Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmodvsmdi Structured version   Visualization version   GIF version

Theorem lmodvsmdi 43182
 Description: Multiple distributive law for scalar product (left-distributivity). (Contributed by AV, 5-Sep-2019.)
Hypotheses
Ref Expression
lmodvsmdi.v 𝑉 = (Base‘𝑊)
lmodvsmdi.f 𝐹 = (Scalar‘𝑊)
lmodvsmdi.s · = ( ·𝑠𝑊)
lmodvsmdi.k 𝐾 = (Base‘𝐹)
lmodvsmdi.p = (.g𝑊)
lmodvsmdi.e 𝐸 = (.g𝐹)
Assertion
Ref Expression
lmodvsmdi ((𝑊 ∈ LMod ∧ (𝑅𝐾𝑁 ∈ ℕ0𝑋𝑉)) → (𝑅 · (𝑁 𝑋)) = ((𝑁𝐸𝑅) · 𝑋))

Proof of Theorem lmodvsmdi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 6929 . . . . . . . . 9 (𝑥 = 0 → (𝑥 𝑋) = (0 𝑋))
21oveq2d 6938 . . . . . . . 8 (𝑥 = 0 → (𝑅 · (𝑥 𝑋)) = (𝑅 · (0 𝑋)))
3 oveq1 6929 . . . . . . . . 9 (𝑥 = 0 → (𝑥𝐸𝑅) = (0𝐸𝑅))
43oveq1d 6937 . . . . . . . 8 (𝑥 = 0 → ((𝑥𝐸𝑅) · 𝑋) = ((0𝐸𝑅) · 𝑋))
52, 4eqeq12d 2793 . . . . . . 7 (𝑥 = 0 → ((𝑅 · (𝑥 𝑋)) = ((𝑥𝐸𝑅) · 𝑋) ↔ (𝑅 · (0 𝑋)) = ((0𝐸𝑅) · 𝑋)))
65imbi2d 332 . . . . . 6 (𝑥 = 0 → ((((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑅 · (𝑥 𝑋)) = ((𝑥𝐸𝑅) · 𝑋)) ↔ (((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑅 · (0 𝑋)) = ((0𝐸𝑅) · 𝑋))))
7 oveq1 6929 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥 𝑋) = (𝑦 𝑋))
87oveq2d 6938 . . . . . . . 8 (𝑥 = 𝑦 → (𝑅 · (𝑥 𝑋)) = (𝑅 · (𝑦 𝑋)))
9 oveq1 6929 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥𝐸𝑅) = (𝑦𝐸𝑅))
109oveq1d 6937 . . . . . . . 8 (𝑥 = 𝑦 → ((𝑥𝐸𝑅) · 𝑋) = ((𝑦𝐸𝑅) · 𝑋))
118, 10eqeq12d 2793 . . . . . . 7 (𝑥 = 𝑦 → ((𝑅 · (𝑥 𝑋)) = ((𝑥𝐸𝑅) · 𝑋) ↔ (𝑅 · (𝑦 𝑋)) = ((𝑦𝐸𝑅) · 𝑋)))
1211imbi2d 332 . . . . . 6 (𝑥 = 𝑦 → ((((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑅 · (𝑥 𝑋)) = ((𝑥𝐸𝑅) · 𝑋)) ↔ (((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑅 · (𝑦 𝑋)) = ((𝑦𝐸𝑅) · 𝑋))))
13 oveq1 6929 . . . . . . . . 9 (𝑥 = (𝑦 + 1) → (𝑥 𝑋) = ((𝑦 + 1) 𝑋))
1413oveq2d 6938 . . . . . . . 8 (𝑥 = (𝑦 + 1) → (𝑅 · (𝑥 𝑋)) = (𝑅 · ((𝑦 + 1) 𝑋)))
15 oveq1 6929 . . . . . . . . 9 (𝑥 = (𝑦 + 1) → (𝑥𝐸𝑅) = ((𝑦 + 1)𝐸𝑅))
1615oveq1d 6937 . . . . . . . 8 (𝑥 = (𝑦 + 1) → ((𝑥𝐸𝑅) · 𝑋) = (((𝑦 + 1)𝐸𝑅) · 𝑋))
1714, 16eqeq12d 2793 . . . . . . 7 (𝑥 = (𝑦 + 1) → ((𝑅 · (𝑥 𝑋)) = ((𝑥𝐸𝑅) · 𝑋) ↔ (𝑅 · ((𝑦 + 1) 𝑋)) = (((𝑦 + 1)𝐸𝑅) · 𝑋)))
1817imbi2d 332 . . . . . 6 (𝑥 = (𝑦 + 1) → ((((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑅 · (𝑥 𝑋)) = ((𝑥𝐸𝑅) · 𝑋)) ↔ (((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑅 · ((𝑦 + 1) 𝑋)) = (((𝑦 + 1)𝐸𝑅) · 𝑋))))
19 oveq1 6929 . . . . . . . . 9 (𝑥 = 𝑁 → (𝑥 𝑋) = (𝑁 𝑋))
2019oveq2d 6938 . . . . . . . 8 (𝑥 = 𝑁 → (𝑅 · (𝑥 𝑋)) = (𝑅 · (𝑁 𝑋)))
21 oveq1 6929 . . . . . . . . 9 (𝑥 = 𝑁 → (𝑥𝐸𝑅) = (𝑁𝐸𝑅))
2221oveq1d 6937 . . . . . . . 8 (𝑥 = 𝑁 → ((𝑥𝐸𝑅) · 𝑋) = ((𝑁𝐸𝑅) · 𝑋))
2320, 22eqeq12d 2793 . . . . . . 7 (𝑥 = 𝑁 → ((𝑅 · (𝑥 𝑋)) = ((𝑥𝐸𝑅) · 𝑋) ↔ (𝑅 · (𝑁 𝑋)) = ((𝑁𝐸𝑅) · 𝑋)))
2423imbi2d 332 . . . . . 6 (𝑥 = 𝑁 → ((((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑅 · (𝑥 𝑋)) = ((𝑥𝐸𝑅) · 𝑋)) ↔ (((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑅 · (𝑁 𝑋)) = ((𝑁𝐸𝑅) · 𝑋))))
25 simpr 479 . . . . . . . . . 10 ((𝑅𝐾𝑋𝑉) → 𝑋𝑉)
2625adantr 474 . . . . . . . . 9 (((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → 𝑋𝑉)
27 lmodvsmdi.v . . . . . . . . . 10 𝑉 = (Base‘𝑊)
28 eqid 2778 . . . . . . . . . 10 (0g𝑊) = (0g𝑊)
29 lmodvsmdi.p . . . . . . . . . 10 = (.g𝑊)
3027, 28, 29mulg0 17933 . . . . . . . . 9 (𝑋𝑉 → (0 𝑋) = (0g𝑊))
3126, 30syl 17 . . . . . . . 8 (((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (0 𝑋) = (0g𝑊))
3231oveq2d 6938 . . . . . . 7 (((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑅 · (0 𝑋)) = (𝑅 · (0g𝑊)))
33 simpl 476 . . . . . . . . . . 11 ((𝑅𝐾𝑋𝑉) → 𝑅𝐾)
3433anim1i 608 . . . . . . . . . 10 (((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑅𝐾𝑊 ∈ LMod))
3534ancomd 455 . . . . . . . . 9 (((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑊 ∈ LMod ∧ 𝑅𝐾))
36 lmodvsmdi.f . . . . . . . . . 10 𝐹 = (Scalar‘𝑊)
37 lmodvsmdi.s . . . . . . . . . 10 · = ( ·𝑠𝑊)
38 lmodvsmdi.k . . . . . . . . . 10 𝐾 = (Base‘𝐹)
3936, 37, 38, 28lmodvs0 19289 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑅𝐾) → (𝑅 · (0g𝑊)) = (0g𝑊))
4035, 39syl 17 . . . . . . . 8 (((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑅 · (0g𝑊)) = (0g𝑊))
4125anim1i 608 . . . . . . . . . 10 (((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑋𝑉𝑊 ∈ LMod))
4241ancomd 455 . . . . . . . . 9 (((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑊 ∈ LMod ∧ 𝑋𝑉))
43 eqid 2778 . . . . . . . . . 10 (0g𝐹) = (0g𝐹)
4427, 36, 37, 43, 28lmod0vs 19288 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((0g𝐹) · 𝑋) = (0g𝑊))
4542, 44syl 17 . . . . . . . 8 (((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → ((0g𝐹) · 𝑋) = (0g𝑊))
4633adantr 474 . . . . . . . . . 10 (((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → 𝑅𝐾)
47 lmodvsmdi.e . . . . . . . . . . . 12 𝐸 = (.g𝐹)
4838, 43, 47mulg0 17933 . . . . . . . . . . 11 (𝑅𝐾 → (0𝐸𝑅) = (0g𝐹))
4948eqcomd 2784 . . . . . . . . . 10 (𝑅𝐾 → (0g𝐹) = (0𝐸𝑅))
5046, 49syl 17 . . . . . . . . 9 (((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (0g𝐹) = (0𝐸𝑅))
5150oveq1d 6937 . . . . . . . 8 (((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → ((0g𝐹) · 𝑋) = ((0𝐸𝑅) · 𝑋))
5240, 45, 513eqtr2d 2820 . . . . . . 7 (((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑅 · (0g𝑊)) = ((0𝐸𝑅) · 𝑋))
5332, 52eqtrd 2814 . . . . . 6 (((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑅 · (0 𝑋)) = ((0𝐸𝑅) · 𝑋))
54 lmodgrp 19262 . . . . . . . . . . . . . . 15 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
55 grpmnd 17816 . . . . . . . . . . . . . . 15 (𝑊 ∈ Grp → 𝑊 ∈ Mnd)
5654, 55syl 17 . . . . . . . . . . . . . 14 (𝑊 ∈ LMod → 𝑊 ∈ Mnd)
5756ad2antll 719 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ0 ∧ ((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → 𝑊 ∈ Mnd)
58 simpl 476 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ0 ∧ ((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → 𝑦 ∈ ℕ0)
5926adantl 475 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ0 ∧ ((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → 𝑋𝑉)
60 eqid 2778 . . . . . . . . . . . . . 14 (+g𝑊) = (+g𝑊)
6127, 29, 60mulgnn0p1 17939 . . . . . . . . . . . . 13 ((𝑊 ∈ Mnd ∧ 𝑦 ∈ ℕ0𝑋𝑉) → ((𝑦 + 1) 𝑋) = ((𝑦 𝑋)(+g𝑊)𝑋))
6257, 58, 59, 61syl3anc 1439 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0 ∧ ((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → ((𝑦 + 1) 𝑋) = ((𝑦 𝑋)(+g𝑊)𝑋))
6362oveq2d 6938 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0 ∧ ((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → (𝑅 · ((𝑦 + 1) 𝑋)) = (𝑅 · ((𝑦 𝑋)(+g𝑊)𝑋)))
64 simpr 479 . . . . . . . . . . . . 13 (((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → 𝑊 ∈ LMod)
6564adantl 475 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0 ∧ ((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → 𝑊 ∈ LMod)
66 simprll 769 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0 ∧ ((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → 𝑅𝐾)
6727, 29mulgnn0cl 17944 . . . . . . . . . . . . 13 ((𝑊 ∈ Mnd ∧ 𝑦 ∈ ℕ0𝑋𝑉) → (𝑦 𝑋) ∈ 𝑉)
6857, 58, 59, 67syl3anc 1439 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0 ∧ ((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → (𝑦 𝑋) ∈ 𝑉)
6927, 60, 36, 37, 38lmodvsdi 19278 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ (𝑅𝐾 ∧ (𝑦 𝑋) ∈ 𝑉𝑋𝑉)) → (𝑅 · ((𝑦 𝑋)(+g𝑊)𝑋)) = ((𝑅 · (𝑦 𝑋))(+g𝑊)(𝑅 · 𝑋)))
7065, 66, 68, 59, 69syl13anc 1440 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0 ∧ ((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → (𝑅 · ((𝑦 𝑋)(+g𝑊)𝑋)) = ((𝑅 · (𝑦 𝑋))(+g𝑊)(𝑅 · 𝑋)))
7163, 70eqtrd 2814 . . . . . . . . . 10 ((𝑦 ∈ ℕ0 ∧ ((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → (𝑅 · ((𝑦 + 1) 𝑋)) = ((𝑅 · (𝑦 𝑋))(+g𝑊)(𝑅 · 𝑋)))
72 oveq1 6929 . . . . . . . . . 10 ((𝑅 · (𝑦 𝑋)) = ((𝑦𝐸𝑅) · 𝑋) → ((𝑅 · (𝑦 𝑋))(+g𝑊)(𝑅 · 𝑋)) = (((𝑦𝐸𝑅) · 𝑋)(+g𝑊)(𝑅 · 𝑋)))
7371, 72sylan9eq 2834 . . . . . . . . 9 (((𝑦 ∈ ℕ0 ∧ ((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) ∧ (𝑅 · (𝑦 𝑋)) = ((𝑦𝐸𝑅) · 𝑋)) → (𝑅 · ((𝑦 + 1) 𝑋)) = (((𝑦𝐸𝑅) · 𝑋)(+g𝑊)(𝑅 · 𝑋)))
7436lmodfgrp 19264 . . . . . . . . . . . . . . 15 (𝑊 ∈ LMod → 𝐹 ∈ Grp)
75 grpmnd 17816 . . . . . . . . . . . . . . 15 (𝐹 ∈ Grp → 𝐹 ∈ Mnd)
7674, 75syl 17 . . . . . . . . . . . . . 14 (𝑊 ∈ LMod → 𝐹 ∈ Mnd)
7776ad2antll 719 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ0 ∧ ((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → 𝐹 ∈ Mnd)
7838, 47mulgnn0cl 17944 . . . . . . . . . . . . 13 ((𝐹 ∈ Mnd ∧ 𝑦 ∈ ℕ0𝑅𝐾) → (𝑦𝐸𝑅) ∈ 𝐾)
7977, 58, 66, 78syl3anc 1439 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0 ∧ ((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → (𝑦𝐸𝑅) ∈ 𝐾)
80 eqid 2778 . . . . . . . . . . . . 13 (+g𝐹) = (+g𝐹)
8127, 60, 36, 37, 38, 80lmodvsdir 19279 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ ((𝑦𝐸𝑅) ∈ 𝐾𝑅𝐾𝑋𝑉)) → (((𝑦𝐸𝑅)(+g𝐹)𝑅) · 𝑋) = (((𝑦𝐸𝑅) · 𝑋)(+g𝑊)(𝑅 · 𝑋)))
8265, 79, 66, 59, 81syl13anc 1440 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0 ∧ ((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → (((𝑦𝐸𝑅)(+g𝐹)𝑅) · 𝑋) = (((𝑦𝐸𝑅) · 𝑋)(+g𝑊)(𝑅 · 𝑋)))
8338, 47, 80mulgnn0p1 17939 . . . . . . . . . . . . . 14 ((𝐹 ∈ Mnd ∧ 𝑦 ∈ ℕ0𝑅𝐾) → ((𝑦 + 1)𝐸𝑅) = ((𝑦𝐸𝑅)(+g𝐹)𝑅))
8477, 58, 66, 83syl3anc 1439 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ0 ∧ ((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → ((𝑦 + 1)𝐸𝑅) = ((𝑦𝐸𝑅)(+g𝐹)𝑅))
8584eqcomd 2784 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0 ∧ ((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → ((𝑦𝐸𝑅)(+g𝐹)𝑅) = ((𝑦 + 1)𝐸𝑅))
8685oveq1d 6937 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0 ∧ ((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → (((𝑦𝐸𝑅)(+g𝐹)𝑅) · 𝑋) = (((𝑦 + 1)𝐸𝑅) · 𝑋))
8782, 86eqtr3d 2816 . . . . . . . . . 10 ((𝑦 ∈ ℕ0 ∧ ((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → (((𝑦𝐸𝑅) · 𝑋)(+g𝑊)(𝑅 · 𝑋)) = (((𝑦 + 1)𝐸𝑅) · 𝑋))
8887adantr 474 . . . . . . . . 9 (((𝑦 ∈ ℕ0 ∧ ((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) ∧ (𝑅 · (𝑦 𝑋)) = ((𝑦𝐸𝑅) · 𝑋)) → (((𝑦𝐸𝑅) · 𝑋)(+g𝑊)(𝑅 · 𝑋)) = (((𝑦 + 1)𝐸𝑅) · 𝑋))
8973, 88eqtrd 2814 . . . . . . . 8 (((𝑦 ∈ ℕ0 ∧ ((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) ∧ (𝑅 · (𝑦 𝑋)) = ((𝑦𝐸𝑅) · 𝑋)) → (𝑅 · ((𝑦 + 1) 𝑋)) = (((𝑦 + 1)𝐸𝑅) · 𝑋))
9089exp31 412 . . . . . . 7 (𝑦 ∈ ℕ0 → (((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → ((𝑅 · (𝑦 𝑋)) = ((𝑦𝐸𝑅) · 𝑋) → (𝑅 · ((𝑦 + 1) 𝑋)) = (((𝑦 + 1)𝐸𝑅) · 𝑋))))
9190a2d 29 . . . . . 6 (𝑦 ∈ ℕ0 → ((((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑅 · (𝑦 𝑋)) = ((𝑦𝐸𝑅) · 𝑋)) → (((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑅 · ((𝑦 + 1) 𝑋)) = (((𝑦 + 1)𝐸𝑅) · 𝑋))))
926, 12, 18, 24, 53, 91nn0ind 11824 . . . . 5 (𝑁 ∈ ℕ0 → (((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑅 · (𝑁 𝑋)) = ((𝑁𝐸𝑅) · 𝑋)))
9392exp4c 425 . . . 4 (𝑁 ∈ ℕ0 → (𝑅𝐾 → (𝑋𝑉 → (𝑊 ∈ LMod → (𝑅 · (𝑁 𝑋)) = ((𝑁𝐸𝑅) · 𝑋)))))
9493com12 32 . . 3 (𝑅𝐾 → (𝑁 ∈ ℕ0 → (𝑋𝑉 → (𝑊 ∈ LMod → (𝑅 · (𝑁 𝑋)) = ((𝑁𝐸𝑅) · 𝑋)))))
95943imp 1098 . 2 ((𝑅𝐾𝑁 ∈ ℕ0𝑋𝑉) → (𝑊 ∈ LMod → (𝑅 · (𝑁 𝑋)) = ((𝑁𝐸𝑅) · 𝑋)))
9695impcom 398 1 ((𝑊 ∈ LMod ∧ (𝑅𝐾𝑁 ∈ ℕ0𝑋𝑉)) → (𝑅 · (𝑁 𝑋)) = ((𝑁𝐸𝑅) · 𝑋))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 386   ∧ w3a 1071   = wceq 1601   ∈ wcel 2107  ‘cfv 6135  (class class class)co 6922  0cc0 10272  1c1 10273   + caddc 10275  ℕ0cn0 11642  Basecbs 16255  +gcplusg 16338  Scalarcsca 16341   ·𝑠 cvsca 16342  0gc0g 16486  Mndcmnd 17680  Grpcgrp 17809  .gcmg 17927  LModclmod 19255 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-inf2 8835  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-er 8026  df-en 8242  df-dom 8243  df-sdom 8244  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-nn 11375  df-2 11438  df-n0 11643  df-z 11729  df-uz 11993  df-fz 12644  df-seq 13120  df-ndx 16258  df-slot 16259  df-base 16261  df-sets 16262  df-plusg 16351  df-0g 16488  df-mgm 17628  df-sgrp 17670  df-mnd 17681  df-grp 17812  df-mulg 17928  df-mgp 18877  df-ring 18936  df-lmod 19257 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator