Step | Hyp | Ref
| Expression |
1 | | simpl1 1190 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝐼‘𝑋) ⊆ (𝐼‘𝑌)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
2 | | simpl3 1192 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝐼‘𝑋) ⊆ (𝐼‘𝑌)) → (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) |
3 | | dihord5apre.b |
. . . 4
⊢ 𝐵 = (Base‘𝐾) |
4 | | dihord5apre.l |
. . . 4
⊢ ≤ =
(le‘𝐾) |
5 | | dihord5apre.j |
. . . 4
⊢ ∨ =
(join‘𝐾) |
6 | | dihord5apre.m |
. . . 4
⊢ ∧ =
(meet‘𝐾) |
7 | | dihord5apre.a |
. . . 4
⊢ 𝐴 = (Atoms‘𝐾) |
8 | | dihord5apre.h |
. . . 4
⊢ 𝐻 = (LHyp‘𝐾) |
9 | 3, 4, 5, 6, 7, 8 | lhpmcvr2 38038 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) → ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑟 ∨ (𝑌 ∧ 𝑊)) = 𝑌)) |
10 | 1, 2, 9 | syl2anc 584 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝐼‘𝑋) ⊆ (𝐼‘𝑌)) → ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑟 ∨ (𝑌 ∧ 𝑊)) = 𝑌)) |
11 | | simp11l 1283 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝐼‘𝑋) ⊆ (𝐼‘𝑌) ∧ ((𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊) ∧ (𝑟 ∨ (𝑌 ∧ 𝑊)) = 𝑌)) → 𝐾 ∈ HL) |
12 | 11 | hllatd 37378 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝐼‘𝑋) ⊆ (𝐼‘𝑌) ∧ ((𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊) ∧ (𝑟 ∨ (𝑌 ∧ 𝑊)) = 𝑌)) → 𝐾 ∈ Lat) |
13 | | simp12l 1285 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝐼‘𝑋) ⊆ (𝐼‘𝑌) ∧ ((𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊) ∧ (𝑟 ∨ (𝑌 ∧ 𝑊)) = 𝑌)) → 𝑋 ∈ 𝐵) |
14 | | simp3ll 1243 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝐼‘𝑋) ⊆ (𝐼‘𝑌) ∧ ((𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊) ∧ (𝑟 ∨ (𝑌 ∧ 𝑊)) = 𝑌)) → 𝑟 ∈ 𝐴) |
15 | 3, 7 | atbase 37303 |
. . . . . . . . 9
⊢ (𝑟 ∈ 𝐴 → 𝑟 ∈ 𝐵) |
16 | 14, 15 | syl 17 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝐼‘𝑋) ⊆ (𝐼‘𝑌) ∧ ((𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊) ∧ (𝑟 ∨ (𝑌 ∧ 𝑊)) = 𝑌)) → 𝑟 ∈ 𝐵) |
17 | 3, 5 | latjcl 18157 |
. . . . . . . 8
⊢ ((𝐾 ∈ Lat ∧ 𝑟 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑟 ∨ 𝑋) ∈ 𝐵) |
18 | 12, 16, 13, 17 | syl3anc 1370 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝐼‘𝑋) ⊆ (𝐼‘𝑌) ∧ ((𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊) ∧ (𝑟 ∨ (𝑌 ∧ 𝑊)) = 𝑌)) → (𝑟 ∨ 𝑋) ∈ 𝐵) |
19 | | simp13l 1287 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝐼‘𝑋) ⊆ (𝐼‘𝑌) ∧ ((𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊) ∧ (𝑟 ∨ (𝑌 ∧ 𝑊)) = 𝑌)) → 𝑌 ∈ 𝐵) |
20 | 3, 4, 5 | latlej2 18167 |
. . . . . . . 8
⊢ ((𝐾 ∈ Lat ∧ 𝑟 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → 𝑋 ≤ (𝑟 ∨ 𝑋)) |
21 | 12, 16, 13, 20 | syl3anc 1370 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝐼‘𝑋) ⊆ (𝐼‘𝑌) ∧ ((𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊) ∧ (𝑟 ∨ (𝑌 ∧ 𝑊)) = 𝑌)) → 𝑋 ≤ (𝑟 ∨ 𝑋)) |
22 | | simp11 1202 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝐼‘𝑋) ⊆ (𝐼‘𝑌) ∧ ((𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊) ∧ (𝑟 ∨ (𝑌 ∧ 𝑊)) = 𝑌)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
23 | | simp3lr 1244 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝐼‘𝑋) ⊆ (𝐼‘𝑌) ∧ ((𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊) ∧ (𝑟 ∨ (𝑌 ∧ 𝑊)) = 𝑌)) → ¬ 𝑟 ≤ 𝑊) |
24 | 3, 4, 5 | latlej1 18166 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ Lat ∧ 𝑟 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → 𝑟 ≤ (𝑟 ∨ 𝑋)) |
25 | 12, 16, 13, 24 | syl3anc 1370 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝐼‘𝑋) ⊆ (𝐼‘𝑌) ∧ ((𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊) ∧ (𝑟 ∨ (𝑌 ∧ 𝑊)) = 𝑌)) → 𝑟 ≤ (𝑟 ∨ 𝑋)) |
26 | | simp11r 1284 |
. . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝐼‘𝑋) ⊆ (𝐼‘𝑌) ∧ ((𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊) ∧ (𝑟 ∨ (𝑌 ∧ 𝑊)) = 𝑌)) → 𝑊 ∈ 𝐻) |
27 | 3, 8 | lhpbase 38012 |
. . . . . . . . . . . . . 14
⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵) |
28 | 26, 27 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝐼‘𝑋) ⊆ (𝐼‘𝑌) ∧ ((𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊) ∧ (𝑟 ∨ (𝑌 ∧ 𝑊)) = 𝑌)) → 𝑊 ∈ 𝐵) |
29 | 3, 4 | lattr 18162 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ Lat ∧ (𝑟 ∈ 𝐵 ∧ (𝑟 ∨ 𝑋) ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → ((𝑟 ≤ (𝑟 ∨ 𝑋) ∧ (𝑟 ∨ 𝑋) ≤ 𝑊) → 𝑟 ≤ 𝑊)) |
30 | 12, 16, 18, 28, 29 | syl13anc 1371 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝐼‘𝑋) ⊆ (𝐼‘𝑌) ∧ ((𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊) ∧ (𝑟 ∨ (𝑌 ∧ 𝑊)) = 𝑌)) → ((𝑟 ≤ (𝑟 ∨ 𝑋) ∧ (𝑟 ∨ 𝑋) ≤ 𝑊) → 𝑟 ≤ 𝑊)) |
31 | 25, 30 | mpand 692 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝐼‘𝑋) ⊆ (𝐼‘𝑌) ∧ ((𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊) ∧ (𝑟 ∨ (𝑌 ∧ 𝑊)) = 𝑌)) → ((𝑟 ∨ 𝑋) ≤ 𝑊 → 𝑟 ≤ 𝑊)) |
32 | 23, 31 | mtod 197 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝐼‘𝑋) ⊆ (𝐼‘𝑌) ∧ ((𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊) ∧ (𝑟 ∨ (𝑌 ∧ 𝑊)) = 𝑌)) → ¬ (𝑟 ∨ 𝑋) ≤ 𝑊) |
33 | | simp3l 1200 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝐼‘𝑋) ⊆ (𝐼‘𝑌) ∧ ((𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊) ∧ (𝑟 ∨ (𝑌 ∧ 𝑊)) = 𝑌)) → (𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊)) |
34 | | simp12 1203 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝐼‘𝑋) ⊆ (𝐼‘𝑌) ∧ ((𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊) ∧ (𝑟 ∨ (𝑌 ∧ 𝑊)) = 𝑌)) → (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) |
35 | 3, 4, 5, 6, 7, 8 | lhple 38056 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → ((𝑟 ∨ 𝑋) ∧ 𝑊) = 𝑋) |
36 | 22, 33, 34, 35 | syl3anc 1370 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝐼‘𝑋) ⊆ (𝐼‘𝑌) ∧ ((𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊) ∧ (𝑟 ∨ (𝑌 ∧ 𝑊)) = 𝑌)) → ((𝑟 ∨ 𝑋) ∧ 𝑊) = 𝑋) |
37 | 36 | oveq2d 7291 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝐼‘𝑋) ⊆ (𝐼‘𝑌) ∧ ((𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊) ∧ (𝑟 ∨ (𝑌 ∧ 𝑊)) = 𝑌)) → (𝑟 ∨ ((𝑟 ∨ 𝑋) ∧ 𝑊)) = (𝑟 ∨ 𝑋)) |
38 | | dihord5apre.i |
. . . . . . . . . . 11
⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
39 | | eqid 2738 |
. . . . . . . . . . 11
⊢
((DIsoB‘𝐾)‘𝑊) = ((DIsoB‘𝐾)‘𝑊) |
40 | | eqid 2738 |
. . . . . . . . . . 11
⊢
((DIsoC‘𝐾)‘𝑊) = ((DIsoC‘𝐾)‘𝑊) |
41 | | dihord5apre.u |
. . . . . . . . . . 11
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
42 | | dihord5apre.s |
. . . . . . . . . . 11
⊢ ⊕ =
(LSSum‘𝑈) |
43 | 3, 4, 5, 6, 7, 8, 38, 39, 40, 41, 42 | dihvalcq 39250 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑟 ∨ 𝑋) ∈ 𝐵 ∧ ¬ (𝑟 ∨ 𝑋) ≤ 𝑊) ∧ ((𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊) ∧ (𝑟 ∨ ((𝑟 ∨ 𝑋) ∧ 𝑊)) = (𝑟 ∨ 𝑋))) → (𝐼‘(𝑟 ∨ 𝑋)) = ((((DIsoC‘𝐾)‘𝑊)‘𝑟) ⊕
(((DIsoB‘𝐾)‘𝑊)‘((𝑟 ∨ 𝑋) ∧ 𝑊)))) |
44 | 22, 18, 32, 33, 37, 43 | syl122anc 1378 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝐼‘𝑋) ⊆ (𝐼‘𝑌) ∧ ((𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊) ∧ (𝑟 ∨ (𝑌 ∧ 𝑊)) = 𝑌)) → (𝐼‘(𝑟 ∨ 𝑋)) = ((((DIsoC‘𝐾)‘𝑊)‘𝑟) ⊕
(((DIsoB‘𝐾)‘𝑊)‘((𝑟 ∨ 𝑋) ∧ 𝑊)))) |
45 | 8, 41, 22 | dvhlmod 39124 |
. . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝐼‘𝑋) ⊆ (𝐼‘𝑌) ∧ ((𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊) ∧ (𝑟 ∨ (𝑌 ∧ 𝑊)) = 𝑌)) → 𝑈 ∈ LMod) |
46 | | eqid 2738 |
. . . . . . . . . . . . . . 15
⊢
(LSubSp‘𝑈) =
(LSubSp‘𝑈) |
47 | 46 | lsssssubg 20220 |
. . . . . . . . . . . . . 14
⊢ (𝑈 ∈ LMod →
(LSubSp‘𝑈) ⊆
(SubGrp‘𝑈)) |
48 | 45, 47 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝐼‘𝑋) ⊆ (𝐼‘𝑌) ∧ ((𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊) ∧ (𝑟 ∨ (𝑌 ∧ 𝑊)) = 𝑌)) → (LSubSp‘𝑈) ⊆ (SubGrp‘𝑈)) |
49 | 4, 7, 8, 41, 40, 46 | diclss 39207 |
. . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊)) → (((DIsoC‘𝐾)‘𝑊)‘𝑟) ∈ (LSubSp‘𝑈)) |
50 | 22, 33, 49 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝐼‘𝑋) ⊆ (𝐼‘𝑌) ∧ ((𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊) ∧ (𝑟 ∨ (𝑌 ∧ 𝑊)) = 𝑌)) → (((DIsoC‘𝐾)‘𝑊)‘𝑟) ∈ (LSubSp‘𝑈)) |
51 | 48, 50 | sseldd 3922 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝐼‘𝑋) ⊆ (𝐼‘𝑌) ∧ ((𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊) ∧ (𝑟 ∨ (𝑌 ∧ 𝑊)) = 𝑌)) → (((DIsoC‘𝐾)‘𝑊)‘𝑟) ∈ (SubGrp‘𝑈)) |
52 | 3, 6 | latmcl 18158 |
. . . . . . . . . . . . . . 15
⊢ ((𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑌 ∧ 𝑊) ∈ 𝐵) |
53 | 12, 19, 28, 52 | syl3anc 1370 |
. . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝐼‘𝑋) ⊆ (𝐼‘𝑌) ∧ ((𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊) ∧ (𝑟 ∨ (𝑌 ∧ 𝑊)) = 𝑌)) → (𝑌 ∧ 𝑊) ∈ 𝐵) |
54 | 3, 4, 6 | latmle2 18183 |
. . . . . . . . . . . . . . 15
⊢ ((𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑌 ∧ 𝑊) ≤ 𝑊) |
55 | 12, 19, 28, 54 | syl3anc 1370 |
. . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝐼‘𝑋) ⊆ (𝐼‘𝑌) ∧ ((𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊) ∧ (𝑟 ∨ (𝑌 ∧ 𝑊)) = 𝑌)) → (𝑌 ∧ 𝑊) ≤ 𝑊) |
56 | 3, 4, 8, 41, 39, 46 | diblss 39184 |
. . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑌 ∧ 𝑊) ∈ 𝐵 ∧ (𝑌 ∧ 𝑊) ≤ 𝑊)) → (((DIsoB‘𝐾)‘𝑊)‘(𝑌 ∧ 𝑊)) ∈ (LSubSp‘𝑈)) |
57 | 22, 53, 55, 56 | syl12anc 834 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝐼‘𝑋) ⊆ (𝐼‘𝑌) ∧ ((𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊) ∧ (𝑟 ∨ (𝑌 ∧ 𝑊)) = 𝑌)) → (((DIsoB‘𝐾)‘𝑊)‘(𝑌 ∧ 𝑊)) ∈ (LSubSp‘𝑈)) |
58 | 48, 57 | sseldd 3922 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝐼‘𝑋) ⊆ (𝐼‘𝑌) ∧ ((𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊) ∧ (𝑟 ∨ (𝑌 ∧ 𝑊)) = 𝑌)) → (((DIsoB‘𝐾)‘𝑊)‘(𝑌 ∧ 𝑊)) ∈ (SubGrp‘𝑈)) |
59 | 42 | lsmub1 19262 |
. . . . . . . . . . . 12
⊢
(((((DIsoC‘𝐾)‘𝑊)‘𝑟) ∈ (SubGrp‘𝑈) ∧ (((DIsoB‘𝐾)‘𝑊)‘(𝑌 ∧ 𝑊)) ∈ (SubGrp‘𝑈)) → (((DIsoC‘𝐾)‘𝑊)‘𝑟) ⊆ ((((DIsoC‘𝐾)‘𝑊)‘𝑟) ⊕
(((DIsoB‘𝐾)‘𝑊)‘(𝑌 ∧ 𝑊)))) |
60 | 51, 58, 59 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝐼‘𝑋) ⊆ (𝐼‘𝑌) ∧ ((𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊) ∧ (𝑟 ∨ (𝑌 ∧ 𝑊)) = 𝑌)) → (((DIsoC‘𝐾)‘𝑊)‘𝑟) ⊆ ((((DIsoC‘𝐾)‘𝑊)‘𝑟) ⊕
(((DIsoB‘𝐾)‘𝑊)‘(𝑌 ∧ 𝑊)))) |
61 | | simp13 1204 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝐼‘𝑋) ⊆ (𝐼‘𝑌) ∧ ((𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊) ∧ (𝑟 ∨ (𝑌 ∧ 𝑊)) = 𝑌)) → (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) |
62 | | simp3r 1201 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝐼‘𝑋) ⊆ (𝐼‘𝑌) ∧ ((𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊) ∧ (𝑟 ∨ (𝑌 ∧ 𝑊)) = 𝑌)) → (𝑟 ∨ (𝑌 ∧ 𝑊)) = 𝑌) |
63 | 3, 4, 5, 6, 7, 8, 38, 39, 40, 41, 42 | dihvalcq 39250 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊) ∧ ((𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊) ∧ (𝑟 ∨ (𝑌 ∧ 𝑊)) = 𝑌)) → (𝐼‘𝑌) = ((((DIsoC‘𝐾)‘𝑊)‘𝑟) ⊕
(((DIsoB‘𝐾)‘𝑊)‘(𝑌 ∧ 𝑊)))) |
64 | 22, 61, 33, 62, 63 | syl112anc 1373 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝐼‘𝑋) ⊆ (𝐼‘𝑌) ∧ ((𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊) ∧ (𝑟 ∨ (𝑌 ∧ 𝑊)) = 𝑌)) → (𝐼‘𝑌) = ((((DIsoC‘𝐾)‘𝑊)‘𝑟) ⊕
(((DIsoB‘𝐾)‘𝑊)‘(𝑌 ∧ 𝑊)))) |
65 | 60, 64 | sseqtrrd 3962 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝐼‘𝑋) ⊆ (𝐼‘𝑌) ∧ ((𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊) ∧ (𝑟 ∨ (𝑌 ∧ 𝑊)) = 𝑌)) → (((DIsoC‘𝐾)‘𝑊)‘𝑟) ⊆ (𝐼‘𝑌)) |
66 | 36 | fveq2d 6778 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝐼‘𝑋) ⊆ (𝐼‘𝑌) ∧ ((𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊) ∧ (𝑟 ∨ (𝑌 ∧ 𝑊)) = 𝑌)) → (((DIsoB‘𝐾)‘𝑊)‘((𝑟 ∨ 𝑋) ∧ 𝑊)) = (((DIsoB‘𝐾)‘𝑊)‘𝑋)) |
67 | 3, 4, 8, 38, 39 | dihvalb 39251 |
. . . . . . . . . . . . 13
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) = (((DIsoB‘𝐾)‘𝑊)‘𝑋)) |
68 | 22, 34, 67 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝐼‘𝑋) ⊆ (𝐼‘𝑌) ∧ ((𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊) ∧ (𝑟 ∨ (𝑌 ∧ 𝑊)) = 𝑌)) → (𝐼‘𝑋) = (((DIsoB‘𝐾)‘𝑊)‘𝑋)) |
69 | 66, 68 | eqtr4d 2781 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝐼‘𝑋) ⊆ (𝐼‘𝑌) ∧ ((𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊) ∧ (𝑟 ∨ (𝑌 ∧ 𝑊)) = 𝑌)) → (((DIsoB‘𝐾)‘𝑊)‘((𝑟 ∨ 𝑋) ∧ 𝑊)) = (𝐼‘𝑋)) |
70 | | simp2 1136 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝐼‘𝑋) ⊆ (𝐼‘𝑌) ∧ ((𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊) ∧ (𝑟 ∨ (𝑌 ∧ 𝑊)) = 𝑌)) → (𝐼‘𝑋) ⊆ (𝐼‘𝑌)) |
71 | 69, 70 | eqsstrd 3959 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝐼‘𝑋) ⊆ (𝐼‘𝑌) ∧ ((𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊) ∧ (𝑟 ∨ (𝑌 ∧ 𝑊)) = 𝑌)) → (((DIsoB‘𝐾)‘𝑊)‘((𝑟 ∨ 𝑋) ∧ 𝑊)) ⊆ (𝐼‘𝑌)) |
72 | 3, 6 | latmcl 18158 |
. . . . . . . . . . . . . 14
⊢ ((𝐾 ∈ Lat ∧ (𝑟 ∨ 𝑋) ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → ((𝑟 ∨ 𝑋) ∧ 𝑊) ∈ 𝐵) |
73 | 12, 18, 28, 72 | syl3anc 1370 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝐼‘𝑋) ⊆ (𝐼‘𝑌) ∧ ((𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊) ∧ (𝑟 ∨ (𝑌 ∧ 𝑊)) = 𝑌)) → ((𝑟 ∨ 𝑋) ∧ 𝑊) ∈ 𝐵) |
74 | 3, 4, 6 | latmle2 18183 |
. . . . . . . . . . . . . 14
⊢ ((𝐾 ∈ Lat ∧ (𝑟 ∨ 𝑋) ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → ((𝑟 ∨ 𝑋) ∧ 𝑊) ≤ 𝑊) |
75 | 12, 18, 28, 74 | syl3anc 1370 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝐼‘𝑋) ⊆ (𝐼‘𝑌) ∧ ((𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊) ∧ (𝑟 ∨ (𝑌 ∧ 𝑊)) = 𝑌)) → ((𝑟 ∨ 𝑋) ∧ 𝑊) ≤ 𝑊) |
76 | 3, 4, 8, 41, 39, 46 | diblss 39184 |
. . . . . . . . . . . . 13
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (((𝑟 ∨ 𝑋) ∧ 𝑊) ∈ 𝐵 ∧ ((𝑟 ∨ 𝑋) ∧ 𝑊) ≤ 𝑊)) → (((DIsoB‘𝐾)‘𝑊)‘((𝑟 ∨ 𝑋) ∧ 𝑊)) ∈ (LSubSp‘𝑈)) |
77 | 22, 73, 75, 76 | syl12anc 834 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝐼‘𝑋) ⊆ (𝐼‘𝑌) ∧ ((𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊) ∧ (𝑟 ∨ (𝑌 ∧ 𝑊)) = 𝑌)) → (((DIsoB‘𝐾)‘𝑊)‘((𝑟 ∨ 𝑋) ∧ 𝑊)) ∈ (LSubSp‘𝑈)) |
78 | 48, 77 | sseldd 3922 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝐼‘𝑋) ⊆ (𝐼‘𝑌) ∧ ((𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊) ∧ (𝑟 ∨ (𝑌 ∧ 𝑊)) = 𝑌)) → (((DIsoB‘𝐾)‘𝑊)‘((𝑟 ∨ 𝑋) ∧ 𝑊)) ∈ (SubGrp‘𝑈)) |
79 | 3, 8, 38, 41, 46 | dihlss 39264 |
. . . . . . . . . . . . 13
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ∈ 𝐵) → (𝐼‘𝑌) ∈ (LSubSp‘𝑈)) |
80 | 22, 19, 79 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝐼‘𝑋) ⊆ (𝐼‘𝑌) ∧ ((𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊) ∧ (𝑟 ∨ (𝑌 ∧ 𝑊)) = 𝑌)) → (𝐼‘𝑌) ∈ (LSubSp‘𝑈)) |
81 | 48, 80 | sseldd 3922 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝐼‘𝑋) ⊆ (𝐼‘𝑌) ∧ ((𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊) ∧ (𝑟 ∨ (𝑌 ∧ 𝑊)) = 𝑌)) → (𝐼‘𝑌) ∈ (SubGrp‘𝑈)) |
82 | 42 | lsmlub 19270 |
. . . . . . . . . . 11
⊢
(((((DIsoC‘𝐾)‘𝑊)‘𝑟) ∈ (SubGrp‘𝑈) ∧ (((DIsoB‘𝐾)‘𝑊)‘((𝑟 ∨ 𝑋) ∧ 𝑊)) ∈ (SubGrp‘𝑈) ∧ (𝐼‘𝑌) ∈ (SubGrp‘𝑈)) → (((((DIsoC‘𝐾)‘𝑊)‘𝑟) ⊆ (𝐼‘𝑌) ∧ (((DIsoB‘𝐾)‘𝑊)‘((𝑟 ∨ 𝑋) ∧ 𝑊)) ⊆ (𝐼‘𝑌)) ↔ ((((DIsoC‘𝐾)‘𝑊)‘𝑟) ⊕
(((DIsoB‘𝐾)‘𝑊)‘((𝑟 ∨ 𝑋) ∧ 𝑊))) ⊆ (𝐼‘𝑌))) |
83 | 51, 78, 81, 82 | syl3anc 1370 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝐼‘𝑋) ⊆ (𝐼‘𝑌) ∧ ((𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊) ∧ (𝑟 ∨ (𝑌 ∧ 𝑊)) = 𝑌)) → (((((DIsoC‘𝐾)‘𝑊)‘𝑟) ⊆ (𝐼‘𝑌) ∧ (((DIsoB‘𝐾)‘𝑊)‘((𝑟 ∨ 𝑋) ∧ 𝑊)) ⊆ (𝐼‘𝑌)) ↔ ((((DIsoC‘𝐾)‘𝑊)‘𝑟) ⊕
(((DIsoB‘𝐾)‘𝑊)‘((𝑟 ∨ 𝑋) ∧ 𝑊))) ⊆ (𝐼‘𝑌))) |
84 | 65, 71, 83 | mpbi2and 709 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝐼‘𝑋) ⊆ (𝐼‘𝑌) ∧ ((𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊) ∧ (𝑟 ∨ (𝑌 ∧ 𝑊)) = 𝑌)) → ((((DIsoC‘𝐾)‘𝑊)‘𝑟) ⊕
(((DIsoB‘𝐾)‘𝑊)‘((𝑟 ∨ 𝑋) ∧ 𝑊))) ⊆ (𝐼‘𝑌)) |
85 | 44, 84 | eqsstrd 3959 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝐼‘𝑋) ⊆ (𝐼‘𝑌) ∧ ((𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊) ∧ (𝑟 ∨ (𝑌 ∧ 𝑊)) = 𝑌)) → (𝐼‘(𝑟 ∨ 𝑋)) ⊆ (𝐼‘𝑌)) |
86 | 3, 4, 8, 38 | dihord4 39272 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑟 ∨ 𝑋) ∈ 𝐵 ∧ ¬ (𝑟 ∨ 𝑋) ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) → ((𝐼‘(𝑟 ∨ 𝑋)) ⊆ (𝐼‘𝑌) ↔ (𝑟 ∨ 𝑋) ≤ 𝑌)) |
87 | 22, 18, 32, 61, 86 | syl121anc 1374 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝐼‘𝑋) ⊆ (𝐼‘𝑌) ∧ ((𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊) ∧ (𝑟 ∨ (𝑌 ∧ 𝑊)) = 𝑌)) → ((𝐼‘(𝑟 ∨ 𝑋)) ⊆ (𝐼‘𝑌) ↔ (𝑟 ∨ 𝑋) ≤ 𝑌)) |
88 | 85, 87 | mpbid 231 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝐼‘𝑋) ⊆ (𝐼‘𝑌) ∧ ((𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊) ∧ (𝑟 ∨ (𝑌 ∧ 𝑊)) = 𝑌)) → (𝑟 ∨ 𝑋) ≤ 𝑌) |
89 | 3, 4, 12, 13, 18, 19, 21, 88 | lattrd 18164 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝐼‘𝑋) ⊆ (𝐼‘𝑌) ∧ ((𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊) ∧ (𝑟 ∨ (𝑌 ∧ 𝑊)) = 𝑌)) → 𝑋 ≤ 𝑌) |
90 | 89 | 3expia 1120 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝐼‘𝑋) ⊆ (𝐼‘𝑌)) → (((𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊) ∧ (𝑟 ∨ (𝑌 ∧ 𝑊)) = 𝑌) → 𝑋 ≤ 𝑌)) |
91 | 90 | exp4c 433 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝐼‘𝑋) ⊆ (𝐼‘𝑌)) → (𝑟 ∈ 𝐴 → (¬ 𝑟 ≤ 𝑊 → ((𝑟 ∨ (𝑌 ∧ 𝑊)) = 𝑌 → 𝑋 ≤ 𝑌)))) |
92 | 91 | imp4a 423 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝐼‘𝑋) ⊆ (𝐼‘𝑌)) → (𝑟 ∈ 𝐴 → ((¬ 𝑟 ≤ 𝑊 ∧ (𝑟 ∨ (𝑌 ∧ 𝑊)) = 𝑌) → 𝑋 ≤ 𝑌))) |
93 | 92 | rexlimdv 3212 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝐼‘𝑋) ⊆ (𝐼‘𝑌)) → (∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑟 ∨ (𝑌 ∧ 𝑊)) = 𝑌) → 𝑋 ≤ 𝑌)) |
94 | 10, 93 | mpd 15 |
1
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ (𝐼‘𝑋) ⊆ (𝐼‘𝑌)) → 𝑋 ≤ 𝑌) |