![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > erth2 | Structured version Visualization version GIF version |
Description: Basic property of equivalence relations. Compare Theorem 73 of [Suppes] p. 82. Assumes membership of the second argument in the domain. (Contributed by NM, 30-Jul-1995.) (Revised by Mario Carneiro, 6-Jul-2015.) |
Ref | Expression |
---|---|
erth2.1 | ⊢ (𝜑 → 𝑅 Er 𝑋) |
erth2.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑋) |
Ref | Expression |
---|---|
erth2 | ⊢ (𝜑 → (𝐴𝑅𝐵 ↔ [𝐴]𝑅 = [𝐵]𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | erth2.1 | . . 3 ⊢ (𝜑 → 𝑅 Er 𝑋) | |
2 | 1 | ersymb 8777 | . 2 ⊢ (𝜑 → (𝐴𝑅𝐵 ↔ 𝐵𝑅𝐴)) |
3 | erth2.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑋) | |
4 | 1, 3 | erth 8814 | . . 3 ⊢ (𝜑 → (𝐵𝑅𝐴 ↔ [𝐵]𝑅 = [𝐴]𝑅)) |
5 | eqcom 2747 | . . 3 ⊢ ([𝐵]𝑅 = [𝐴]𝑅 ↔ [𝐴]𝑅 = [𝐵]𝑅) | |
6 | 4, 5 | bitrdi 287 | . 2 ⊢ (𝜑 → (𝐵𝑅𝐴 ↔ [𝐴]𝑅 = [𝐵]𝑅)) |
7 | 2, 6 | bitrd 279 | 1 ⊢ (𝜑 → (𝐴𝑅𝐵 ↔ [𝐴]𝑅 = [𝐵]𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 class class class wbr 5166 Er wer 8760 [cec 8761 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-er 8763 df-ec 8765 |
This theorem is referenced by: qliftel 8858 qusker 33342 qsdrnglem2 33489 |
Copyright terms: Public domain | W3C validator |