![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ensymb | Structured version Visualization version GIF version |
Description: Symmetry of equinumerosity. Theorem 2 of [Suppes] p. 92. (Contributed by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
ensymb | ⊢ (𝐴 ≈ 𝐵 ↔ 𝐵 ≈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ener 9040 | . . . 4 ⊢ ≈ Er V | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → ≈ Er V) |
3 | 2 | ersymb 8758 | . 2 ⊢ (⊤ → (𝐴 ≈ 𝐵 ↔ 𝐵 ≈ 𝐴)) |
4 | 3 | mptru 1544 | 1 ⊢ (𝐴 ≈ 𝐵 ↔ 𝐵 ≈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ⊤wtru 1538 Vcvv 3478 class class class wbr 5148 Er wer 8741 ≈ cen 8981 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-er 8744 df-en 8985 |
This theorem is referenced by: ensym 9042 0sdomgOLD 9144 snnen2oOLD 9262 cantnfp1lem2 9717 cantnflem1 9727 iscard2 10014 dffin1-5 10426 pmtrsn 19552 volmeas 34212 isnumbasgrplem1 43090 rp-isfinite6 43508 omssrncard 43530 prproropen 47433 |
Copyright terms: Public domain | W3C validator |