Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > erclwwlkeqlen | Structured version Visualization version GIF version |
Description: If two classes are equivalent regarding ∼, then they are words of the same length. (Contributed by Alexander van der Vekens, 8-Apr-2018.) (Revised by AV, 29-Apr-2021.) |
Ref | Expression |
---|---|
erclwwlk.r | ⊢ ∼ = {〈𝑢, 𝑤〉 ∣ (𝑢 ∈ (ClWWalks‘𝐺) ∧ 𝑤 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑤))𝑢 = (𝑤 cyclShift 𝑛))} |
Ref | Expression |
---|---|
erclwwlkeqlen | ⊢ ((𝑈 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝑈 ∼ 𝑊 → (♯‘𝑈) = (♯‘𝑊))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | erclwwlk.r | . . 3 ⊢ ∼ = {〈𝑢, 𝑤〉 ∣ (𝑢 ∈ (ClWWalks‘𝐺) ∧ 𝑤 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑤))𝑢 = (𝑤 cyclShift 𝑛))} | |
2 | 1 | erclwwlkeq 28283 | . 2 ⊢ ((𝑈 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝑈 ∼ 𝑊 ↔ (𝑈 ∈ (ClWWalks‘𝐺) ∧ 𝑊 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑊))𝑈 = (𝑊 cyclShift 𝑛)))) |
3 | fveq2 6756 | . . . . . . . 8 ⊢ (𝑈 = (𝑊 cyclShift 𝑛) → (♯‘𝑈) = (♯‘(𝑊 cyclShift 𝑛))) | |
4 | eqid 2738 | . . . . . . . . . . . 12 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
5 | 4 | clwwlkbp 28250 | . . . . . . . . . . 11 ⊢ (𝑊 ∈ (ClWWalks‘𝐺) → (𝐺 ∈ V ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅)) |
6 | 5 | simp2d 1141 | . . . . . . . . . 10 ⊢ (𝑊 ∈ (ClWWalks‘𝐺) → 𝑊 ∈ Word (Vtx‘𝐺)) |
7 | 6 | ad2antlr 723 | . . . . . . . . 9 ⊢ (((𝑈 ∈ (ClWWalks‘𝐺) ∧ 𝑊 ∈ (ClWWalks‘𝐺)) ∧ (𝑈 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌)) → 𝑊 ∈ Word (Vtx‘𝐺)) |
8 | elfzelz 13185 | . . . . . . . . 9 ⊢ (𝑛 ∈ (0...(♯‘𝑊)) → 𝑛 ∈ ℤ) | |
9 | cshwlen 14440 | . . . . . . . . 9 ⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑛 ∈ ℤ) → (♯‘(𝑊 cyclShift 𝑛)) = (♯‘𝑊)) | |
10 | 7, 8, 9 | syl2an 595 | . . . . . . . 8 ⊢ ((((𝑈 ∈ (ClWWalks‘𝐺) ∧ 𝑊 ∈ (ClWWalks‘𝐺)) ∧ (𝑈 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌)) ∧ 𝑛 ∈ (0...(♯‘𝑊))) → (♯‘(𝑊 cyclShift 𝑛)) = (♯‘𝑊)) |
11 | 3, 10 | sylan9eqr 2801 | . . . . . . 7 ⊢ (((((𝑈 ∈ (ClWWalks‘𝐺) ∧ 𝑊 ∈ (ClWWalks‘𝐺)) ∧ (𝑈 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌)) ∧ 𝑛 ∈ (0...(♯‘𝑊))) ∧ 𝑈 = (𝑊 cyclShift 𝑛)) → (♯‘𝑈) = (♯‘𝑊)) |
12 | 11 | rexlimdva2 3215 | . . . . . 6 ⊢ (((𝑈 ∈ (ClWWalks‘𝐺) ∧ 𝑊 ∈ (ClWWalks‘𝐺)) ∧ (𝑈 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌)) → (∃𝑛 ∈ (0...(♯‘𝑊))𝑈 = (𝑊 cyclShift 𝑛) → (♯‘𝑈) = (♯‘𝑊))) |
13 | 12 | ex 412 | . . . . 5 ⊢ ((𝑈 ∈ (ClWWalks‘𝐺) ∧ 𝑊 ∈ (ClWWalks‘𝐺)) → ((𝑈 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (∃𝑛 ∈ (0...(♯‘𝑊))𝑈 = (𝑊 cyclShift 𝑛) → (♯‘𝑈) = (♯‘𝑊)))) |
14 | 13 | com23 86 | . . . 4 ⊢ ((𝑈 ∈ (ClWWalks‘𝐺) ∧ 𝑊 ∈ (ClWWalks‘𝐺)) → (∃𝑛 ∈ (0...(♯‘𝑊))𝑈 = (𝑊 cyclShift 𝑛) → ((𝑈 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (♯‘𝑈) = (♯‘𝑊)))) |
15 | 14 | 3impia 1115 | . . 3 ⊢ ((𝑈 ∈ (ClWWalks‘𝐺) ∧ 𝑊 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑊))𝑈 = (𝑊 cyclShift 𝑛)) → ((𝑈 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (♯‘𝑈) = (♯‘𝑊))) |
16 | 15 | com12 32 | . 2 ⊢ ((𝑈 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → ((𝑈 ∈ (ClWWalks‘𝐺) ∧ 𝑊 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑊))𝑈 = (𝑊 cyclShift 𝑛)) → (♯‘𝑈) = (♯‘𝑊))) |
17 | 2, 16 | sylbid 239 | 1 ⊢ ((𝑈 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝑈 ∼ 𝑊 → (♯‘𝑈) = (♯‘𝑊))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∃wrex 3064 Vcvv 3422 ∅c0 4253 class class class wbr 5070 {copab 5132 ‘cfv 6418 (class class class)co 7255 0cc0 10802 ℤcz 12249 ...cfz 13168 ♯chash 13972 Word cword 14145 cyclShift ccsh 14429 Vtxcvtx 27269 ClWWalkscclwwlk 28246 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-inf 9132 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-fz 13169 df-fzo 13312 df-fl 13440 df-mod 13518 df-hash 13973 df-word 14146 df-concat 14202 df-substr 14282 df-pfx 14312 df-csh 14430 df-clwwlk 28247 |
This theorem is referenced by: erclwwlksym 28286 erclwwlktr 28287 |
Copyright terms: Public domain | W3C validator |