Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > erclwwlkref | Structured version Visualization version GIF version |
Description: ∼ is a reflexive relation over the set of closed walks (defined as words). (Contributed by Alexander van der Vekens, 25-Mar-2018.) (Revised by AV, 29-Apr-2021.) |
Ref | Expression |
---|---|
erclwwlk.r | ⊢ ∼ = {〈𝑢, 𝑤〉 ∣ (𝑢 ∈ (ClWWalks‘𝐺) ∧ 𝑤 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑤))𝑢 = (𝑤 cyclShift 𝑛))} |
Ref | Expression |
---|---|
erclwwlkref | ⊢ (𝑥 ∈ (ClWWalks‘𝐺) ↔ 𝑥 ∼ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anidm 568 | . . . 4 ⊢ ((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑥 ∈ (ClWWalks‘𝐺)) ↔ 𝑥 ∈ (ClWWalks‘𝐺)) | |
2 | 1 | anbi1i 626 | . . 3 ⊢ (((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑥 ∈ (ClWWalks‘𝐺)) ∧ ∃𝑛 ∈ (0...(♯‘𝑥))𝑥 = (𝑥 cyclShift 𝑛)) ↔ (𝑥 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑥))𝑥 = (𝑥 cyclShift 𝑛))) |
3 | df-3an 1086 | . . 3 ⊢ ((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑥 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑥))𝑥 = (𝑥 cyclShift 𝑛)) ↔ ((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑥 ∈ (ClWWalks‘𝐺)) ∧ ∃𝑛 ∈ (0...(♯‘𝑥))𝑥 = (𝑥 cyclShift 𝑛))) | |
4 | eqid 2758 | . . . . . 6 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
5 | 4 | clwwlkbp 27874 | . . . . 5 ⊢ (𝑥 ∈ (ClWWalks‘𝐺) → (𝐺 ∈ V ∧ 𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑥 ≠ ∅)) |
6 | cshw0 14208 | . . . . . . 7 ⊢ (𝑥 ∈ Word (Vtx‘𝐺) → (𝑥 cyclShift 0) = 𝑥) | |
7 | 0nn0 11954 | . . . . . . . . . 10 ⊢ 0 ∈ ℕ0 | |
8 | 7 | a1i 11 | . . . . . . . . 9 ⊢ (𝑥 ∈ Word (Vtx‘𝐺) → 0 ∈ ℕ0) |
9 | lencl 13937 | . . . . . . . . 9 ⊢ (𝑥 ∈ Word (Vtx‘𝐺) → (♯‘𝑥) ∈ ℕ0) | |
10 | hashge0 13803 | . . . . . . . . 9 ⊢ (𝑥 ∈ Word (Vtx‘𝐺) → 0 ≤ (♯‘𝑥)) | |
11 | elfz2nn0 13052 | . . . . . . . . 9 ⊢ (0 ∈ (0...(♯‘𝑥)) ↔ (0 ∈ ℕ0 ∧ (♯‘𝑥) ∈ ℕ0 ∧ 0 ≤ (♯‘𝑥))) | |
12 | 8, 9, 10, 11 | syl3anbrc 1340 | . . . . . . . 8 ⊢ (𝑥 ∈ Word (Vtx‘𝐺) → 0 ∈ (0...(♯‘𝑥))) |
13 | eqcom 2765 | . . . . . . . . 9 ⊢ ((𝑥 cyclShift 0) = 𝑥 ↔ 𝑥 = (𝑥 cyclShift 0)) | |
14 | 13 | biimpi 219 | . . . . . . . 8 ⊢ ((𝑥 cyclShift 0) = 𝑥 → 𝑥 = (𝑥 cyclShift 0)) |
15 | oveq2 7163 | . . . . . . . . 9 ⊢ (𝑛 = 0 → (𝑥 cyclShift 𝑛) = (𝑥 cyclShift 0)) | |
16 | 15 | rspceeqv 3558 | . . . . . . . 8 ⊢ ((0 ∈ (0...(♯‘𝑥)) ∧ 𝑥 = (𝑥 cyclShift 0)) → ∃𝑛 ∈ (0...(♯‘𝑥))𝑥 = (𝑥 cyclShift 𝑛)) |
17 | 12, 14, 16 | syl2an 598 | . . . . . . 7 ⊢ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (𝑥 cyclShift 0) = 𝑥) → ∃𝑛 ∈ (0...(♯‘𝑥))𝑥 = (𝑥 cyclShift 𝑛)) |
18 | 6, 17 | mpdan 686 | . . . . . 6 ⊢ (𝑥 ∈ Word (Vtx‘𝐺) → ∃𝑛 ∈ (0...(♯‘𝑥))𝑥 = (𝑥 cyclShift 𝑛)) |
19 | 18 | 3ad2ant2 1131 | . . . . 5 ⊢ ((𝐺 ∈ V ∧ 𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑥 ≠ ∅) → ∃𝑛 ∈ (0...(♯‘𝑥))𝑥 = (𝑥 cyclShift 𝑛)) |
20 | 5, 19 | syl 17 | . . . 4 ⊢ (𝑥 ∈ (ClWWalks‘𝐺) → ∃𝑛 ∈ (0...(♯‘𝑥))𝑥 = (𝑥 cyclShift 𝑛)) |
21 | 20 | pm4.71i 563 | . . 3 ⊢ (𝑥 ∈ (ClWWalks‘𝐺) ↔ (𝑥 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑥))𝑥 = (𝑥 cyclShift 𝑛))) |
22 | 2, 3, 21 | 3bitr4ri 307 | . 2 ⊢ (𝑥 ∈ (ClWWalks‘𝐺) ↔ (𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑥 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑥))𝑥 = (𝑥 cyclShift 𝑛))) |
23 | erclwwlk.r | . . . 4 ⊢ ∼ = {〈𝑢, 𝑤〉 ∣ (𝑢 ∈ (ClWWalks‘𝐺) ∧ 𝑤 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑤))𝑢 = (𝑤 cyclShift 𝑛))} | |
24 | 23 | erclwwlkeq 27907 | . . 3 ⊢ ((𝑥 ∈ V ∧ 𝑥 ∈ V) → (𝑥 ∼ 𝑥 ↔ (𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑥 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑥))𝑥 = (𝑥 cyclShift 𝑛)))) |
25 | 24 | el2v 3417 | . 2 ⊢ (𝑥 ∼ 𝑥 ↔ (𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑥 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑥))𝑥 = (𝑥 cyclShift 𝑛))) |
26 | 22, 25 | bitr4i 281 | 1 ⊢ (𝑥 ∈ (ClWWalks‘𝐺) ↔ 𝑥 ∼ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ wa 399 ∧ w3a 1084 = wceq 1538 ∈ wcel 2111 ≠ wne 2951 ∃wrex 3071 Vcvv 3409 ∅c0 4227 class class class wbr 5035 {copab 5097 ‘cfv 6339 (class class class)co 7155 0cc0 10580 ≤ cle 10719 ℕ0cn0 11939 ...cfz 12944 ♯chash 13745 Word cword 13918 cyclShift ccsh 14202 Vtxcvtx 26893 ClWWalkscclwwlk 27870 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5159 ax-sep 5172 ax-nul 5179 ax-pow 5237 ax-pr 5301 ax-un 7464 ax-cnex 10636 ax-resscn 10637 ax-1cn 10638 ax-icn 10639 ax-addcl 10640 ax-addrcl 10641 ax-mulcl 10642 ax-mulrcl 10643 ax-mulcom 10644 ax-addass 10645 ax-mulass 10646 ax-distr 10647 ax-i2m1 10648 ax-1ne0 10649 ax-1rid 10650 ax-rnegex 10651 ax-rrecex 10652 ax-cnre 10653 ax-pre-lttri 10654 ax-pre-lttrn 10655 ax-pre-ltadd 10656 ax-pre-mulgt0 10657 ax-pre-sup 10658 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-int 4842 df-iun 4888 df-br 5036 df-opab 5098 df-mpt 5116 df-tr 5142 df-id 5433 df-eprel 5438 df-po 5446 df-so 5447 df-fr 5486 df-we 5488 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-pred 6130 df-ord 6176 df-on 6177 df-lim 6178 df-suc 6179 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7113 df-ov 7158 df-oprab 7159 df-mpo 7160 df-om 7585 df-1st 7698 df-2nd 7699 df-wrecs 7962 df-recs 8023 df-rdg 8061 df-1o 8117 df-oadd 8121 df-er 8304 df-map 8423 df-en 8533 df-dom 8534 df-sdom 8535 df-fin 8536 df-sup 8944 df-inf 8945 df-card 9406 df-pnf 10720 df-mnf 10721 df-xr 10722 df-ltxr 10723 df-le 10724 df-sub 10915 df-neg 10916 df-div 11341 df-nn 11680 df-n0 11940 df-xnn0 12012 df-z 12026 df-uz 12288 df-rp 12436 df-fz 12945 df-fzo 13088 df-fl 13216 df-mod 13292 df-hash 13746 df-word 13919 df-concat 13975 df-substr 14055 df-pfx 14085 df-csh 14203 df-clwwlk 27871 |
This theorem is referenced by: erclwwlk 27912 |
Copyright terms: Public domain | W3C validator |