![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > erclwwlkeqlen | Structured version Visualization version GIF version |
Description: If two classes are equivalent regarding βΌ, then they are words of the same length. (Contributed by Alexander van der Vekens, 8-Apr-2018.) (Revised by AV, 29-Apr-2021.) |
Ref | Expression |
---|---|
erclwwlk.r | β’ βΌ = {β¨π’, π€β© β£ (π’ β (ClWWalksβπΊ) β§ π€ β (ClWWalksβπΊ) β§ βπ β (0...(β―βπ€))π’ = (π€ cyclShift π))} |
Ref | Expression |
---|---|
erclwwlkeqlen | β’ ((π β π β§ π β π) β (π βΌ π β (β―βπ) = (β―βπ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | erclwwlk.r | . . 3 β’ βΌ = {β¨π’, π€β© β£ (π’ β (ClWWalksβπΊ) β§ π€ β (ClWWalksβπΊ) β§ βπ β (0...(β―βπ€))π’ = (π€ cyclShift π))} | |
2 | 1 | erclwwlkeq 29802 | . 2 β’ ((π β π β§ π β π) β (π βΌ π β (π β (ClWWalksβπΊ) β§ π β (ClWWalksβπΊ) β§ βπ β (0...(β―βπ))π = (π cyclShift π)))) |
3 | fveq2 6891 | . . . . . . . 8 β’ (π = (π cyclShift π) β (β―βπ) = (β―β(π cyclShift π))) | |
4 | eqid 2727 | . . . . . . . . . . . 12 β’ (VtxβπΊ) = (VtxβπΊ) | |
5 | 4 | clwwlkbp 29769 | . . . . . . . . . . 11 β’ (π β (ClWWalksβπΊ) β (πΊ β V β§ π β Word (VtxβπΊ) β§ π β β )) |
6 | 5 | simp2d 1141 | . . . . . . . . . 10 β’ (π β (ClWWalksβπΊ) β π β Word (VtxβπΊ)) |
7 | 6 | ad2antlr 726 | . . . . . . . . 9 β’ (((π β (ClWWalksβπΊ) β§ π β (ClWWalksβπΊ)) β§ (π β π β§ π β π)) β π β Word (VtxβπΊ)) |
8 | elfzelz 13519 | . . . . . . . . 9 β’ (π β (0...(β―βπ)) β π β β€) | |
9 | cshwlen 14767 | . . . . . . . . 9 β’ ((π β Word (VtxβπΊ) β§ π β β€) β (β―β(π cyclShift π)) = (β―βπ)) | |
10 | 7, 8, 9 | syl2an 595 | . . . . . . . 8 β’ ((((π β (ClWWalksβπΊ) β§ π β (ClWWalksβπΊ)) β§ (π β π β§ π β π)) β§ π β (0...(β―βπ))) β (β―β(π cyclShift π)) = (β―βπ)) |
11 | 3, 10 | sylan9eqr 2789 | . . . . . . 7 β’ (((((π β (ClWWalksβπΊ) β§ π β (ClWWalksβπΊ)) β§ (π β π β§ π β π)) β§ π β (0...(β―βπ))) β§ π = (π cyclShift π)) β (β―βπ) = (β―βπ)) |
12 | 11 | rexlimdva2 3152 | . . . . . 6 β’ (((π β (ClWWalksβπΊ) β§ π β (ClWWalksβπΊ)) β§ (π β π β§ π β π)) β (βπ β (0...(β―βπ))π = (π cyclShift π) β (β―βπ) = (β―βπ))) |
13 | 12 | ex 412 | . . . . 5 β’ ((π β (ClWWalksβπΊ) β§ π β (ClWWalksβπΊ)) β ((π β π β§ π β π) β (βπ β (0...(β―βπ))π = (π cyclShift π) β (β―βπ) = (β―βπ)))) |
14 | 13 | com23 86 | . . . 4 β’ ((π β (ClWWalksβπΊ) β§ π β (ClWWalksβπΊ)) β (βπ β (0...(β―βπ))π = (π cyclShift π) β ((π β π β§ π β π) β (β―βπ) = (β―βπ)))) |
15 | 14 | 3impia 1115 | . . 3 β’ ((π β (ClWWalksβπΊ) β§ π β (ClWWalksβπΊ) β§ βπ β (0...(β―βπ))π = (π cyclShift π)) β ((π β π β§ π β π) β (β―βπ) = (β―βπ))) |
16 | 15 | com12 32 | . 2 β’ ((π β π β§ π β π) β ((π β (ClWWalksβπΊ) β§ π β (ClWWalksβπΊ) β§ βπ β (0...(β―βπ))π = (π cyclShift π)) β (β―βπ) = (β―βπ))) |
17 | 2, 16 | sylbid 239 | 1 β’ ((π β π β§ π β π) β (π βΌ π β (β―βπ) = (β―βπ))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 β§ w3a 1085 = wceq 1534 β wcel 2099 β wne 2935 βwrex 3065 Vcvv 3469 β c0 4318 class class class wbr 5142 {copab 5204 βcfv 6542 (class class class)co 7414 0cc0 11124 β€cz 12574 ...cfz 13502 β―chash 14307 Word cword 14482 cyclShift ccsh 14756 Vtxcvtx 28783 ClWWalkscclwwlk 29765 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7732 ax-cnex 11180 ax-resscn 11181 ax-1cn 11182 ax-icn 11183 ax-addcl 11184 ax-addrcl 11185 ax-mulcl 11186 ax-mulrcl 11187 ax-mulcom 11188 ax-addass 11189 ax-mulass 11190 ax-distr 11191 ax-i2m1 11192 ax-1ne0 11193 ax-1rid 11194 ax-rnegex 11195 ax-rrecex 11196 ax-cnre 11197 ax-pre-lttri 11198 ax-pre-lttrn 11199 ax-pre-ltadd 11200 ax-pre-mulgt0 11201 ax-pre-sup 11202 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7863 df-1st 7985 df-2nd 7986 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-er 8716 df-map 8836 df-en 8954 df-dom 8955 df-sdom 8956 df-fin 8957 df-sup 9451 df-inf 9452 df-card 9948 df-pnf 11266 df-mnf 11267 df-xr 11268 df-ltxr 11269 df-le 11270 df-sub 11462 df-neg 11463 df-div 11888 df-nn 12229 df-n0 12489 df-z 12575 df-uz 12839 df-rp 12993 df-fz 13503 df-fzo 13646 df-fl 13775 df-mod 13853 df-hash 14308 df-word 14483 df-concat 14539 df-substr 14609 df-pfx 14639 df-csh 14757 df-clwwlk 29766 |
This theorem is referenced by: erclwwlksym 29805 erclwwlktr 29806 |
Copyright terms: Public domain | W3C validator |