MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oaordex Structured version   Visualization version   GIF version

Theorem oaordex 8476
Description: Existence theorem for ordering of ordinal sum. Similar to Proposition 4.34(f) of [Mendelson] p. 266 and its converse. (Contributed by NM, 12-Dec-2004.)
Assertion
Ref Expression
oaordex ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 ↔ ∃𝑥 ∈ On (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem oaordex
StepHypRef Expression
1 onelss 6349 . . . . 5 (𝐵 ∈ On → (𝐴𝐵𝐴𝐵))
21adantl 481 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵𝐴𝐵))
3 oawordex 8475 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 ↔ ∃𝑥 ∈ On (𝐴 +o 𝑥) = 𝐵))
42, 3sylibd 239 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 → ∃𝑥 ∈ On (𝐴 +o 𝑥) = 𝐵))
5 oaord1 8469 . . . . . . . . . . . . 13 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (∅ ∈ 𝑥𝐴 ∈ (𝐴 +o 𝑥)))
6 eleq2 2817 . . . . . . . . . . . . 13 ((𝐴 +o 𝑥) = 𝐵 → (𝐴 ∈ (𝐴 +o 𝑥) ↔ 𝐴𝐵))
75, 6sylan9bb 509 . . . . . . . . . . . 12 (((𝐴 ∈ On ∧ 𝑥 ∈ On) ∧ (𝐴 +o 𝑥) = 𝐵) → (∅ ∈ 𝑥𝐴𝐵))
87biimprcd 250 . . . . . . . . . . 11 (𝐴𝐵 → (((𝐴 ∈ On ∧ 𝑥 ∈ On) ∧ (𝐴 +o 𝑥) = 𝐵) → ∅ ∈ 𝑥))
98exp4c 432 . . . . . . . . . 10 (𝐴𝐵 → (𝐴 ∈ On → (𝑥 ∈ On → ((𝐴 +o 𝑥) = 𝐵 → ∅ ∈ 𝑥))))
109com12 32 . . . . . . . . 9 (𝐴 ∈ On → (𝐴𝐵 → (𝑥 ∈ On → ((𝐴 +o 𝑥) = 𝐵 → ∅ ∈ 𝑥))))
1110imp4b 421 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐴𝐵) → ((𝑥 ∈ On ∧ (𝐴 +o 𝑥) = 𝐵) → ∅ ∈ 𝑥))
12 simpr 484 . . . . . . . 8 ((𝑥 ∈ On ∧ (𝐴 +o 𝑥) = 𝐵) → (𝐴 +o 𝑥) = 𝐵)
1311, 12jca2 513 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐴𝐵) → ((𝑥 ∈ On ∧ (𝐴 +o 𝑥) = 𝐵) → (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵)))
1413expd 415 . . . . . 6 ((𝐴 ∈ On ∧ 𝐴𝐵) → (𝑥 ∈ On → ((𝐴 +o 𝑥) = 𝐵 → (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵))))
1514reximdvai 3140 . . . . 5 ((𝐴 ∈ On ∧ 𝐴𝐵) → (∃𝑥 ∈ On (𝐴 +o 𝑥) = 𝐵 → ∃𝑥 ∈ On (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵)))
1615ex 412 . . . 4 (𝐴 ∈ On → (𝐴𝐵 → (∃𝑥 ∈ On (𝐴 +o 𝑥) = 𝐵 → ∃𝑥 ∈ On (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵))))
1716adantr 480 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 → (∃𝑥 ∈ On (𝐴 +o 𝑥) = 𝐵 → ∃𝑥 ∈ On (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵))))
184, 17mpdd 43 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 → ∃𝑥 ∈ On (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵)))
197biimpd 229 . . . . . . 7 (((𝐴 ∈ On ∧ 𝑥 ∈ On) ∧ (𝐴 +o 𝑥) = 𝐵) → (∅ ∈ 𝑥𝐴𝐵))
2019exp31 419 . . . . . 6 (𝐴 ∈ On → (𝑥 ∈ On → ((𝐴 +o 𝑥) = 𝐵 → (∅ ∈ 𝑥𝐴𝐵))))
2120com34 91 . . . . 5 (𝐴 ∈ On → (𝑥 ∈ On → (∅ ∈ 𝑥 → ((𝐴 +o 𝑥) = 𝐵𝐴𝐵))))
2221imp4a 422 . . . 4 (𝐴 ∈ On → (𝑥 ∈ On → ((∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵) → 𝐴𝐵)))
2322rexlimdv 3128 . . 3 (𝐴 ∈ On → (∃𝑥 ∈ On (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵) → 𝐴𝐵))
2423adantr 480 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∃𝑥 ∈ On (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵) → 𝐴𝐵))
2518, 24impbid 212 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 ↔ ∃𝑥 ∈ On (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3053  wss 3903  c0 4284  Oncon0 6307  (class class class)co 7349   +o coa 8385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-oadd 8392
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator