MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  erclwwlkeqlen Structured version   Visualization version   GIF version

Theorem erclwwlkeqlen 29137
Description: If two classes are equivalent regarding , then they are words of the same length. (Contributed by Alexander van der Vekens, 8-Apr-2018.) (Revised by AV, 29-Apr-2021.)
Hypothesis
Ref Expression
erclwwlk.r = {⟨𝑢, 𝑤⟩ ∣ (𝑢 ∈ (ClWWalks‘𝐺) ∧ 𝑤 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑤))𝑢 = (𝑤 cyclShift 𝑛))}
Assertion
Ref Expression
erclwwlkeqlen ((𝑈𝑋𝑊𝑌) → (𝑈 𝑊 → (♯‘𝑈) = (♯‘𝑊)))
Distinct variable groups:   𝑛,𝐺,𝑢,𝑤   𝑈,𝑛,𝑢,𝑤   𝑛,𝑊,𝑢,𝑤   𝑛,𝑋   𝑛,𝑌
Allowed substitution hints:   (𝑤,𝑢,𝑛)   𝑋(𝑤,𝑢)   𝑌(𝑤,𝑢)

Proof of Theorem erclwwlkeqlen
StepHypRef Expression
1 erclwwlk.r . . 3 = {⟨𝑢, 𝑤⟩ ∣ (𝑢 ∈ (ClWWalks‘𝐺) ∧ 𝑤 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑤))𝑢 = (𝑤 cyclShift 𝑛))}
21erclwwlkeq 29136 . 2 ((𝑈𝑋𝑊𝑌) → (𝑈 𝑊 ↔ (𝑈 ∈ (ClWWalks‘𝐺) ∧ 𝑊 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑊))𝑈 = (𝑊 cyclShift 𝑛))))
3 fveq2 6878 . . . . . . . 8 (𝑈 = (𝑊 cyclShift 𝑛) → (♯‘𝑈) = (♯‘(𝑊 cyclShift 𝑛)))
4 eqid 2731 . . . . . . . . . . . 12 (Vtx‘𝐺) = (Vtx‘𝐺)
54clwwlkbp 29103 . . . . . . . . . . 11 (𝑊 ∈ (ClWWalks‘𝐺) → (𝐺 ∈ V ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅))
65simp2d 1143 . . . . . . . . . 10 (𝑊 ∈ (ClWWalks‘𝐺) → 𝑊 ∈ Word (Vtx‘𝐺))
76ad2antlr 725 . . . . . . . . 9 (((𝑈 ∈ (ClWWalks‘𝐺) ∧ 𝑊 ∈ (ClWWalks‘𝐺)) ∧ (𝑈𝑋𝑊𝑌)) → 𝑊 ∈ Word (Vtx‘𝐺))
8 elfzelz 13483 . . . . . . . . 9 (𝑛 ∈ (0...(♯‘𝑊)) → 𝑛 ∈ ℤ)
9 cshwlen 14731 . . . . . . . . 9 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑛 ∈ ℤ) → (♯‘(𝑊 cyclShift 𝑛)) = (♯‘𝑊))
107, 8, 9syl2an 596 . . . . . . . 8 ((((𝑈 ∈ (ClWWalks‘𝐺) ∧ 𝑊 ∈ (ClWWalks‘𝐺)) ∧ (𝑈𝑋𝑊𝑌)) ∧ 𝑛 ∈ (0...(♯‘𝑊))) → (♯‘(𝑊 cyclShift 𝑛)) = (♯‘𝑊))
113, 10sylan9eqr 2793 . . . . . . 7 (((((𝑈 ∈ (ClWWalks‘𝐺) ∧ 𝑊 ∈ (ClWWalks‘𝐺)) ∧ (𝑈𝑋𝑊𝑌)) ∧ 𝑛 ∈ (0...(♯‘𝑊))) ∧ 𝑈 = (𝑊 cyclShift 𝑛)) → (♯‘𝑈) = (♯‘𝑊))
1211rexlimdva2 3156 . . . . . 6 (((𝑈 ∈ (ClWWalks‘𝐺) ∧ 𝑊 ∈ (ClWWalks‘𝐺)) ∧ (𝑈𝑋𝑊𝑌)) → (∃𝑛 ∈ (0...(♯‘𝑊))𝑈 = (𝑊 cyclShift 𝑛) → (♯‘𝑈) = (♯‘𝑊)))
1312ex 413 . . . . 5 ((𝑈 ∈ (ClWWalks‘𝐺) ∧ 𝑊 ∈ (ClWWalks‘𝐺)) → ((𝑈𝑋𝑊𝑌) → (∃𝑛 ∈ (0...(♯‘𝑊))𝑈 = (𝑊 cyclShift 𝑛) → (♯‘𝑈) = (♯‘𝑊))))
1413com23 86 . . . 4 ((𝑈 ∈ (ClWWalks‘𝐺) ∧ 𝑊 ∈ (ClWWalks‘𝐺)) → (∃𝑛 ∈ (0...(♯‘𝑊))𝑈 = (𝑊 cyclShift 𝑛) → ((𝑈𝑋𝑊𝑌) → (♯‘𝑈) = (♯‘𝑊))))
15143impia 1117 . . 3 ((𝑈 ∈ (ClWWalks‘𝐺) ∧ 𝑊 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑊))𝑈 = (𝑊 cyclShift 𝑛)) → ((𝑈𝑋𝑊𝑌) → (♯‘𝑈) = (♯‘𝑊)))
1615com12 32 . 2 ((𝑈𝑋𝑊𝑌) → ((𝑈 ∈ (ClWWalks‘𝐺) ∧ 𝑊 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑊))𝑈 = (𝑊 cyclShift 𝑛)) → (♯‘𝑈) = (♯‘𝑊)))
172, 16sylbid 239 1 ((𝑈𝑋𝑊𝑌) → (𝑈 𝑊 → (♯‘𝑈) = (♯‘𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2939  wrex 3069  Vcvv 3473  c0 4318   class class class wbr 5141  {copab 5203  cfv 6532  (class class class)co 7393  0cc0 11092  cz 12540  ...cfz 13466  chash 14272  Word cword 14446   cyclShift ccsh 14720  Vtxcvtx 28121  ClWWalkscclwwlk 29099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708  ax-cnex 11148  ax-resscn 11149  ax-1cn 11150  ax-icn 11151  ax-addcl 11152  ax-addrcl 11153  ax-mulcl 11154  ax-mulrcl 11155  ax-mulcom 11156  ax-addass 11157  ax-mulass 11158  ax-distr 11159  ax-i2m1 11160  ax-1ne0 11161  ax-1rid 11162  ax-rnegex 11163  ax-rrecex 11164  ax-cnre 11165  ax-pre-lttri 11166  ax-pre-lttrn 11167  ax-pre-ltadd 11168  ax-pre-mulgt0 11169  ax-pre-sup 11170
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6289  df-ord 6356  df-on 6357  df-lim 6358  df-suc 6359  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-riota 7349  df-ov 7396  df-oprab 7397  df-mpo 7398  df-om 7839  df-1st 7957  df-2nd 7958  df-frecs 8248  df-wrecs 8279  df-recs 8353  df-rdg 8392  df-1o 8448  df-er 8686  df-map 8805  df-en 8923  df-dom 8924  df-sdom 8925  df-fin 8926  df-sup 9419  df-inf 9420  df-card 9916  df-pnf 11232  df-mnf 11233  df-xr 11234  df-ltxr 11235  df-le 11236  df-sub 11428  df-neg 11429  df-div 11854  df-nn 12195  df-n0 12455  df-z 12541  df-uz 12805  df-rp 12957  df-fz 13467  df-fzo 13610  df-fl 13739  df-mod 13817  df-hash 14273  df-word 14447  df-concat 14503  df-substr 14573  df-pfx 14603  df-csh 14721  df-clwwlk 29100
This theorem is referenced by:  erclwwlksym  29139  erclwwlktr  29140
  Copyright terms: Public domain W3C validator