MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  erth2 Structured version   Visualization version   GIF version

Theorem erth2 8771
Description: Basic property of equivalence relations. Compare Theorem 73 of [Suppes] p. 82. Assumes membership of the second argument in the domain. (Contributed by NM, 30-Jul-1995.) (Revised by Mario Carneiro, 6-Jul-2015.)
Hypotheses
Ref Expression
erth2.1 (𝜑𝑅 Er 𝑋)
erth2.2 (𝜑𝐵𝑋)
Assertion
Ref Expression
erth2 (𝜑 → (𝐴𝑅𝐵 ↔ [𝐴]𝑅 = [𝐵]𝑅))

Proof of Theorem erth2
StepHypRef Expression
1 erth2.1 . . 3 (𝜑𝑅 Er 𝑋)
21ersymb 8733 . 2 (𝜑 → (𝐴𝑅𝐵𝐵𝑅𝐴))
3 erth2.2 . . . 4 (𝜑𝐵𝑋)
41, 3erth 8770 . . 3 (𝜑 → (𝐵𝑅𝐴 ↔ [𝐵]𝑅 = [𝐴]𝑅))
5 eqcom 2742 . . 3 ([𝐵]𝑅 = [𝐴]𝑅 ↔ [𝐴]𝑅 = [𝐵]𝑅)
64, 5bitrdi 287 . 2 (𝜑 → (𝐵𝑅𝐴 ↔ [𝐴]𝑅 = [𝐵]𝑅))
72, 6bitrd 279 1 (𝜑 → (𝐴𝑅𝐵 ↔ [𝐴]𝑅 = [𝐵]𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2108   class class class wbr 5119   Er wer 8716  [cec 8717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-opab 5182  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-er 8719  df-ec 8721
This theorem is referenced by:  qliftel  8814  qusker  33364  qsdrnglem2  33511
  Copyright terms: Public domain W3C validator