MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oaordex Structured version   Visualization version   GIF version

Theorem oaordex 7985
Description: Existence theorem for ordering of ordinal sum. Similar to Proposition 4.34(f) of [Mendelson] p. 266 and its converse. (Contributed by NM, 12-Dec-2004.)
Assertion
Ref Expression
oaordex ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 ↔ ∃𝑥 ∈ On (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem oaordex
StepHypRef Expression
1 onelss 6071 . . . . 5 (𝐵 ∈ On → (𝐴𝐵𝐴𝐵))
21adantl 474 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵𝐴𝐵))
3 oawordex 7984 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 ↔ ∃𝑥 ∈ On (𝐴 +o 𝑥) = 𝐵))
42, 3sylibd 231 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 → ∃𝑥 ∈ On (𝐴 +o 𝑥) = 𝐵))
5 oaord1 7978 . . . . . . . . . . . . 13 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (∅ ∈ 𝑥𝐴 ∈ (𝐴 +o 𝑥)))
6 eleq2 2854 . . . . . . . . . . . . 13 ((𝐴 +o 𝑥) = 𝐵 → (𝐴 ∈ (𝐴 +o 𝑥) ↔ 𝐴𝐵))
75, 6sylan9bb 502 . . . . . . . . . . . 12 (((𝐴 ∈ On ∧ 𝑥 ∈ On) ∧ (𝐴 +o 𝑥) = 𝐵) → (∅ ∈ 𝑥𝐴𝐵))
87biimprcd 242 . . . . . . . . . . 11 (𝐴𝐵 → (((𝐴 ∈ On ∧ 𝑥 ∈ On) ∧ (𝐴 +o 𝑥) = 𝐵) → ∅ ∈ 𝑥))
98exp4c 425 . . . . . . . . . 10 (𝐴𝐵 → (𝐴 ∈ On → (𝑥 ∈ On → ((𝐴 +o 𝑥) = 𝐵 → ∅ ∈ 𝑥))))
109com12 32 . . . . . . . . 9 (𝐴 ∈ On → (𝐴𝐵 → (𝑥 ∈ On → ((𝐴 +o 𝑥) = 𝐵 → ∅ ∈ 𝑥))))
1110imp4b 414 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐴𝐵) → ((𝑥 ∈ On ∧ (𝐴 +o 𝑥) = 𝐵) → ∅ ∈ 𝑥))
12 simpr 477 . . . . . . . 8 ((𝑥 ∈ On ∧ (𝐴 +o 𝑥) = 𝐵) → (𝐴 +o 𝑥) = 𝐵)
1311, 12jca2 506 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐴𝐵) → ((𝑥 ∈ On ∧ (𝐴 +o 𝑥) = 𝐵) → (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵)))
1413expd 408 . . . . . 6 ((𝐴 ∈ On ∧ 𝐴𝐵) → (𝑥 ∈ On → ((𝐴 +o 𝑥) = 𝐵 → (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵))))
1514reximdvai 3217 . . . . 5 ((𝐴 ∈ On ∧ 𝐴𝐵) → (∃𝑥 ∈ On (𝐴 +o 𝑥) = 𝐵 → ∃𝑥 ∈ On (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵)))
1615ex 405 . . . 4 (𝐴 ∈ On → (𝐴𝐵 → (∃𝑥 ∈ On (𝐴 +o 𝑥) = 𝐵 → ∃𝑥 ∈ On (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵))))
1716adantr 473 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 → (∃𝑥 ∈ On (𝐴 +o 𝑥) = 𝐵 → ∃𝑥 ∈ On (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵))))
184, 17mpdd 43 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 → ∃𝑥 ∈ On (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵)))
197biimpd 221 . . . . . . 7 (((𝐴 ∈ On ∧ 𝑥 ∈ On) ∧ (𝐴 +o 𝑥) = 𝐵) → (∅ ∈ 𝑥𝐴𝐵))
2019exp31 412 . . . . . 6 (𝐴 ∈ On → (𝑥 ∈ On → ((𝐴 +o 𝑥) = 𝐵 → (∅ ∈ 𝑥𝐴𝐵))))
2120com34 91 . . . . 5 (𝐴 ∈ On → (𝑥 ∈ On → (∅ ∈ 𝑥 → ((𝐴 +o 𝑥) = 𝐵𝐴𝐵))))
2221imp4a 415 . . . 4 (𝐴 ∈ On → (𝑥 ∈ On → ((∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵) → 𝐴𝐵)))
2322rexlimdv 3228 . . 3 (𝐴 ∈ On → (∃𝑥 ∈ On (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵) → 𝐴𝐵))
2423adantr 473 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∃𝑥 ∈ On (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵) → 𝐴𝐵))
2518, 24impbid 204 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 ↔ ∃𝑥 ∈ On (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387   = wceq 1507  wcel 2050  wrex 3089  wss 3829  c0 4178  Oncon0 6029  (class class class)co 6976   +o coa 7902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-rep 5049  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-ral 3093  df-rex 3094  df-reu 3095  df-rmo 3096  df-rab 3097  df-v 3417  df-sbc 3682  df-csb 3787  df-dif 3832  df-un 3834  df-in 3836  df-ss 3843  df-pss 3845  df-nul 4179  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-tp 4446  df-op 4448  df-uni 4713  df-int 4750  df-iun 4794  df-br 4930  df-opab 4992  df-mpt 5009  df-tr 5031  df-id 5312  df-eprel 5317  df-po 5326  df-so 5327  df-fr 5366  df-we 5368  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-pred 5986  df-ord 6032  df-on 6033  df-lim 6034  df-suc 6035  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-ov 6979  df-oprab 6980  df-mpo 6981  df-om 7397  df-wrecs 7750  df-recs 7812  df-rdg 7850  df-oadd 7909
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator