| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > erth2 | Structured version Visualization version GIF version | ||
| Description: Basic property of equivalence relations. Compare Theorem 73 of [Suppes] p. 82. Assumes membership of the second argument in the domain. (Contributed by NM, 30-Jul-1995.) (Revised by Mario Carneiro, 6-Jul-2015.) |
| Ref | Expression |
|---|---|
| erth2.1 | ⊢ (𝜑 → 𝑅 Er 𝑋) |
| erth2.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑋) |
| Ref | Expression |
|---|---|
| erth2 | ⊢ (𝜑 → (𝐴𝑅𝐵 ↔ [𝐴]𝑅 = [𝐵]𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | erth2.1 | . . 3 ⊢ (𝜑 → 𝑅 Er 𝑋) | |
| 2 | 1 | ersymb 8688 | . 2 ⊢ (𝜑 → (𝐴𝑅𝐵 ↔ 𝐵𝑅𝐴)) |
| 3 | erth2.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑋) | |
| 4 | 1, 3 | erth 8728 | . . 3 ⊢ (𝜑 → (𝐵𝑅𝐴 ↔ [𝐵]𝑅 = [𝐴]𝑅)) |
| 5 | eqcom 2737 | . . 3 ⊢ ([𝐵]𝑅 = [𝐴]𝑅 ↔ [𝐴]𝑅 = [𝐵]𝑅) | |
| 6 | 4, 5 | bitrdi 287 | . 2 ⊢ (𝜑 → (𝐵𝑅𝐴 ↔ [𝐴]𝑅 = [𝐵]𝑅)) |
| 7 | 2, 6 | bitrd 279 | 1 ⊢ (𝜑 → (𝐴𝑅𝐵 ↔ [𝐴]𝑅 = [𝐵]𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 class class class wbr 5110 Er wer 8671 [cec 8672 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-er 8674 df-ec 8676 |
| This theorem is referenced by: qliftel 8776 qusker 33327 qsdrnglem2 33474 |
| Copyright terms: Public domain | W3C validator |