MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oaordex Structured version   Visualization version   GIF version

Theorem oaordex 8264
Description: Existence theorem for ordering of ordinal sum. Similar to Proposition 4.34(f) of [Mendelson] p. 266 and its converse. (Contributed by NM, 12-Dec-2004.)
Assertion
Ref Expression
oaordex ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 ↔ ∃𝑥 ∈ On (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem oaordex
StepHypRef Expression
1 onelss 6233 . . . . 5 (𝐵 ∈ On → (𝐴𝐵𝐴𝐵))
21adantl 485 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵𝐴𝐵))
3 oawordex 8263 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 ↔ ∃𝑥 ∈ On (𝐴 +o 𝑥) = 𝐵))
42, 3sylibd 242 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 → ∃𝑥 ∈ On (𝐴 +o 𝑥) = 𝐵))
5 oaord1 8257 . . . . . . . . . . . . 13 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (∅ ∈ 𝑥𝐴 ∈ (𝐴 +o 𝑥)))
6 eleq2 2819 . . . . . . . . . . . . 13 ((𝐴 +o 𝑥) = 𝐵 → (𝐴 ∈ (𝐴 +o 𝑥) ↔ 𝐴𝐵))
75, 6sylan9bb 513 . . . . . . . . . . . 12 (((𝐴 ∈ On ∧ 𝑥 ∈ On) ∧ (𝐴 +o 𝑥) = 𝐵) → (∅ ∈ 𝑥𝐴𝐵))
87biimprcd 253 . . . . . . . . . . 11 (𝐴𝐵 → (((𝐴 ∈ On ∧ 𝑥 ∈ On) ∧ (𝐴 +o 𝑥) = 𝐵) → ∅ ∈ 𝑥))
98exp4c 436 . . . . . . . . . 10 (𝐴𝐵 → (𝐴 ∈ On → (𝑥 ∈ On → ((𝐴 +o 𝑥) = 𝐵 → ∅ ∈ 𝑥))))
109com12 32 . . . . . . . . 9 (𝐴 ∈ On → (𝐴𝐵 → (𝑥 ∈ On → ((𝐴 +o 𝑥) = 𝐵 → ∅ ∈ 𝑥))))
1110imp4b 425 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐴𝐵) → ((𝑥 ∈ On ∧ (𝐴 +o 𝑥) = 𝐵) → ∅ ∈ 𝑥))
12 simpr 488 . . . . . . . 8 ((𝑥 ∈ On ∧ (𝐴 +o 𝑥) = 𝐵) → (𝐴 +o 𝑥) = 𝐵)
1311, 12jca2 517 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐴𝐵) → ((𝑥 ∈ On ∧ (𝐴 +o 𝑥) = 𝐵) → (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵)))
1413expd 419 . . . . . 6 ((𝐴 ∈ On ∧ 𝐴𝐵) → (𝑥 ∈ On → ((𝐴 +o 𝑥) = 𝐵 → (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵))))
1514reximdvai 3181 . . . . 5 ((𝐴 ∈ On ∧ 𝐴𝐵) → (∃𝑥 ∈ On (𝐴 +o 𝑥) = 𝐵 → ∃𝑥 ∈ On (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵)))
1615ex 416 . . . 4 (𝐴 ∈ On → (𝐴𝐵 → (∃𝑥 ∈ On (𝐴 +o 𝑥) = 𝐵 → ∃𝑥 ∈ On (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵))))
1716adantr 484 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 → (∃𝑥 ∈ On (𝐴 +o 𝑥) = 𝐵 → ∃𝑥 ∈ On (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵))))
184, 17mpdd 43 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 → ∃𝑥 ∈ On (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵)))
197biimpd 232 . . . . . . 7 (((𝐴 ∈ On ∧ 𝑥 ∈ On) ∧ (𝐴 +o 𝑥) = 𝐵) → (∅ ∈ 𝑥𝐴𝐵))
2019exp31 423 . . . . . 6 (𝐴 ∈ On → (𝑥 ∈ On → ((𝐴 +o 𝑥) = 𝐵 → (∅ ∈ 𝑥𝐴𝐵))))
2120com34 91 . . . . 5 (𝐴 ∈ On → (𝑥 ∈ On → (∅ ∈ 𝑥 → ((𝐴 +o 𝑥) = 𝐵𝐴𝐵))))
2221imp4a 426 . . . 4 (𝐴 ∈ On → (𝑥 ∈ On → ((∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵) → 𝐴𝐵)))
2322rexlimdv 3192 . . 3 (𝐴 ∈ On → (∃𝑥 ∈ On (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵) → 𝐴𝐵))
2423adantr 484 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∃𝑥 ∈ On (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵) → 𝐴𝐵))
2518, 24impbid 215 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 ↔ ∃𝑥 ∈ On (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2112  wrex 3052  wss 3853  c0 4223  Oncon0 6191  (class class class)co 7191   +o coa 8177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pr 5307  ax-un 7501
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-int 4846  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-oadd 8184
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator