| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > erclwwlkref | Structured version Visualization version GIF version | ||
| Description: ∼ is a reflexive relation over the set of closed walks (defined as words). (Contributed by Alexander van der Vekens, 25-Mar-2018.) (Revised by AV, 29-Apr-2021.) |
| Ref | Expression |
|---|---|
| erclwwlk.r | ⊢ ∼ = {〈𝑢, 𝑤〉 ∣ (𝑢 ∈ (ClWWalks‘𝐺) ∧ 𝑤 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑤))𝑢 = (𝑤 cyclShift 𝑛))} |
| Ref | Expression |
|---|---|
| erclwwlkref | ⊢ (𝑥 ∈ (ClWWalks‘𝐺) ↔ 𝑥 ∼ 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anidm 564 | . . . 4 ⊢ ((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑥 ∈ (ClWWalks‘𝐺)) ↔ 𝑥 ∈ (ClWWalks‘𝐺)) | |
| 2 | 1 | anbi1i 624 | . . 3 ⊢ (((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑥 ∈ (ClWWalks‘𝐺)) ∧ ∃𝑛 ∈ (0...(♯‘𝑥))𝑥 = (𝑥 cyclShift 𝑛)) ↔ (𝑥 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑥))𝑥 = (𝑥 cyclShift 𝑛))) |
| 3 | df-3an 1088 | . . 3 ⊢ ((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑥 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑥))𝑥 = (𝑥 cyclShift 𝑛)) ↔ ((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑥 ∈ (ClWWalks‘𝐺)) ∧ ∃𝑛 ∈ (0...(♯‘𝑥))𝑥 = (𝑥 cyclShift 𝑛))) | |
| 4 | eqid 2729 | . . . . . 6 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 5 | 4 | clwwlkbp 29947 | . . . . 5 ⊢ (𝑥 ∈ (ClWWalks‘𝐺) → (𝐺 ∈ V ∧ 𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑥 ≠ ∅)) |
| 6 | cshw0 14718 | . . . . . . 7 ⊢ (𝑥 ∈ Word (Vtx‘𝐺) → (𝑥 cyclShift 0) = 𝑥) | |
| 7 | 0nn0 12417 | . . . . . . . . . 10 ⊢ 0 ∈ ℕ0 | |
| 8 | 7 | a1i 11 | . . . . . . . . 9 ⊢ (𝑥 ∈ Word (Vtx‘𝐺) → 0 ∈ ℕ0) |
| 9 | lencl 14458 | . . . . . . . . 9 ⊢ (𝑥 ∈ Word (Vtx‘𝐺) → (♯‘𝑥) ∈ ℕ0) | |
| 10 | hashge0 14312 | . . . . . . . . 9 ⊢ (𝑥 ∈ Word (Vtx‘𝐺) → 0 ≤ (♯‘𝑥)) | |
| 11 | elfz2nn0 13539 | . . . . . . . . 9 ⊢ (0 ∈ (0...(♯‘𝑥)) ↔ (0 ∈ ℕ0 ∧ (♯‘𝑥) ∈ ℕ0 ∧ 0 ≤ (♯‘𝑥))) | |
| 12 | 8, 9, 10, 11 | syl3anbrc 1344 | . . . . . . . 8 ⊢ (𝑥 ∈ Word (Vtx‘𝐺) → 0 ∈ (0...(♯‘𝑥))) |
| 13 | eqcom 2736 | . . . . . . . . 9 ⊢ ((𝑥 cyclShift 0) = 𝑥 ↔ 𝑥 = (𝑥 cyclShift 0)) | |
| 14 | 13 | biimpi 216 | . . . . . . . 8 ⊢ ((𝑥 cyclShift 0) = 𝑥 → 𝑥 = (𝑥 cyclShift 0)) |
| 15 | oveq2 7361 | . . . . . . . . 9 ⊢ (𝑛 = 0 → (𝑥 cyclShift 𝑛) = (𝑥 cyclShift 0)) | |
| 16 | 15 | rspceeqv 3602 | . . . . . . . 8 ⊢ ((0 ∈ (0...(♯‘𝑥)) ∧ 𝑥 = (𝑥 cyclShift 0)) → ∃𝑛 ∈ (0...(♯‘𝑥))𝑥 = (𝑥 cyclShift 𝑛)) |
| 17 | 12, 14, 16 | syl2an 596 | . . . . . . 7 ⊢ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (𝑥 cyclShift 0) = 𝑥) → ∃𝑛 ∈ (0...(♯‘𝑥))𝑥 = (𝑥 cyclShift 𝑛)) |
| 18 | 6, 17 | mpdan 687 | . . . . . 6 ⊢ (𝑥 ∈ Word (Vtx‘𝐺) → ∃𝑛 ∈ (0...(♯‘𝑥))𝑥 = (𝑥 cyclShift 𝑛)) |
| 19 | 18 | 3ad2ant2 1134 | . . . . 5 ⊢ ((𝐺 ∈ V ∧ 𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑥 ≠ ∅) → ∃𝑛 ∈ (0...(♯‘𝑥))𝑥 = (𝑥 cyclShift 𝑛)) |
| 20 | 5, 19 | syl 17 | . . . 4 ⊢ (𝑥 ∈ (ClWWalks‘𝐺) → ∃𝑛 ∈ (0...(♯‘𝑥))𝑥 = (𝑥 cyclShift 𝑛)) |
| 21 | 20 | pm4.71i 559 | . . 3 ⊢ (𝑥 ∈ (ClWWalks‘𝐺) ↔ (𝑥 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑥))𝑥 = (𝑥 cyclShift 𝑛))) |
| 22 | 2, 3, 21 | 3bitr4ri 304 | . 2 ⊢ (𝑥 ∈ (ClWWalks‘𝐺) ↔ (𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑥 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑥))𝑥 = (𝑥 cyclShift 𝑛))) |
| 23 | erclwwlk.r | . . . 4 ⊢ ∼ = {〈𝑢, 𝑤〉 ∣ (𝑢 ∈ (ClWWalks‘𝐺) ∧ 𝑤 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑤))𝑢 = (𝑤 cyclShift 𝑛))} | |
| 24 | 23 | erclwwlkeq 29980 | . . 3 ⊢ ((𝑥 ∈ V ∧ 𝑥 ∈ V) → (𝑥 ∼ 𝑥 ↔ (𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑥 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑥))𝑥 = (𝑥 cyclShift 𝑛)))) |
| 25 | 24 | el2v 3445 | . 2 ⊢ (𝑥 ∼ 𝑥 ↔ (𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑥 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑥))𝑥 = (𝑥 cyclShift 𝑛))) |
| 26 | 22, 25 | bitr4i 278 | 1 ⊢ (𝑥 ∈ (ClWWalks‘𝐺) ↔ 𝑥 ∼ 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 Vcvv 3438 ∅c0 4286 class class class wbr 5095 {copab 5157 ‘cfv 6486 (class class class)co 7353 0cc0 11028 ≤ cle 11169 ℕ0cn0 12402 ...cfz 13428 ♯chash 14255 Word cword 14438 cyclShift ccsh 14712 Vtxcvtx 28959 ClWWalkscclwwlk 29943 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-oadd 8399 df-er 8632 df-map 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-sup 9351 df-inf 9352 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-n0 12403 df-xnn0 12476 df-z 12490 df-uz 12754 df-rp 12912 df-fz 13429 df-fzo 13576 df-fl 13714 df-mod 13792 df-hash 14256 df-word 14439 df-concat 14496 df-substr 14566 df-pfx 14596 df-csh 14713 df-clwwlk 29944 |
| This theorem is referenced by: erclwwlk 29985 |
| Copyright terms: Public domain | W3C validator |