MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  erth2 Structured version   Visualization version   GIF version

Theorem erth2 8331
Description: Basic property of equivalence relations. Compare Theorem 73 of [Suppes] p. 82. Assumes membership of the second argument in the domain. (Contributed by NM, 30-Jul-1995.) (Revised by Mario Carneiro, 6-Jul-2015.)
Hypotheses
Ref Expression
erth2.1 (𝜑𝑅 Er 𝑋)
erth2.2 (𝜑𝐵𝑋)
Assertion
Ref Expression
erth2 (𝜑 → (𝐴𝑅𝐵 ↔ [𝐴]𝑅 = [𝐵]𝑅))

Proof of Theorem erth2
StepHypRef Expression
1 erth2.1 . . 3 (𝜑𝑅 Er 𝑋)
21ersymb 8295 . 2 (𝜑 → (𝐴𝑅𝐵𝐵𝑅𝐴))
3 erth2.2 . . . 4 (𝜑𝐵𝑋)
41, 3erth 8330 . . 3 (𝜑 → (𝐵𝑅𝐴 ↔ [𝐵]𝑅 = [𝐴]𝑅))
5 eqcom 2826 . . 3 ([𝐵]𝑅 = [𝐴]𝑅 ↔ [𝐴]𝑅 = [𝐵]𝑅)
64, 5syl6bb 289 . 2 (𝜑 → (𝐵𝑅𝐴 ↔ [𝐴]𝑅 = [𝐵]𝑅))
72, 6bitrd 281 1 (𝜑 → (𝐴𝑅𝐵 ↔ [𝐴]𝑅 = [𝐵]𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208   = wceq 1530  wcel 2107   class class class wbr 5057   Er wer 8278  [cec 8279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pr 5320
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-rab 3145  df-v 3495  df-sbc 3771  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-sn 4560  df-pr 4562  df-op 4566  df-br 5058  df-opab 5120  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-er 8281  df-ec 8283
This theorem is referenced by:  qliftel  8372  qusker  30911
  Copyright terms: Public domain W3C validator