![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > erclwwlkref | Structured version Visualization version GIF version |
Description: ∼ is a reflexive relation over the set of closed walks (defined as words). (Contributed by Alexander van der Vekens, 25-Mar-2018.) (Revised by AV, 29-Apr-2021.) |
Ref | Expression |
---|---|
erclwwlk.r | ⊢ ∼ = {〈𝑢, 𝑤〉 ∣ (𝑢 ∈ (ClWWalks‘𝐺) ∧ 𝑤 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑤))𝑢 = (𝑤 cyclShift 𝑛))} |
Ref | Expression |
---|---|
erclwwlkref | ⊢ (𝑥 ∈ (ClWWalks‘𝐺) ↔ 𝑥 ∼ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anidm 564 | . . . 4 ⊢ ((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑥 ∈ (ClWWalks‘𝐺)) ↔ 𝑥 ∈ (ClWWalks‘𝐺)) | |
2 | 1 | anbi1i 624 | . . 3 ⊢ (((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑥 ∈ (ClWWalks‘𝐺)) ∧ ∃𝑛 ∈ (0...(♯‘𝑥))𝑥 = (𝑥 cyclShift 𝑛)) ↔ (𝑥 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑥))𝑥 = (𝑥 cyclShift 𝑛))) |
3 | df-3an 1088 | . . 3 ⊢ ((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑥 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑥))𝑥 = (𝑥 cyclShift 𝑛)) ↔ ((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑥 ∈ (ClWWalks‘𝐺)) ∧ ∃𝑛 ∈ (0...(♯‘𝑥))𝑥 = (𝑥 cyclShift 𝑛))) | |
4 | eqid 2735 | . . . . . 6 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
5 | 4 | clwwlkbp 30014 | . . . . 5 ⊢ (𝑥 ∈ (ClWWalks‘𝐺) → (𝐺 ∈ V ∧ 𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑥 ≠ ∅)) |
6 | cshw0 14829 | . . . . . . 7 ⊢ (𝑥 ∈ Word (Vtx‘𝐺) → (𝑥 cyclShift 0) = 𝑥) | |
7 | 0nn0 12539 | . . . . . . . . . 10 ⊢ 0 ∈ ℕ0 | |
8 | 7 | a1i 11 | . . . . . . . . 9 ⊢ (𝑥 ∈ Word (Vtx‘𝐺) → 0 ∈ ℕ0) |
9 | lencl 14568 | . . . . . . . . 9 ⊢ (𝑥 ∈ Word (Vtx‘𝐺) → (♯‘𝑥) ∈ ℕ0) | |
10 | hashge0 14423 | . . . . . . . . 9 ⊢ (𝑥 ∈ Word (Vtx‘𝐺) → 0 ≤ (♯‘𝑥)) | |
11 | elfz2nn0 13655 | . . . . . . . . 9 ⊢ (0 ∈ (0...(♯‘𝑥)) ↔ (0 ∈ ℕ0 ∧ (♯‘𝑥) ∈ ℕ0 ∧ 0 ≤ (♯‘𝑥))) | |
12 | 8, 9, 10, 11 | syl3anbrc 1342 | . . . . . . . 8 ⊢ (𝑥 ∈ Word (Vtx‘𝐺) → 0 ∈ (0...(♯‘𝑥))) |
13 | eqcom 2742 | . . . . . . . . 9 ⊢ ((𝑥 cyclShift 0) = 𝑥 ↔ 𝑥 = (𝑥 cyclShift 0)) | |
14 | 13 | biimpi 216 | . . . . . . . 8 ⊢ ((𝑥 cyclShift 0) = 𝑥 → 𝑥 = (𝑥 cyclShift 0)) |
15 | oveq2 7439 | . . . . . . . . 9 ⊢ (𝑛 = 0 → (𝑥 cyclShift 𝑛) = (𝑥 cyclShift 0)) | |
16 | 15 | rspceeqv 3645 | . . . . . . . 8 ⊢ ((0 ∈ (0...(♯‘𝑥)) ∧ 𝑥 = (𝑥 cyclShift 0)) → ∃𝑛 ∈ (0...(♯‘𝑥))𝑥 = (𝑥 cyclShift 𝑛)) |
17 | 12, 14, 16 | syl2an 596 | . . . . . . 7 ⊢ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (𝑥 cyclShift 0) = 𝑥) → ∃𝑛 ∈ (0...(♯‘𝑥))𝑥 = (𝑥 cyclShift 𝑛)) |
18 | 6, 17 | mpdan 687 | . . . . . 6 ⊢ (𝑥 ∈ Word (Vtx‘𝐺) → ∃𝑛 ∈ (0...(♯‘𝑥))𝑥 = (𝑥 cyclShift 𝑛)) |
19 | 18 | 3ad2ant2 1133 | . . . . 5 ⊢ ((𝐺 ∈ V ∧ 𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑥 ≠ ∅) → ∃𝑛 ∈ (0...(♯‘𝑥))𝑥 = (𝑥 cyclShift 𝑛)) |
20 | 5, 19 | syl 17 | . . . 4 ⊢ (𝑥 ∈ (ClWWalks‘𝐺) → ∃𝑛 ∈ (0...(♯‘𝑥))𝑥 = (𝑥 cyclShift 𝑛)) |
21 | 20 | pm4.71i 559 | . . 3 ⊢ (𝑥 ∈ (ClWWalks‘𝐺) ↔ (𝑥 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑥))𝑥 = (𝑥 cyclShift 𝑛))) |
22 | 2, 3, 21 | 3bitr4ri 304 | . 2 ⊢ (𝑥 ∈ (ClWWalks‘𝐺) ↔ (𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑥 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑥))𝑥 = (𝑥 cyclShift 𝑛))) |
23 | erclwwlk.r | . . . 4 ⊢ ∼ = {〈𝑢, 𝑤〉 ∣ (𝑢 ∈ (ClWWalks‘𝐺) ∧ 𝑤 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑤))𝑢 = (𝑤 cyclShift 𝑛))} | |
24 | 23 | erclwwlkeq 30047 | . . 3 ⊢ ((𝑥 ∈ V ∧ 𝑥 ∈ V) → (𝑥 ∼ 𝑥 ↔ (𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑥 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑥))𝑥 = (𝑥 cyclShift 𝑛)))) |
25 | 24 | el2v 3485 | . 2 ⊢ (𝑥 ∼ 𝑥 ↔ (𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑥 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑥))𝑥 = (𝑥 cyclShift 𝑛))) |
26 | 22, 25 | bitr4i 278 | 1 ⊢ (𝑥 ∈ (ClWWalks‘𝐺) ↔ 𝑥 ∼ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ∃wrex 3068 Vcvv 3478 ∅c0 4339 class class class wbr 5148 {copab 5210 ‘cfv 6563 (class class class)co 7431 0cc0 11153 ≤ cle 11294 ℕ0cn0 12524 ...cfz 13544 ♯chash 14366 Word cword 14549 cyclShift ccsh 14823 Vtxcvtx 29028 ClWWalkscclwwlk 30010 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-oadd 8509 df-er 8744 df-map 8867 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-sup 9480 df-inf 9481 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-n0 12525 df-xnn0 12598 df-z 12612 df-uz 12877 df-rp 13033 df-fz 13545 df-fzo 13692 df-fl 13829 df-mod 13907 df-hash 14367 df-word 14550 df-concat 14606 df-substr 14676 df-pfx 14706 df-csh 14824 df-clwwlk 30011 |
This theorem is referenced by: erclwwlk 30052 |
Copyright terms: Public domain | W3C validator |