MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  erex Structured version   Visualization version   GIF version

Theorem erex 8769
Description: An equivalence relation is a set if its domain is a set. (Contributed by Rodolfo Medina, 15-Oct-2010.) (Proof shortened by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
erex (𝑅 Er 𝐴 → (𝐴𝑉𝑅 ∈ V))

Proof of Theorem erex
StepHypRef Expression
1 erssxp 8768 . . 3 (𝑅 Er 𝐴𝑅 ⊆ (𝐴 × 𝐴))
2 sqxpexg 7775 . . 3 (𝐴𝑉 → (𝐴 × 𝐴) ∈ V)
3 ssexg 5323 . . 3 ((𝑅 ⊆ (𝐴 × 𝐴) ∧ (𝐴 × 𝐴) ∈ V) → 𝑅 ∈ V)
41, 2, 3syl2an 596 . 2 ((𝑅 Er 𝐴𝐴𝑉) → 𝑅 ∈ V)
54ex 412 1 (𝑅 Er 𝐴 → (𝐴𝑉𝑅 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  Vcvv 3480  wss 3951   × cxp 5683   Er wer 8742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-xp 5691  df-rel 5692  df-cnv 5693  df-dm 5695  df-rn 5696  df-er 8745
This theorem is referenced by:  erexb  8770  qliftlem  8838  qshash  15863  qusaddvallem  17596  qusaddflem  17597  qusaddval  17598  qusaddf  17599  qusmulval  17600  qusmulf  17601  qusgrp2  19076  efgrelexlemb  19768  efgcpbllemb  19773  frgpuplem  19790  qusrng  20177  qusring2  20331  vitalilem2  25644  vitalilem3  25645  tgjustr  28482
  Copyright terms: Public domain W3C validator