![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > erex | Structured version Visualization version GIF version |
Description: An equivalence relation is a set if its domain is a set. (Contributed by Rodolfo Medina, 15-Oct-2010.) (Proof shortened by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
erex | ⊢ (𝑅 Er 𝐴 → (𝐴 ∈ 𝑉 → 𝑅 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | erssxp 8728 | . . 3 ⊢ (𝑅 Er 𝐴 → 𝑅 ⊆ (𝐴 × 𝐴)) | |
2 | sqxpexg 7744 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 × 𝐴) ∈ V) | |
3 | ssexg 5323 | . . 3 ⊢ ((𝑅 ⊆ (𝐴 × 𝐴) ∧ (𝐴 × 𝐴) ∈ V) → 𝑅 ∈ V) | |
4 | 1, 2, 3 | syl2an 596 | . 2 ⊢ ((𝑅 Er 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝑅 ∈ V) |
5 | 4 | ex 413 | 1 ⊢ (𝑅 Er 𝐴 → (𝐴 ∈ 𝑉 → 𝑅 ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 Vcvv 3474 ⊆ wss 3948 × cxp 5674 Er wer 8702 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-xp 5682 df-rel 5683 df-cnv 5684 df-dm 5686 df-rn 5687 df-er 8705 |
This theorem is referenced by: erexb 8730 qliftlem 8794 qshash 15775 qusaddvallem 17499 qusaddflem 17500 qusaddval 17501 qusaddf 17502 qusmulval 17503 qusmulf 17504 qusgrp2 18943 efgrelexlemb 19620 efgcpbllemb 19625 frgpuplem 19642 qusring2 20151 vitalilem2 25133 vitalilem3 25134 tgjustr 27763 qusrng 46766 |
Copyright terms: Public domain | W3C validator |