MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wrdsymb0 Structured version   Visualization version   GIF version

Theorem wrdsymb0 14567
Description: A symbol at a position "outside" of a word. (Contributed by Alexander van der Vekens, 26-May-2018.) (Proof shortened by AV, 2-May-2020.)
Assertion
Ref Expression
wrdsymb0 ((𝑊 ∈ Word 𝑉𝐼 ∈ ℤ) → ((𝐼 < 0 ∨ (♯‘𝑊) ≤ 𝐼) → (𝑊𝐼) = ∅))

Proof of Theorem wrdsymb0
StepHypRef Expression
1 wrddm 14539 . . . 4 (𝑊 ∈ Word 𝑉 → dom 𝑊 = (0..^(♯‘𝑊)))
2 lencl 14551 . . . . 5 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0)
32nn0zd 12614 . . . 4 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℤ)
4 simpr 484 . . . . . . . . 9 (((♯‘𝑊) ∈ ℤ ∧ 𝐼 ∈ ℤ) → 𝐼 ∈ ℤ)
5 0zd 12600 . . . . . . . . 9 (((♯‘𝑊) ∈ ℤ ∧ 𝐼 ∈ ℤ) → 0 ∈ ℤ)
6 simpl 482 . . . . . . . . 9 (((♯‘𝑊) ∈ ℤ ∧ 𝐼 ∈ ℤ) → (♯‘𝑊) ∈ ℤ)
7 nelfzo 13681 . . . . . . . . 9 ((𝐼 ∈ ℤ ∧ 0 ∈ ℤ ∧ (♯‘𝑊) ∈ ℤ) → (𝐼 ∉ (0..^(♯‘𝑊)) ↔ (𝐼 < 0 ∨ (♯‘𝑊) ≤ 𝐼)))
84, 5, 6, 7syl3anc 1373 . . . . . . . 8 (((♯‘𝑊) ∈ ℤ ∧ 𝐼 ∈ ℤ) → (𝐼 ∉ (0..^(♯‘𝑊)) ↔ (𝐼 < 0 ∨ (♯‘𝑊) ≤ 𝐼)))
98biimpar 477 . . . . . . 7 ((((♯‘𝑊) ∈ ℤ ∧ 𝐼 ∈ ℤ) ∧ (𝐼 < 0 ∨ (♯‘𝑊) ≤ 𝐼)) → 𝐼 ∉ (0..^(♯‘𝑊)))
10 df-nel 3037 . . . . . . 7 (𝐼 ∉ (0..^(♯‘𝑊)) ↔ ¬ 𝐼 ∈ (0..^(♯‘𝑊)))
119, 10sylib 218 . . . . . 6 ((((♯‘𝑊) ∈ ℤ ∧ 𝐼 ∈ ℤ) ∧ (𝐼 < 0 ∨ (♯‘𝑊) ≤ 𝐼)) → ¬ 𝐼 ∈ (0..^(♯‘𝑊)))
12 eleq2 2823 . . . . . . 7 (dom 𝑊 = (0..^(♯‘𝑊)) → (𝐼 ∈ dom 𝑊𝐼 ∈ (0..^(♯‘𝑊))))
1312notbid 318 . . . . . 6 (dom 𝑊 = (0..^(♯‘𝑊)) → (¬ 𝐼 ∈ dom 𝑊 ↔ ¬ 𝐼 ∈ (0..^(♯‘𝑊))))
1411, 13imbitrrid 246 . . . . 5 (dom 𝑊 = (0..^(♯‘𝑊)) → ((((♯‘𝑊) ∈ ℤ ∧ 𝐼 ∈ ℤ) ∧ (𝐼 < 0 ∨ (♯‘𝑊) ≤ 𝐼)) → ¬ 𝐼 ∈ dom 𝑊))
1514exp4c 432 . . . 4 (dom 𝑊 = (0..^(♯‘𝑊)) → ((♯‘𝑊) ∈ ℤ → (𝐼 ∈ ℤ → ((𝐼 < 0 ∨ (♯‘𝑊) ≤ 𝐼) → ¬ 𝐼 ∈ dom 𝑊))))
161, 3, 15sylc 65 . . 3 (𝑊 ∈ Word 𝑉 → (𝐼 ∈ ℤ → ((𝐼 < 0 ∨ (♯‘𝑊) ≤ 𝐼) → ¬ 𝐼 ∈ dom 𝑊)))
1716imp 406 . 2 ((𝑊 ∈ Word 𝑉𝐼 ∈ ℤ) → ((𝐼 < 0 ∨ (♯‘𝑊) ≤ 𝐼) → ¬ 𝐼 ∈ dom 𝑊))
18 ndmfv 6911 . 2 𝐼 ∈ dom 𝑊 → (𝑊𝐼) = ∅)
1917, 18syl6 35 1 ((𝑊 ∈ Word 𝑉𝐼 ∈ ℤ) → ((𝐼 < 0 ∨ (♯‘𝑊) ≤ 𝐼) → (𝑊𝐼) = ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2108  wnel 3036  c0 4308   class class class wbr 5119  dom cdm 5654  cfv 6531  (class class class)co 7405  0cc0 11129   < clt 11269  cle 11270  cz 12588  ..^cfzo 13671  chash 14348  Word cword 14531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-n0 12502  df-z 12589  df-uz 12853  df-fz 13525  df-fzo 13672  df-hash 14349  df-word 14532
This theorem is referenced by:  ccatsymb  14600
  Copyright terms: Public domain W3C validator