![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > erex | Structured version Visualization version GIF version |
Description: An equivalence relation is a set if its domain is a set. (Contributed by Rodolfo Medina, 15-Oct-2010.) (Proof shortened by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
erex | ⊢ (𝑅 Er 𝐴 → (𝐴 ∈ 𝑉 → 𝑅 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | erssxp 8741 | . . 3 ⊢ (𝑅 Er 𝐴 → 𝑅 ⊆ (𝐴 × 𝐴)) | |
2 | sqxpexg 7751 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 × 𝐴) ∈ V) | |
3 | ssexg 5317 | . . 3 ⊢ ((𝑅 ⊆ (𝐴 × 𝐴) ∧ (𝐴 × 𝐴) ∈ V) → 𝑅 ∈ V) | |
4 | 1, 2, 3 | syl2an 595 | . 2 ⊢ ((𝑅 Er 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝑅 ∈ V) |
5 | 4 | ex 412 | 1 ⊢ (𝑅 Er 𝐴 → (𝐴 ∈ 𝑉 → 𝑅 ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2099 Vcvv 3469 ⊆ wss 3944 × cxp 5670 Er wer 8715 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-xp 5678 df-rel 5679 df-cnv 5680 df-dm 5682 df-rn 5683 df-er 8718 |
This theorem is referenced by: erexb 8743 qliftlem 8810 qshash 15799 qusaddvallem 17526 qusaddflem 17527 qusaddval 17528 qusaddf 17529 qusmulval 17530 qusmulf 17531 qusgrp2 19007 efgrelexlemb 19698 efgcpbllemb 19703 frgpuplem 19720 qusrng 20113 qusring2 20263 vitalilem2 25531 vitalilem3 25532 tgjustr 28271 |
Copyright terms: Public domain | W3C validator |