MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  assamulgscm Structured version   Visualization version   GIF version

Theorem assamulgscm 21826
Description: Exponentiation of a scalar multiplication in an associative algebra: (𝑎 · 𝑋)↑𝑁 = (𝑎𝑁) × (𝑋𝑁). (Contributed by AV, 26-Aug-2019.)
Hypotheses
Ref Expression
assamulgscm.v 𝑉 = (Base‘𝑊)
assamulgscm.f 𝐹 = (Scalar‘𝑊)
assamulgscm.b 𝐵 = (Base‘𝐹)
assamulgscm.s · = ( ·𝑠𝑊)
assamulgscm.g 𝐺 = (mulGrp‘𝐹)
assamulgscm.p = (.g𝐺)
assamulgscm.h 𝐻 = (mulGrp‘𝑊)
assamulgscm.e 𝐸 = (.g𝐻)
Assertion
Ref Expression
assamulgscm ((𝑊 ∈ AssAlg ∧ (𝑁 ∈ ℕ0𝐴𝐵𝑋𝑉)) → (𝑁𝐸(𝐴 · 𝑋)) = ((𝑁 𝐴) · (𝑁𝐸𝑋)))

Proof of Theorem assamulgscm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7360 . . . . . . 7 (𝑥 = 0 → (𝑥𝐸(𝐴 · 𝑋)) = (0𝐸(𝐴 · 𝑋)))
2 oveq1 7360 . . . . . . . 8 (𝑥 = 0 → (𝑥 𝐴) = (0 𝐴))
3 oveq1 7360 . . . . . . . 8 (𝑥 = 0 → (𝑥𝐸𝑋) = (0𝐸𝑋))
42, 3oveq12d 7371 . . . . . . 7 (𝑥 = 0 → ((𝑥 𝐴) · (𝑥𝐸𝑋)) = ((0 𝐴) · (0𝐸𝑋)))
51, 4eqeq12d 2745 . . . . . 6 (𝑥 = 0 → ((𝑥𝐸(𝐴 · 𝑋)) = ((𝑥 𝐴) · (𝑥𝐸𝑋)) ↔ (0𝐸(𝐴 · 𝑋)) = ((0 𝐴) · (0𝐸𝑋))))
65imbi2d 340 . . . . 5 (𝑥 = 0 → ((((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → (𝑥𝐸(𝐴 · 𝑋)) = ((𝑥 𝐴) · (𝑥𝐸𝑋))) ↔ (((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → (0𝐸(𝐴 · 𝑋)) = ((0 𝐴) · (0𝐸𝑋)))))
7 oveq1 7360 . . . . . . 7 (𝑥 = 𝑦 → (𝑥𝐸(𝐴 · 𝑋)) = (𝑦𝐸(𝐴 · 𝑋)))
8 oveq1 7360 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥 𝐴) = (𝑦 𝐴))
9 oveq1 7360 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥𝐸𝑋) = (𝑦𝐸𝑋))
108, 9oveq12d 7371 . . . . . . 7 (𝑥 = 𝑦 → ((𝑥 𝐴) · (𝑥𝐸𝑋)) = ((𝑦 𝐴) · (𝑦𝐸𝑋)))
117, 10eqeq12d 2745 . . . . . 6 (𝑥 = 𝑦 → ((𝑥𝐸(𝐴 · 𝑋)) = ((𝑥 𝐴) · (𝑥𝐸𝑋)) ↔ (𝑦𝐸(𝐴 · 𝑋)) = ((𝑦 𝐴) · (𝑦𝐸𝑋))))
1211imbi2d 340 . . . . 5 (𝑥 = 𝑦 → ((((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → (𝑥𝐸(𝐴 · 𝑋)) = ((𝑥 𝐴) · (𝑥𝐸𝑋))) ↔ (((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → (𝑦𝐸(𝐴 · 𝑋)) = ((𝑦 𝐴) · (𝑦𝐸𝑋)))))
13 oveq1 7360 . . . . . . 7 (𝑥 = (𝑦 + 1) → (𝑥𝐸(𝐴 · 𝑋)) = ((𝑦 + 1)𝐸(𝐴 · 𝑋)))
14 oveq1 7360 . . . . . . . 8 (𝑥 = (𝑦 + 1) → (𝑥 𝐴) = ((𝑦 + 1) 𝐴))
15 oveq1 7360 . . . . . . . 8 (𝑥 = (𝑦 + 1) → (𝑥𝐸𝑋) = ((𝑦 + 1)𝐸𝑋))
1614, 15oveq12d 7371 . . . . . . 7 (𝑥 = (𝑦 + 1) → ((𝑥 𝐴) · (𝑥𝐸𝑋)) = (((𝑦 + 1) 𝐴) · ((𝑦 + 1)𝐸𝑋)))
1713, 16eqeq12d 2745 . . . . . 6 (𝑥 = (𝑦 + 1) → ((𝑥𝐸(𝐴 · 𝑋)) = ((𝑥 𝐴) · (𝑥𝐸𝑋)) ↔ ((𝑦 + 1)𝐸(𝐴 · 𝑋)) = (((𝑦 + 1) 𝐴) · ((𝑦 + 1)𝐸𝑋))))
1817imbi2d 340 . . . . 5 (𝑥 = (𝑦 + 1) → ((((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → (𝑥𝐸(𝐴 · 𝑋)) = ((𝑥 𝐴) · (𝑥𝐸𝑋))) ↔ (((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → ((𝑦 + 1)𝐸(𝐴 · 𝑋)) = (((𝑦 + 1) 𝐴) · ((𝑦 + 1)𝐸𝑋)))))
19 oveq1 7360 . . . . . . 7 (𝑥 = 𝑁 → (𝑥𝐸(𝐴 · 𝑋)) = (𝑁𝐸(𝐴 · 𝑋)))
20 oveq1 7360 . . . . . . . 8 (𝑥 = 𝑁 → (𝑥 𝐴) = (𝑁 𝐴))
21 oveq1 7360 . . . . . . . 8 (𝑥 = 𝑁 → (𝑥𝐸𝑋) = (𝑁𝐸𝑋))
2220, 21oveq12d 7371 . . . . . . 7 (𝑥 = 𝑁 → ((𝑥 𝐴) · (𝑥𝐸𝑋)) = ((𝑁 𝐴) · (𝑁𝐸𝑋)))
2319, 22eqeq12d 2745 . . . . . 6 (𝑥 = 𝑁 → ((𝑥𝐸(𝐴 · 𝑋)) = ((𝑥 𝐴) · (𝑥𝐸𝑋)) ↔ (𝑁𝐸(𝐴 · 𝑋)) = ((𝑁 𝐴) · (𝑁𝐸𝑋))))
2423imbi2d 340 . . . . 5 (𝑥 = 𝑁 → ((((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → (𝑥𝐸(𝐴 · 𝑋)) = ((𝑥 𝐴) · (𝑥𝐸𝑋))) ↔ (((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → (𝑁𝐸(𝐴 · 𝑋)) = ((𝑁 𝐴) · (𝑁𝐸𝑋)))))
25 assamulgscm.v . . . . . 6 𝑉 = (Base‘𝑊)
26 assamulgscm.f . . . . . 6 𝐹 = (Scalar‘𝑊)
27 assamulgscm.b . . . . . 6 𝐵 = (Base‘𝐹)
28 assamulgscm.s . . . . . 6 · = ( ·𝑠𝑊)
29 assamulgscm.g . . . . . 6 𝐺 = (mulGrp‘𝐹)
30 assamulgscm.p . . . . . 6 = (.g𝐺)
31 assamulgscm.h . . . . . 6 𝐻 = (mulGrp‘𝑊)
32 assamulgscm.e . . . . . 6 𝐸 = (.g𝐻)
3325, 26, 27, 28, 29, 30, 31, 32assamulgscmlem1 21824 . . . . 5 (((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → (0𝐸(𝐴 · 𝑋)) = ((0 𝐴) · (0𝐸𝑋)))
3425, 26, 27, 28, 29, 30, 31, 32assamulgscmlem2 21825 . . . . . 6 (𝑦 ∈ ℕ0 → (((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → ((𝑦𝐸(𝐴 · 𝑋)) = ((𝑦 𝐴) · (𝑦𝐸𝑋)) → ((𝑦 + 1)𝐸(𝐴 · 𝑋)) = (((𝑦 + 1) 𝐴) · ((𝑦 + 1)𝐸𝑋)))))
3534a2d 29 . . . . 5 (𝑦 ∈ ℕ0 → ((((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → (𝑦𝐸(𝐴 · 𝑋)) = ((𝑦 𝐴) · (𝑦𝐸𝑋))) → (((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → ((𝑦 + 1)𝐸(𝐴 · 𝑋)) = (((𝑦 + 1) 𝐴) · ((𝑦 + 1)𝐸𝑋)))))
366, 12, 18, 24, 33, 35nn0ind 12589 . . . 4 (𝑁 ∈ ℕ0 → (((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → (𝑁𝐸(𝐴 · 𝑋)) = ((𝑁 𝐴) · (𝑁𝐸𝑋))))
3736exp4c 432 . . 3 (𝑁 ∈ ℕ0 → (𝐴𝐵 → (𝑋𝑉 → (𝑊 ∈ AssAlg → (𝑁𝐸(𝐴 · 𝑋)) = ((𝑁 𝐴) · (𝑁𝐸𝑋))))))
38373imp 1110 . 2 ((𝑁 ∈ ℕ0𝐴𝐵𝑋𝑉) → (𝑊 ∈ AssAlg → (𝑁𝐸(𝐴 · 𝑋)) = ((𝑁 𝐴) · (𝑁𝐸𝑋))))
3938impcom 407 1 ((𝑊 ∈ AssAlg ∧ (𝑁 ∈ ℕ0𝐴𝐵𝑋𝑉)) → (𝑁𝐸(𝐴 · 𝑋)) = ((𝑁 𝐴) · (𝑁𝐸𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cfv 6486  (class class class)co 7353  0cc0 11028  1c1 11029   + caddc 11031  0cn0 12402  Basecbs 17138  Scalarcsca 17182   ·𝑠 cvsca 17183  .gcmg 18964  mulGrpcmgp 20043  AssAlgcasa 21775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-n0 12403  df-z 12490  df-uz 12754  df-fz 13429  df-seq 13927  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-plusg 17192  df-0g 17363  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-mulg 18965  df-mgp 20044  df-ur 20085  df-ring 20138  df-lmod 20783  df-assa 21778
This theorem is referenced by:  lply1binomsc  22214
  Copyright terms: Public domain W3C validator