| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > erclwwlkeqlen | Structured version Visualization version GIF version | ||
| Description: If two classes are equivalent regarding ∼, then they are words of the same length. (Contributed by Alexander van der Vekens, 8-Apr-2018.) (Revised by AV, 29-Apr-2021.) |
| Ref | Expression |
|---|---|
| erclwwlk.r | ⊢ ∼ = {〈𝑢, 𝑤〉 ∣ (𝑢 ∈ (ClWWalks‘𝐺) ∧ 𝑤 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑤))𝑢 = (𝑤 cyclShift 𝑛))} |
| Ref | Expression |
|---|---|
| erclwwlkeqlen | ⊢ ((𝑈 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝑈 ∼ 𝑊 → (♯‘𝑈) = (♯‘𝑊))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | erclwwlk.r | . . 3 ⊢ ∼ = {〈𝑢, 𝑤〉 ∣ (𝑢 ∈ (ClWWalks‘𝐺) ∧ 𝑤 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑤))𝑢 = (𝑤 cyclShift 𝑛))} | |
| 2 | 1 | erclwwlkeq 30004 | . 2 ⊢ ((𝑈 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝑈 ∼ 𝑊 ↔ (𝑈 ∈ (ClWWalks‘𝐺) ∧ 𝑊 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑊))𝑈 = (𝑊 cyclShift 𝑛)))) |
| 3 | fveq2 6881 | . . . . . . . 8 ⊢ (𝑈 = (𝑊 cyclShift 𝑛) → (♯‘𝑈) = (♯‘(𝑊 cyclShift 𝑛))) | |
| 4 | eqid 2736 | . . . . . . . . . . . 12 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 5 | 4 | clwwlkbp 29971 | . . . . . . . . . . 11 ⊢ (𝑊 ∈ (ClWWalks‘𝐺) → (𝐺 ∈ V ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅)) |
| 6 | 5 | simp2d 1143 | . . . . . . . . . 10 ⊢ (𝑊 ∈ (ClWWalks‘𝐺) → 𝑊 ∈ Word (Vtx‘𝐺)) |
| 7 | 6 | ad2antlr 727 | . . . . . . . . 9 ⊢ (((𝑈 ∈ (ClWWalks‘𝐺) ∧ 𝑊 ∈ (ClWWalks‘𝐺)) ∧ (𝑈 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌)) → 𝑊 ∈ Word (Vtx‘𝐺)) |
| 8 | elfzelz 13546 | . . . . . . . . 9 ⊢ (𝑛 ∈ (0...(♯‘𝑊)) → 𝑛 ∈ ℤ) | |
| 9 | cshwlen 14822 | . . . . . . . . 9 ⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑛 ∈ ℤ) → (♯‘(𝑊 cyclShift 𝑛)) = (♯‘𝑊)) | |
| 10 | 7, 8, 9 | syl2an 596 | . . . . . . . 8 ⊢ ((((𝑈 ∈ (ClWWalks‘𝐺) ∧ 𝑊 ∈ (ClWWalks‘𝐺)) ∧ (𝑈 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌)) ∧ 𝑛 ∈ (0...(♯‘𝑊))) → (♯‘(𝑊 cyclShift 𝑛)) = (♯‘𝑊)) |
| 11 | 3, 10 | sylan9eqr 2793 | . . . . . . 7 ⊢ (((((𝑈 ∈ (ClWWalks‘𝐺) ∧ 𝑊 ∈ (ClWWalks‘𝐺)) ∧ (𝑈 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌)) ∧ 𝑛 ∈ (0...(♯‘𝑊))) ∧ 𝑈 = (𝑊 cyclShift 𝑛)) → (♯‘𝑈) = (♯‘𝑊)) |
| 12 | 11 | rexlimdva2 3144 | . . . . . 6 ⊢ (((𝑈 ∈ (ClWWalks‘𝐺) ∧ 𝑊 ∈ (ClWWalks‘𝐺)) ∧ (𝑈 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌)) → (∃𝑛 ∈ (0...(♯‘𝑊))𝑈 = (𝑊 cyclShift 𝑛) → (♯‘𝑈) = (♯‘𝑊))) |
| 13 | 12 | ex 412 | . . . . 5 ⊢ ((𝑈 ∈ (ClWWalks‘𝐺) ∧ 𝑊 ∈ (ClWWalks‘𝐺)) → ((𝑈 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (∃𝑛 ∈ (0...(♯‘𝑊))𝑈 = (𝑊 cyclShift 𝑛) → (♯‘𝑈) = (♯‘𝑊)))) |
| 14 | 13 | com23 86 | . . . 4 ⊢ ((𝑈 ∈ (ClWWalks‘𝐺) ∧ 𝑊 ∈ (ClWWalks‘𝐺)) → (∃𝑛 ∈ (0...(♯‘𝑊))𝑈 = (𝑊 cyclShift 𝑛) → ((𝑈 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (♯‘𝑈) = (♯‘𝑊)))) |
| 15 | 14 | 3impia 1117 | . . 3 ⊢ ((𝑈 ∈ (ClWWalks‘𝐺) ∧ 𝑊 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑊))𝑈 = (𝑊 cyclShift 𝑛)) → ((𝑈 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (♯‘𝑈) = (♯‘𝑊))) |
| 16 | 15 | com12 32 | . 2 ⊢ ((𝑈 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → ((𝑈 ∈ (ClWWalks‘𝐺) ∧ 𝑊 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑊))𝑈 = (𝑊 cyclShift 𝑛)) → (♯‘𝑈) = (♯‘𝑊))) |
| 17 | 2, 16 | sylbid 240 | 1 ⊢ ((𝑈 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝑈 ∼ 𝑊 → (♯‘𝑈) = (♯‘𝑊))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 ∃wrex 3061 Vcvv 3464 ∅c0 4313 class class class wbr 5124 {copab 5186 ‘cfv 6536 (class class class)co 7410 0cc0 11134 ℤcz 12593 ...cfz 13529 ♯chash 14353 Word cword 14536 cyclShift ccsh 14811 Vtxcvtx 28980 ClWWalkscclwwlk 29967 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-sup 9459 df-inf 9460 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-n0 12507 df-z 12594 df-uz 12858 df-rp 13014 df-fz 13530 df-fzo 13677 df-fl 13814 df-mod 13892 df-hash 14354 df-word 14537 df-concat 14594 df-substr 14664 df-pfx 14694 df-csh 14812 df-clwwlk 29968 |
| This theorem is referenced by: erclwwlksym 30007 erclwwlktr 30008 |
| Copyright terms: Public domain | W3C validator |