MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  assamulgscm Structured version   Visualization version   GIF version

Theorem assamulgscm 20861
Description: Exponentiation of a scalar multiplication in an associative algebra: (𝑎 · 𝑋)↑𝑁 = (𝑎𝑁) × (𝑋𝑁). (Contributed by AV, 26-Aug-2019.)
Hypotheses
Ref Expression
assamulgscm.v 𝑉 = (Base‘𝑊)
assamulgscm.f 𝐹 = (Scalar‘𝑊)
assamulgscm.b 𝐵 = (Base‘𝐹)
assamulgscm.s · = ( ·𝑠𝑊)
assamulgscm.g 𝐺 = (mulGrp‘𝐹)
assamulgscm.p = (.g𝐺)
assamulgscm.h 𝐻 = (mulGrp‘𝑊)
assamulgscm.e 𝐸 = (.g𝐻)
Assertion
Ref Expression
assamulgscm ((𝑊 ∈ AssAlg ∧ (𝑁 ∈ ℕ0𝐴𝐵𝑋𝑉)) → (𝑁𝐸(𝐴 · 𝑋)) = ((𝑁 𝐴) · (𝑁𝐸𝑋)))

Proof of Theorem assamulgscm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7220 . . . . . . 7 (𝑥 = 0 → (𝑥𝐸(𝐴 · 𝑋)) = (0𝐸(𝐴 · 𝑋)))
2 oveq1 7220 . . . . . . . 8 (𝑥 = 0 → (𝑥 𝐴) = (0 𝐴))
3 oveq1 7220 . . . . . . . 8 (𝑥 = 0 → (𝑥𝐸𝑋) = (0𝐸𝑋))
42, 3oveq12d 7231 . . . . . . 7 (𝑥 = 0 → ((𝑥 𝐴) · (𝑥𝐸𝑋)) = ((0 𝐴) · (0𝐸𝑋)))
51, 4eqeq12d 2753 . . . . . 6 (𝑥 = 0 → ((𝑥𝐸(𝐴 · 𝑋)) = ((𝑥 𝐴) · (𝑥𝐸𝑋)) ↔ (0𝐸(𝐴 · 𝑋)) = ((0 𝐴) · (0𝐸𝑋))))
65imbi2d 344 . . . . 5 (𝑥 = 0 → ((((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → (𝑥𝐸(𝐴 · 𝑋)) = ((𝑥 𝐴) · (𝑥𝐸𝑋))) ↔ (((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → (0𝐸(𝐴 · 𝑋)) = ((0 𝐴) · (0𝐸𝑋)))))
7 oveq1 7220 . . . . . . 7 (𝑥 = 𝑦 → (𝑥𝐸(𝐴 · 𝑋)) = (𝑦𝐸(𝐴 · 𝑋)))
8 oveq1 7220 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥 𝐴) = (𝑦 𝐴))
9 oveq1 7220 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥𝐸𝑋) = (𝑦𝐸𝑋))
108, 9oveq12d 7231 . . . . . . 7 (𝑥 = 𝑦 → ((𝑥 𝐴) · (𝑥𝐸𝑋)) = ((𝑦 𝐴) · (𝑦𝐸𝑋)))
117, 10eqeq12d 2753 . . . . . 6 (𝑥 = 𝑦 → ((𝑥𝐸(𝐴 · 𝑋)) = ((𝑥 𝐴) · (𝑥𝐸𝑋)) ↔ (𝑦𝐸(𝐴 · 𝑋)) = ((𝑦 𝐴) · (𝑦𝐸𝑋))))
1211imbi2d 344 . . . . 5 (𝑥 = 𝑦 → ((((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → (𝑥𝐸(𝐴 · 𝑋)) = ((𝑥 𝐴) · (𝑥𝐸𝑋))) ↔ (((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → (𝑦𝐸(𝐴 · 𝑋)) = ((𝑦 𝐴) · (𝑦𝐸𝑋)))))
13 oveq1 7220 . . . . . . 7 (𝑥 = (𝑦 + 1) → (𝑥𝐸(𝐴 · 𝑋)) = ((𝑦 + 1)𝐸(𝐴 · 𝑋)))
14 oveq1 7220 . . . . . . . 8 (𝑥 = (𝑦 + 1) → (𝑥 𝐴) = ((𝑦 + 1) 𝐴))
15 oveq1 7220 . . . . . . . 8 (𝑥 = (𝑦 + 1) → (𝑥𝐸𝑋) = ((𝑦 + 1)𝐸𝑋))
1614, 15oveq12d 7231 . . . . . . 7 (𝑥 = (𝑦 + 1) → ((𝑥 𝐴) · (𝑥𝐸𝑋)) = (((𝑦 + 1) 𝐴) · ((𝑦 + 1)𝐸𝑋)))
1713, 16eqeq12d 2753 . . . . . 6 (𝑥 = (𝑦 + 1) → ((𝑥𝐸(𝐴 · 𝑋)) = ((𝑥 𝐴) · (𝑥𝐸𝑋)) ↔ ((𝑦 + 1)𝐸(𝐴 · 𝑋)) = (((𝑦 + 1) 𝐴) · ((𝑦 + 1)𝐸𝑋))))
1817imbi2d 344 . . . . 5 (𝑥 = (𝑦 + 1) → ((((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → (𝑥𝐸(𝐴 · 𝑋)) = ((𝑥 𝐴) · (𝑥𝐸𝑋))) ↔ (((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → ((𝑦 + 1)𝐸(𝐴 · 𝑋)) = (((𝑦 + 1) 𝐴) · ((𝑦 + 1)𝐸𝑋)))))
19 oveq1 7220 . . . . . . 7 (𝑥 = 𝑁 → (𝑥𝐸(𝐴 · 𝑋)) = (𝑁𝐸(𝐴 · 𝑋)))
20 oveq1 7220 . . . . . . . 8 (𝑥 = 𝑁 → (𝑥 𝐴) = (𝑁 𝐴))
21 oveq1 7220 . . . . . . . 8 (𝑥 = 𝑁 → (𝑥𝐸𝑋) = (𝑁𝐸𝑋))
2220, 21oveq12d 7231 . . . . . . 7 (𝑥 = 𝑁 → ((𝑥 𝐴) · (𝑥𝐸𝑋)) = ((𝑁 𝐴) · (𝑁𝐸𝑋)))
2319, 22eqeq12d 2753 . . . . . 6 (𝑥 = 𝑁 → ((𝑥𝐸(𝐴 · 𝑋)) = ((𝑥 𝐴) · (𝑥𝐸𝑋)) ↔ (𝑁𝐸(𝐴 · 𝑋)) = ((𝑁 𝐴) · (𝑁𝐸𝑋))))
2423imbi2d 344 . . . . 5 (𝑥 = 𝑁 → ((((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → (𝑥𝐸(𝐴 · 𝑋)) = ((𝑥 𝐴) · (𝑥𝐸𝑋))) ↔ (((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → (𝑁𝐸(𝐴 · 𝑋)) = ((𝑁 𝐴) · (𝑁𝐸𝑋)))))
25 assamulgscm.v . . . . . 6 𝑉 = (Base‘𝑊)
26 assamulgscm.f . . . . . 6 𝐹 = (Scalar‘𝑊)
27 assamulgscm.b . . . . . 6 𝐵 = (Base‘𝐹)
28 assamulgscm.s . . . . . 6 · = ( ·𝑠𝑊)
29 assamulgscm.g . . . . . 6 𝐺 = (mulGrp‘𝐹)
30 assamulgscm.p . . . . . 6 = (.g𝐺)
31 assamulgscm.h . . . . . 6 𝐻 = (mulGrp‘𝑊)
32 assamulgscm.e . . . . . 6 𝐸 = (.g𝐻)
3325, 26, 27, 28, 29, 30, 31, 32assamulgscmlem1 20859 . . . . 5 (((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → (0𝐸(𝐴 · 𝑋)) = ((0 𝐴) · (0𝐸𝑋)))
3425, 26, 27, 28, 29, 30, 31, 32assamulgscmlem2 20860 . . . . . 6 (𝑦 ∈ ℕ0 → (((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → ((𝑦𝐸(𝐴 · 𝑋)) = ((𝑦 𝐴) · (𝑦𝐸𝑋)) → ((𝑦 + 1)𝐸(𝐴 · 𝑋)) = (((𝑦 + 1) 𝐴) · ((𝑦 + 1)𝐸𝑋)))))
3534a2d 29 . . . . 5 (𝑦 ∈ ℕ0 → ((((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → (𝑦𝐸(𝐴 · 𝑋)) = ((𝑦 𝐴) · (𝑦𝐸𝑋))) → (((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → ((𝑦 + 1)𝐸(𝐴 · 𝑋)) = (((𝑦 + 1) 𝐴) · ((𝑦 + 1)𝐸𝑋)))))
366, 12, 18, 24, 33, 35nn0ind 12272 . . . 4 (𝑁 ∈ ℕ0 → (((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → (𝑁𝐸(𝐴 · 𝑋)) = ((𝑁 𝐴) · (𝑁𝐸𝑋))))
3736exp4c 436 . . 3 (𝑁 ∈ ℕ0 → (𝐴𝐵 → (𝑋𝑉 → (𝑊 ∈ AssAlg → (𝑁𝐸(𝐴 · 𝑋)) = ((𝑁 𝐴) · (𝑁𝐸𝑋))))))
38373imp 1113 . 2 ((𝑁 ∈ ℕ0𝐴𝐵𝑋𝑉) → (𝑊 ∈ AssAlg → (𝑁𝐸(𝐴 · 𝑋)) = ((𝑁 𝐴) · (𝑁𝐸𝑋))))
3938impcom 411 1 ((𝑊 ∈ AssAlg ∧ (𝑁 ∈ ℕ0𝐴𝐵𝑋𝑉)) → (𝑁𝐸(𝐴 · 𝑋)) = ((𝑁 𝐴) · (𝑁𝐸𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2110  cfv 6380  (class class class)co 7213  0cc0 10729  1c1 10730   + caddc 10732  0cn0 12090  Basecbs 16760  Scalarcsca 16805   ·𝑠 cvsca 16806  .gcmg 18488  mulGrpcmgp 19504  AssAlgcasa 20812
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-2 11893  df-n0 12091  df-z 12177  df-uz 12439  df-fz 13096  df-seq 13575  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-plusg 16815  df-0g 16946  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-mulg 18489  df-mgp 19505  df-ur 19517  df-ring 19564  df-cring 19565  df-lmod 19901  df-assa 20815
This theorem is referenced by:  lply1binomsc  21228
  Copyright terms: Public domain W3C validator