![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wrdsymb0 | Structured version Visualization version GIF version |
Description: A symbol at a position "outside" of a word. (Contributed by Alexander van der Vekens, 26-May-2018.) (Proof shortened by AV, 2-May-2020.) |
Ref | Expression |
---|---|
wrdsymb0 | ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ) → ((𝐼 < 0 ∨ (♯‘𝑊) ≤ 𝐼) → (𝑊‘𝐼) = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wrddm 14467 | . . . 4 ⊢ (𝑊 ∈ Word 𝑉 → dom 𝑊 = (0..^(♯‘𝑊))) | |
2 | lencl 14479 | . . . . 5 ⊢ (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0) | |
3 | 2 | nn0zd 12580 | . . . 4 ⊢ (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℤ) |
4 | simpr 484 | . . . . . . . . 9 ⊢ (((♯‘𝑊) ∈ ℤ ∧ 𝐼 ∈ ℤ) → 𝐼 ∈ ℤ) | |
5 | 0zd 12566 | . . . . . . . . 9 ⊢ (((♯‘𝑊) ∈ ℤ ∧ 𝐼 ∈ ℤ) → 0 ∈ ℤ) | |
6 | simpl 482 | . . . . . . . . 9 ⊢ (((♯‘𝑊) ∈ ℤ ∧ 𝐼 ∈ ℤ) → (♯‘𝑊) ∈ ℤ) | |
7 | nelfzo 13633 | . . . . . . . . 9 ⊢ ((𝐼 ∈ ℤ ∧ 0 ∈ ℤ ∧ (♯‘𝑊) ∈ ℤ) → (𝐼 ∉ (0..^(♯‘𝑊)) ↔ (𝐼 < 0 ∨ (♯‘𝑊) ≤ 𝐼))) | |
8 | 4, 5, 6, 7 | syl3anc 1368 | . . . . . . . 8 ⊢ (((♯‘𝑊) ∈ ℤ ∧ 𝐼 ∈ ℤ) → (𝐼 ∉ (0..^(♯‘𝑊)) ↔ (𝐼 < 0 ∨ (♯‘𝑊) ≤ 𝐼))) |
9 | 8 | biimpar 477 | . . . . . . 7 ⊢ ((((♯‘𝑊) ∈ ℤ ∧ 𝐼 ∈ ℤ) ∧ (𝐼 < 0 ∨ (♯‘𝑊) ≤ 𝐼)) → 𝐼 ∉ (0..^(♯‘𝑊))) |
10 | df-nel 3039 | . . . . . . 7 ⊢ (𝐼 ∉ (0..^(♯‘𝑊)) ↔ ¬ 𝐼 ∈ (0..^(♯‘𝑊))) | |
11 | 9, 10 | sylib 217 | . . . . . 6 ⊢ ((((♯‘𝑊) ∈ ℤ ∧ 𝐼 ∈ ℤ) ∧ (𝐼 < 0 ∨ (♯‘𝑊) ≤ 𝐼)) → ¬ 𝐼 ∈ (0..^(♯‘𝑊))) |
12 | eleq2 2814 | . . . . . . 7 ⊢ (dom 𝑊 = (0..^(♯‘𝑊)) → (𝐼 ∈ dom 𝑊 ↔ 𝐼 ∈ (0..^(♯‘𝑊)))) | |
13 | 12 | notbid 318 | . . . . . 6 ⊢ (dom 𝑊 = (0..^(♯‘𝑊)) → (¬ 𝐼 ∈ dom 𝑊 ↔ ¬ 𝐼 ∈ (0..^(♯‘𝑊)))) |
14 | 11, 13 | imbitrrid 245 | . . . . 5 ⊢ (dom 𝑊 = (0..^(♯‘𝑊)) → ((((♯‘𝑊) ∈ ℤ ∧ 𝐼 ∈ ℤ) ∧ (𝐼 < 0 ∨ (♯‘𝑊) ≤ 𝐼)) → ¬ 𝐼 ∈ dom 𝑊)) |
15 | 14 | exp4c 432 | . . . 4 ⊢ (dom 𝑊 = (0..^(♯‘𝑊)) → ((♯‘𝑊) ∈ ℤ → (𝐼 ∈ ℤ → ((𝐼 < 0 ∨ (♯‘𝑊) ≤ 𝐼) → ¬ 𝐼 ∈ dom 𝑊)))) |
16 | 1, 3, 15 | sylc 65 | . . 3 ⊢ (𝑊 ∈ Word 𝑉 → (𝐼 ∈ ℤ → ((𝐼 < 0 ∨ (♯‘𝑊) ≤ 𝐼) → ¬ 𝐼 ∈ dom 𝑊))) |
17 | 16 | imp 406 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ) → ((𝐼 < 0 ∨ (♯‘𝑊) ≤ 𝐼) → ¬ 𝐼 ∈ dom 𝑊)) |
18 | ndmfv 6916 | . 2 ⊢ (¬ 𝐼 ∈ dom 𝑊 → (𝑊‘𝐼) = ∅) | |
19 | 17, 18 | syl6 35 | 1 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ) → ((𝐼 < 0 ∨ (♯‘𝑊) ≤ 𝐼) → (𝑊‘𝐼) = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 844 = wceq 1533 ∈ wcel 2098 ∉ wnel 3038 ∅c0 4314 class class class wbr 5138 dom cdm 5666 ‘cfv 6533 (class class class)co 7401 0cc0 11105 < clt 11244 ≤ cle 11245 ℤcz 12554 ..^cfzo 13623 ♯chash 14286 Word cword 14460 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11161 ax-resscn 11162 ax-1cn 11163 ax-icn 11164 ax-addcl 11165 ax-addrcl 11166 ax-mulcl 11167 ax-mulrcl 11168 ax-mulcom 11169 ax-addass 11170 ax-mulass 11171 ax-distr 11172 ax-i2m1 11173 ax-1ne0 11174 ax-1rid 11175 ax-rnegex 11176 ax-rrecex 11177 ax-cnre 11178 ax-pre-lttri 11179 ax-pre-lttrn 11180 ax-pre-ltadd 11181 ax-pre-mulgt0 11182 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-1st 7968 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-er 8698 df-en 8935 df-dom 8936 df-sdom 8937 df-fin 8938 df-card 9929 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-n0 12469 df-z 12555 df-uz 12819 df-fz 13481 df-fzo 13624 df-hash 14287 df-word 14461 |
This theorem is referenced by: ccatsymb 14528 |
Copyright terms: Public domain | W3C validator |