MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  assamulgscm Structured version   Visualization version   GIF version

Theorem assamulgscm 21203
Description: Exponentiation of a scalar multiplication in an associative algebra: (𝑎 · 𝑋)↑𝑁 = (𝑎𝑁) × (𝑋𝑁). (Contributed by AV, 26-Aug-2019.)
Hypotheses
Ref Expression
assamulgscm.v 𝑉 = (Base‘𝑊)
assamulgscm.f 𝐹 = (Scalar‘𝑊)
assamulgscm.b 𝐵 = (Base‘𝐹)
assamulgscm.s · = ( ·𝑠𝑊)
assamulgscm.g 𝐺 = (mulGrp‘𝐹)
assamulgscm.p = (.g𝐺)
assamulgscm.h 𝐻 = (mulGrp‘𝑊)
assamulgscm.e 𝐸 = (.g𝐻)
Assertion
Ref Expression
assamulgscm ((𝑊 ∈ AssAlg ∧ (𝑁 ∈ ℕ0𝐴𝐵𝑋𝑉)) → (𝑁𝐸(𝐴 · 𝑋)) = ((𝑁 𝐴) · (𝑁𝐸𝑋)))

Proof of Theorem assamulgscm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7336 . . . . . . 7 (𝑥 = 0 → (𝑥𝐸(𝐴 · 𝑋)) = (0𝐸(𝐴 · 𝑋)))
2 oveq1 7336 . . . . . . . 8 (𝑥 = 0 → (𝑥 𝐴) = (0 𝐴))
3 oveq1 7336 . . . . . . . 8 (𝑥 = 0 → (𝑥𝐸𝑋) = (0𝐸𝑋))
42, 3oveq12d 7347 . . . . . . 7 (𝑥 = 0 → ((𝑥 𝐴) · (𝑥𝐸𝑋)) = ((0 𝐴) · (0𝐸𝑋)))
51, 4eqeq12d 2752 . . . . . 6 (𝑥 = 0 → ((𝑥𝐸(𝐴 · 𝑋)) = ((𝑥 𝐴) · (𝑥𝐸𝑋)) ↔ (0𝐸(𝐴 · 𝑋)) = ((0 𝐴) · (0𝐸𝑋))))
65imbi2d 340 . . . . 5 (𝑥 = 0 → ((((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → (𝑥𝐸(𝐴 · 𝑋)) = ((𝑥 𝐴) · (𝑥𝐸𝑋))) ↔ (((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → (0𝐸(𝐴 · 𝑋)) = ((0 𝐴) · (0𝐸𝑋)))))
7 oveq1 7336 . . . . . . 7 (𝑥 = 𝑦 → (𝑥𝐸(𝐴 · 𝑋)) = (𝑦𝐸(𝐴 · 𝑋)))
8 oveq1 7336 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥 𝐴) = (𝑦 𝐴))
9 oveq1 7336 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥𝐸𝑋) = (𝑦𝐸𝑋))
108, 9oveq12d 7347 . . . . . . 7 (𝑥 = 𝑦 → ((𝑥 𝐴) · (𝑥𝐸𝑋)) = ((𝑦 𝐴) · (𝑦𝐸𝑋)))
117, 10eqeq12d 2752 . . . . . 6 (𝑥 = 𝑦 → ((𝑥𝐸(𝐴 · 𝑋)) = ((𝑥 𝐴) · (𝑥𝐸𝑋)) ↔ (𝑦𝐸(𝐴 · 𝑋)) = ((𝑦 𝐴) · (𝑦𝐸𝑋))))
1211imbi2d 340 . . . . 5 (𝑥 = 𝑦 → ((((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → (𝑥𝐸(𝐴 · 𝑋)) = ((𝑥 𝐴) · (𝑥𝐸𝑋))) ↔ (((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → (𝑦𝐸(𝐴 · 𝑋)) = ((𝑦 𝐴) · (𝑦𝐸𝑋)))))
13 oveq1 7336 . . . . . . 7 (𝑥 = (𝑦 + 1) → (𝑥𝐸(𝐴 · 𝑋)) = ((𝑦 + 1)𝐸(𝐴 · 𝑋)))
14 oveq1 7336 . . . . . . . 8 (𝑥 = (𝑦 + 1) → (𝑥 𝐴) = ((𝑦 + 1) 𝐴))
15 oveq1 7336 . . . . . . . 8 (𝑥 = (𝑦 + 1) → (𝑥𝐸𝑋) = ((𝑦 + 1)𝐸𝑋))
1614, 15oveq12d 7347 . . . . . . 7 (𝑥 = (𝑦 + 1) → ((𝑥 𝐴) · (𝑥𝐸𝑋)) = (((𝑦 + 1) 𝐴) · ((𝑦 + 1)𝐸𝑋)))
1713, 16eqeq12d 2752 . . . . . 6 (𝑥 = (𝑦 + 1) → ((𝑥𝐸(𝐴 · 𝑋)) = ((𝑥 𝐴) · (𝑥𝐸𝑋)) ↔ ((𝑦 + 1)𝐸(𝐴 · 𝑋)) = (((𝑦 + 1) 𝐴) · ((𝑦 + 1)𝐸𝑋))))
1817imbi2d 340 . . . . 5 (𝑥 = (𝑦 + 1) → ((((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → (𝑥𝐸(𝐴 · 𝑋)) = ((𝑥 𝐴) · (𝑥𝐸𝑋))) ↔ (((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → ((𝑦 + 1)𝐸(𝐴 · 𝑋)) = (((𝑦 + 1) 𝐴) · ((𝑦 + 1)𝐸𝑋)))))
19 oveq1 7336 . . . . . . 7 (𝑥 = 𝑁 → (𝑥𝐸(𝐴 · 𝑋)) = (𝑁𝐸(𝐴 · 𝑋)))
20 oveq1 7336 . . . . . . . 8 (𝑥 = 𝑁 → (𝑥 𝐴) = (𝑁 𝐴))
21 oveq1 7336 . . . . . . . 8 (𝑥 = 𝑁 → (𝑥𝐸𝑋) = (𝑁𝐸𝑋))
2220, 21oveq12d 7347 . . . . . . 7 (𝑥 = 𝑁 → ((𝑥 𝐴) · (𝑥𝐸𝑋)) = ((𝑁 𝐴) · (𝑁𝐸𝑋)))
2319, 22eqeq12d 2752 . . . . . 6 (𝑥 = 𝑁 → ((𝑥𝐸(𝐴 · 𝑋)) = ((𝑥 𝐴) · (𝑥𝐸𝑋)) ↔ (𝑁𝐸(𝐴 · 𝑋)) = ((𝑁 𝐴) · (𝑁𝐸𝑋))))
2423imbi2d 340 . . . . 5 (𝑥 = 𝑁 → ((((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → (𝑥𝐸(𝐴 · 𝑋)) = ((𝑥 𝐴) · (𝑥𝐸𝑋))) ↔ (((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → (𝑁𝐸(𝐴 · 𝑋)) = ((𝑁 𝐴) · (𝑁𝐸𝑋)))))
25 assamulgscm.v . . . . . 6 𝑉 = (Base‘𝑊)
26 assamulgscm.f . . . . . 6 𝐹 = (Scalar‘𝑊)
27 assamulgscm.b . . . . . 6 𝐵 = (Base‘𝐹)
28 assamulgscm.s . . . . . 6 · = ( ·𝑠𝑊)
29 assamulgscm.g . . . . . 6 𝐺 = (mulGrp‘𝐹)
30 assamulgscm.p . . . . . 6 = (.g𝐺)
31 assamulgscm.h . . . . . 6 𝐻 = (mulGrp‘𝑊)
32 assamulgscm.e . . . . . 6 𝐸 = (.g𝐻)
3325, 26, 27, 28, 29, 30, 31, 32assamulgscmlem1 21201 . . . . 5 (((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → (0𝐸(𝐴 · 𝑋)) = ((0 𝐴) · (0𝐸𝑋)))
3425, 26, 27, 28, 29, 30, 31, 32assamulgscmlem2 21202 . . . . . 6 (𝑦 ∈ ℕ0 → (((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → ((𝑦𝐸(𝐴 · 𝑋)) = ((𝑦 𝐴) · (𝑦𝐸𝑋)) → ((𝑦 + 1)𝐸(𝐴 · 𝑋)) = (((𝑦 + 1) 𝐴) · ((𝑦 + 1)𝐸𝑋)))))
3534a2d 29 . . . . 5 (𝑦 ∈ ℕ0 → ((((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → (𝑦𝐸(𝐴 · 𝑋)) = ((𝑦 𝐴) · (𝑦𝐸𝑋))) → (((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → ((𝑦 + 1)𝐸(𝐴 · 𝑋)) = (((𝑦 + 1) 𝐴) · ((𝑦 + 1)𝐸𝑋)))))
366, 12, 18, 24, 33, 35nn0ind 12508 . . . 4 (𝑁 ∈ ℕ0 → (((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → (𝑁𝐸(𝐴 · 𝑋)) = ((𝑁 𝐴) · (𝑁𝐸𝑋))))
3736exp4c 433 . . 3 (𝑁 ∈ ℕ0 → (𝐴𝐵 → (𝑋𝑉 → (𝑊 ∈ AssAlg → (𝑁𝐸(𝐴 · 𝑋)) = ((𝑁 𝐴) · (𝑁𝐸𝑋))))))
38373imp 1110 . 2 ((𝑁 ∈ ℕ0𝐴𝐵𝑋𝑉) → (𝑊 ∈ AssAlg → (𝑁𝐸(𝐴 · 𝑋)) = ((𝑁 𝐴) · (𝑁𝐸𝑋))))
3938impcom 408 1 ((𝑊 ∈ AssAlg ∧ (𝑁 ∈ ℕ0𝐴𝐵𝑋𝑉)) → (𝑁𝐸(𝐴 · 𝑋)) = ((𝑁 𝐴) · (𝑁𝐸𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1540  wcel 2105  cfv 6473  (class class class)co 7329  0cc0 10964  1c1 10965   + caddc 10967  0cn0 12326  Basecbs 17001  Scalarcsca 17054   ·𝑠 cvsca 17055  .gcmg 18788  mulGrpcmgp 19807  AssAlgcasa 21155
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5240  ax-nul 5247  ax-pow 5305  ax-pr 5369  ax-un 7642  ax-cnex 11020  ax-resscn 11021  ax-1cn 11022  ax-icn 11023  ax-addcl 11024  ax-addrcl 11025  ax-mulcl 11026  ax-mulrcl 11027  ax-mulcom 11028  ax-addass 11029  ax-mulass 11030  ax-distr 11031  ax-i2m1 11032  ax-1ne0 11033  ax-1rid 11034  ax-rnegex 11035  ax-rrecex 11036  ax-cnre 11037  ax-pre-lttri 11038  ax-pre-lttrn 11039  ax-pre-ltadd 11040  ax-pre-mulgt0 11041
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4269  df-if 4473  df-pw 4548  df-sn 4573  df-pr 4575  df-op 4579  df-uni 4852  df-iun 4940  df-br 5090  df-opab 5152  df-mpt 5173  df-tr 5207  df-id 5512  df-eprel 5518  df-po 5526  df-so 5527  df-fr 5569  df-we 5571  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6232  df-ord 6299  df-on 6300  df-lim 6301  df-suc 6302  df-iota 6425  df-fun 6475  df-fn 6476  df-f 6477  df-f1 6478  df-fo 6479  df-f1o 6480  df-fv 6481  df-riota 7286  df-ov 7332  df-oprab 7333  df-mpo 7334  df-om 7773  df-1st 7891  df-2nd 7892  df-frecs 8159  df-wrecs 8190  df-recs 8264  df-rdg 8303  df-er 8561  df-en 8797  df-dom 8798  df-sdom 8799  df-pnf 11104  df-mnf 11105  df-xr 11106  df-ltxr 11107  df-le 11108  df-sub 11300  df-neg 11301  df-nn 12067  df-2 12129  df-n0 12327  df-z 12413  df-uz 12676  df-fz 13333  df-seq 13815  df-sets 16954  df-slot 16972  df-ndx 16984  df-base 17002  df-plusg 17064  df-0g 17241  df-mgm 18415  df-sgrp 18464  df-mnd 18475  df-mulg 18789  df-mgp 19808  df-ur 19825  df-ring 19872  df-cring 19873  df-lmod 20223  df-assa 21158
This theorem is referenced by:  lply1binomsc  21576
  Copyright terms: Public domain W3C validator