˜πΊ) ∧ βˆƒπ‘› ∈ (0...(β™―β€˜π‘€))𝑒 = (𝑀 cyclShift 𝑛))}
2423erclwwlkeq 29260 . . 3 ((π‘₯ ∈ V ∧ π‘₯ ∈ V) β†’ (π‘₯ ∼ π‘₯ ↔ (π‘₯ ∈ (ClWWalksβ€˜πΊ) ∧ π‘₯ ∈ (ClWWalksβ€˜πΊ) ∧ βˆƒπ‘› ∈ (0...(β™―β€˜π‘₯))π‘₯ = (π‘₯ cyclShift 𝑛))))
2524el2v 3482 . 2 (π‘₯ ∼ π‘₯ ↔ (π‘₯ ∈ (ClWWalksβ€˜πΊ) ∧ π‘₯ ∈ (ClWWalksβ€˜πΊ) ∧ βˆƒπ‘› ∈ (0...(β™―β€˜π‘₯))π‘₯ = (π‘₯ cyclShift 𝑛)))
2622, 25bitr4i 277 1 (π‘₯ ∈ (ClWWalksβ€˜πΊ) ↔ π‘₯ ∼ π‘₯)
Colors of variables: wff setvar class
Syntax hints:   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  βˆƒwrex 3070  Vcvv 3474  βˆ…c0 4321   class class class wbr 5147  {copab 5209  β€˜cfv 6540  (class class class)co 7405  0cc0 11106   ≀ cle 11245  β„•0cn0 12468  ...cfz 13480  β™―chash 14286  Word cword 14460   cyclShift ccsh 14734  Vtxcvtx 28245  ClWWalkscclwwlk 29223
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-oadd 8466  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-inf 9434  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-n0 12469  df-xnn0 12541  df-z 12555  df-uz 12819  df-rp 12971  df-fz 13481  df-fzo 13624  df-fl 13753  df-mod 13831  df-hash 14287  df-word 14461  df-concat 14517  df-substr 14587  df-pfx 14617  df-csh 14735  df-clwwlk 29224
This theorem is referenced by:  erclwwlk  29265
  Copyright terms: Public domain W3C validator