MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  erex Structured version   Visualization version   GIF version

Theorem erex 8723
Description: An equivalence relation is a set if its domain is a set. (Contributed by Rodolfo Medina, 15-Oct-2010.) (Proof shortened by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
erex (𝑅 Er 𝐴 → (𝐴𝑉𝑅 ∈ V))

Proof of Theorem erex
StepHypRef Expression
1 erssxp 8722 . . 3 (𝑅 Er 𝐴𝑅 ⊆ (𝐴 × 𝐴))
2 sqxpexg 7738 . . 3 (𝐴𝑉 → (𝐴 × 𝐴) ∈ V)
3 ssexg 5322 . . 3 ((𝑅 ⊆ (𝐴 × 𝐴) ∧ (𝐴 × 𝐴) ∈ V) → 𝑅 ∈ V)
41, 2, 3syl2an 596 . 2 ((𝑅 Er 𝐴𝐴𝑉) → 𝑅 ∈ V)
54ex 413 1 (𝑅 Er 𝐴 → (𝐴𝑉𝑅 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  Vcvv 3474  wss 3947   × cxp 5673   Er wer 8696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-xp 5681  df-rel 5682  df-cnv 5683  df-dm 5685  df-rn 5686  df-er 8699
This theorem is referenced by:  erexb  8724  qliftlem  8788  qshash  15769  qusaddvallem  17493  qusaddflem  17494  qusaddval  17495  qusaddf  17496  qusmulval  17497  qusmulf  17498  qusgrp2  18937  efgrelexlemb  19612  efgcpbllemb  19617  frgpuplem  19634  qusring2  20139  vitalilem2  25117  vitalilem3  25118  tgjustr  27714  qusrng  46667
  Copyright terms: Public domain W3C validator