MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  erex Structured version   Visualization version   GIF version

Theorem erex 8768
Description: An equivalence relation is a set if its domain is a set. (Contributed by Rodolfo Medina, 15-Oct-2010.) (Proof shortened by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
erex (𝑅 Er 𝐴 → (𝐴𝑉𝑅 ∈ V))

Proof of Theorem erex
StepHypRef Expression
1 erssxp 8767 . . 3 (𝑅 Er 𝐴𝑅 ⊆ (𝐴 × 𝐴))
2 sqxpexg 7774 . . 3 (𝐴𝑉 → (𝐴 × 𝐴) ∈ V)
3 ssexg 5329 . . 3 ((𝑅 ⊆ (𝐴 × 𝐴) ∧ (𝐴 × 𝐴) ∈ V) → 𝑅 ∈ V)
41, 2, 3syl2an 596 . 2 ((𝑅 Er 𝐴𝐴𝑉) → 𝑅 ∈ V)
54ex 412 1 (𝑅 Er 𝐴 → (𝐴𝑉𝑅 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  Vcvv 3478  wss 3963   × cxp 5687   Er wer 8741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-xp 5695  df-rel 5696  df-cnv 5697  df-dm 5699  df-rn 5700  df-er 8744
This theorem is referenced by:  erexb  8769  qliftlem  8837  qshash  15860  qusaddvallem  17598  qusaddflem  17599  qusaddval  17600  qusaddf  17601  qusmulval  17602  qusmulf  17603  qusgrp2  19089  efgrelexlemb  19783  efgcpbllemb  19788  frgpuplem  19805  qusrng  20198  qusring2  20348  vitalilem2  25658  vitalilem3  25659  tgjustr  28497
  Copyright terms: Public domain W3C validator