| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > erex | Structured version Visualization version GIF version | ||
| Description: An equivalence relation is a set if its domain is a set. (Contributed by Rodolfo Medina, 15-Oct-2010.) (Proof shortened by Mario Carneiro, 12-Aug-2015.) |
| Ref | Expression |
|---|---|
| erex | ⊢ (𝑅 Er 𝐴 → (𝐴 ∈ 𝑉 → 𝑅 ∈ V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | erssxp 8697 | . . 3 ⊢ (𝑅 Er 𝐴 → 𝑅 ⊆ (𝐴 × 𝐴)) | |
| 2 | sqxpexg 7734 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 × 𝐴) ∈ V) | |
| 3 | ssexg 5281 | . . 3 ⊢ ((𝑅 ⊆ (𝐴 × 𝐴) ∧ (𝐴 × 𝐴) ∈ V) → 𝑅 ∈ V) | |
| 4 | 1, 2, 3 | syl2an 596 | . 2 ⊢ ((𝑅 Er 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝑅 ∈ V) |
| 5 | 4 | ex 412 | 1 ⊢ (𝑅 Er 𝐴 → (𝐴 ∈ 𝑉 → 𝑅 ∈ V)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3450 ⊆ wss 3917 × cxp 5639 Er wer 8671 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-xp 5647 df-rel 5648 df-cnv 5649 df-dm 5651 df-rn 5652 df-er 8674 |
| This theorem is referenced by: erexb 8699 qliftlem 8774 qshash 15800 qusaddvallem 17521 qusaddflem 17522 qusaddval 17523 qusaddf 17524 qusmulval 17525 qusmulf 17526 qusgrp2 18997 efgrelexlemb 19687 efgcpbllemb 19692 frgpuplem 19709 qusrng 20096 qusring2 20250 vitalilem2 25517 vitalilem3 25518 tgjustr 28408 |
| Copyright terms: Public domain | W3C validator |