MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  erex Structured version   Visualization version   GIF version

Theorem erex 8698
Description: An equivalence relation is a set if its domain is a set. (Contributed by Rodolfo Medina, 15-Oct-2010.) (Proof shortened by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
erex (𝑅 Er 𝐴 → (𝐴𝑉𝑅 ∈ V))

Proof of Theorem erex
StepHypRef Expression
1 erssxp 8697 . . 3 (𝑅 Er 𝐴𝑅 ⊆ (𝐴 × 𝐴))
2 sqxpexg 7734 . . 3 (𝐴𝑉 → (𝐴 × 𝐴) ∈ V)
3 ssexg 5281 . . 3 ((𝑅 ⊆ (𝐴 × 𝐴) ∧ (𝐴 × 𝐴) ∈ V) → 𝑅 ∈ V)
41, 2, 3syl2an 596 . 2 ((𝑅 Er 𝐴𝐴𝑉) → 𝑅 ∈ V)
54ex 412 1 (𝑅 Er 𝐴 → (𝐴𝑉𝑅 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  Vcvv 3450  wss 3917   × cxp 5639   Er wer 8671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-xp 5647  df-rel 5648  df-cnv 5649  df-dm 5651  df-rn 5652  df-er 8674
This theorem is referenced by:  erexb  8699  qliftlem  8774  qshash  15800  qusaddvallem  17521  qusaddflem  17522  qusaddval  17523  qusaddf  17524  qusmulval  17525  qusmulf  17526  qusgrp2  18997  efgrelexlemb  19687  efgcpbllemb  19692  frgpuplem  19709  qusrng  20096  qusring2  20250  vitalilem2  25517  vitalilem3  25518  tgjustr  28408
  Copyright terms: Public domain W3C validator