| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > erex | Structured version Visualization version GIF version | ||
| Description: An equivalence relation is a set if its domain is a set. (Contributed by Rodolfo Medina, 15-Oct-2010.) (Proof shortened by Mario Carneiro, 12-Aug-2015.) |
| Ref | Expression |
|---|---|
| erex | ⊢ (𝑅 Er 𝐴 → (𝐴 ∈ 𝑉 → 𝑅 ∈ V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | erssxp 8645 | . . 3 ⊢ (𝑅 Er 𝐴 → 𝑅 ⊆ (𝐴 × 𝐴)) | |
| 2 | sqxpexg 7688 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 × 𝐴) ∈ V) | |
| 3 | ssexg 5261 | . . 3 ⊢ ((𝑅 ⊆ (𝐴 × 𝐴) ∧ (𝐴 × 𝐴) ∈ V) → 𝑅 ∈ V) | |
| 4 | 1, 2, 3 | syl2an 596 | . 2 ⊢ ((𝑅 Er 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝑅 ∈ V) |
| 5 | 4 | ex 412 | 1 ⊢ (𝑅 Er 𝐴 → (𝐴 ∈ 𝑉 → 𝑅 ∈ V)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 Vcvv 3436 ⊆ wss 3902 × cxp 5614 Er wer 8619 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-xp 5622 df-rel 5623 df-cnv 5624 df-dm 5626 df-rn 5627 df-er 8622 |
| This theorem is referenced by: erexb 8647 qliftlem 8722 qshash 15734 qusaddvallem 17455 qusaddflem 17456 qusaddval 17457 qusaddf 17458 qusmulval 17459 qusmulf 17460 qusgrp2 18971 efgrelexlemb 19663 efgcpbllemb 19668 frgpuplem 19685 qusrng 20099 qusring2 20253 vitalilem2 25538 vitalilem3 25539 tgjustr 28453 |
| Copyright terms: Public domain | W3C validator |