MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  assamulgscm Structured version   Visualization version   GIF version

Theorem assamulgscm 21939
Description: Exponentiation of a scalar multiplication in an associative algebra: (𝑎 · 𝑋)↑𝑁 = (𝑎𝑁) × (𝑋𝑁). (Contributed by AV, 26-Aug-2019.)
Hypotheses
Ref Expression
assamulgscm.v 𝑉 = (Base‘𝑊)
assamulgscm.f 𝐹 = (Scalar‘𝑊)
assamulgscm.b 𝐵 = (Base‘𝐹)
assamulgscm.s · = ( ·𝑠𝑊)
assamulgscm.g 𝐺 = (mulGrp‘𝐹)
assamulgscm.p = (.g𝐺)
assamulgscm.h 𝐻 = (mulGrp‘𝑊)
assamulgscm.e 𝐸 = (.g𝐻)
Assertion
Ref Expression
assamulgscm ((𝑊 ∈ AssAlg ∧ (𝑁 ∈ ℕ0𝐴𝐵𝑋𝑉)) → (𝑁𝐸(𝐴 · 𝑋)) = ((𝑁 𝐴) · (𝑁𝐸𝑋)))

Proof of Theorem assamulgscm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7438 . . . . . . 7 (𝑥 = 0 → (𝑥𝐸(𝐴 · 𝑋)) = (0𝐸(𝐴 · 𝑋)))
2 oveq1 7438 . . . . . . . 8 (𝑥 = 0 → (𝑥 𝐴) = (0 𝐴))
3 oveq1 7438 . . . . . . . 8 (𝑥 = 0 → (𝑥𝐸𝑋) = (0𝐸𝑋))
42, 3oveq12d 7449 . . . . . . 7 (𝑥 = 0 → ((𝑥 𝐴) · (𝑥𝐸𝑋)) = ((0 𝐴) · (0𝐸𝑋)))
51, 4eqeq12d 2751 . . . . . 6 (𝑥 = 0 → ((𝑥𝐸(𝐴 · 𝑋)) = ((𝑥 𝐴) · (𝑥𝐸𝑋)) ↔ (0𝐸(𝐴 · 𝑋)) = ((0 𝐴) · (0𝐸𝑋))))
65imbi2d 340 . . . . 5 (𝑥 = 0 → ((((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → (𝑥𝐸(𝐴 · 𝑋)) = ((𝑥 𝐴) · (𝑥𝐸𝑋))) ↔ (((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → (0𝐸(𝐴 · 𝑋)) = ((0 𝐴) · (0𝐸𝑋)))))
7 oveq1 7438 . . . . . . 7 (𝑥 = 𝑦 → (𝑥𝐸(𝐴 · 𝑋)) = (𝑦𝐸(𝐴 · 𝑋)))
8 oveq1 7438 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥 𝐴) = (𝑦 𝐴))
9 oveq1 7438 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥𝐸𝑋) = (𝑦𝐸𝑋))
108, 9oveq12d 7449 . . . . . . 7 (𝑥 = 𝑦 → ((𝑥 𝐴) · (𝑥𝐸𝑋)) = ((𝑦 𝐴) · (𝑦𝐸𝑋)))
117, 10eqeq12d 2751 . . . . . 6 (𝑥 = 𝑦 → ((𝑥𝐸(𝐴 · 𝑋)) = ((𝑥 𝐴) · (𝑥𝐸𝑋)) ↔ (𝑦𝐸(𝐴 · 𝑋)) = ((𝑦 𝐴) · (𝑦𝐸𝑋))))
1211imbi2d 340 . . . . 5 (𝑥 = 𝑦 → ((((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → (𝑥𝐸(𝐴 · 𝑋)) = ((𝑥 𝐴) · (𝑥𝐸𝑋))) ↔ (((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → (𝑦𝐸(𝐴 · 𝑋)) = ((𝑦 𝐴) · (𝑦𝐸𝑋)))))
13 oveq1 7438 . . . . . . 7 (𝑥 = (𝑦 + 1) → (𝑥𝐸(𝐴 · 𝑋)) = ((𝑦 + 1)𝐸(𝐴 · 𝑋)))
14 oveq1 7438 . . . . . . . 8 (𝑥 = (𝑦 + 1) → (𝑥 𝐴) = ((𝑦 + 1) 𝐴))
15 oveq1 7438 . . . . . . . 8 (𝑥 = (𝑦 + 1) → (𝑥𝐸𝑋) = ((𝑦 + 1)𝐸𝑋))
1614, 15oveq12d 7449 . . . . . . 7 (𝑥 = (𝑦 + 1) → ((𝑥 𝐴) · (𝑥𝐸𝑋)) = (((𝑦 + 1) 𝐴) · ((𝑦 + 1)𝐸𝑋)))
1713, 16eqeq12d 2751 . . . . . 6 (𝑥 = (𝑦 + 1) → ((𝑥𝐸(𝐴 · 𝑋)) = ((𝑥 𝐴) · (𝑥𝐸𝑋)) ↔ ((𝑦 + 1)𝐸(𝐴 · 𝑋)) = (((𝑦 + 1) 𝐴) · ((𝑦 + 1)𝐸𝑋))))
1817imbi2d 340 . . . . 5 (𝑥 = (𝑦 + 1) → ((((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → (𝑥𝐸(𝐴 · 𝑋)) = ((𝑥 𝐴) · (𝑥𝐸𝑋))) ↔ (((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → ((𝑦 + 1)𝐸(𝐴 · 𝑋)) = (((𝑦 + 1) 𝐴) · ((𝑦 + 1)𝐸𝑋)))))
19 oveq1 7438 . . . . . . 7 (𝑥 = 𝑁 → (𝑥𝐸(𝐴 · 𝑋)) = (𝑁𝐸(𝐴 · 𝑋)))
20 oveq1 7438 . . . . . . . 8 (𝑥 = 𝑁 → (𝑥 𝐴) = (𝑁 𝐴))
21 oveq1 7438 . . . . . . . 8 (𝑥 = 𝑁 → (𝑥𝐸𝑋) = (𝑁𝐸𝑋))
2220, 21oveq12d 7449 . . . . . . 7 (𝑥 = 𝑁 → ((𝑥 𝐴) · (𝑥𝐸𝑋)) = ((𝑁 𝐴) · (𝑁𝐸𝑋)))
2319, 22eqeq12d 2751 . . . . . 6 (𝑥 = 𝑁 → ((𝑥𝐸(𝐴 · 𝑋)) = ((𝑥 𝐴) · (𝑥𝐸𝑋)) ↔ (𝑁𝐸(𝐴 · 𝑋)) = ((𝑁 𝐴) · (𝑁𝐸𝑋))))
2423imbi2d 340 . . . . 5 (𝑥 = 𝑁 → ((((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → (𝑥𝐸(𝐴 · 𝑋)) = ((𝑥 𝐴) · (𝑥𝐸𝑋))) ↔ (((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → (𝑁𝐸(𝐴 · 𝑋)) = ((𝑁 𝐴) · (𝑁𝐸𝑋)))))
25 assamulgscm.v . . . . . 6 𝑉 = (Base‘𝑊)
26 assamulgscm.f . . . . . 6 𝐹 = (Scalar‘𝑊)
27 assamulgscm.b . . . . . 6 𝐵 = (Base‘𝐹)
28 assamulgscm.s . . . . . 6 · = ( ·𝑠𝑊)
29 assamulgscm.g . . . . . 6 𝐺 = (mulGrp‘𝐹)
30 assamulgscm.p . . . . . 6 = (.g𝐺)
31 assamulgscm.h . . . . . 6 𝐻 = (mulGrp‘𝑊)
32 assamulgscm.e . . . . . 6 𝐸 = (.g𝐻)
3325, 26, 27, 28, 29, 30, 31, 32assamulgscmlem1 21937 . . . . 5 (((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → (0𝐸(𝐴 · 𝑋)) = ((0 𝐴) · (0𝐸𝑋)))
3425, 26, 27, 28, 29, 30, 31, 32assamulgscmlem2 21938 . . . . . 6 (𝑦 ∈ ℕ0 → (((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → ((𝑦𝐸(𝐴 · 𝑋)) = ((𝑦 𝐴) · (𝑦𝐸𝑋)) → ((𝑦 + 1)𝐸(𝐴 · 𝑋)) = (((𝑦 + 1) 𝐴) · ((𝑦 + 1)𝐸𝑋)))))
3534a2d 29 . . . . 5 (𝑦 ∈ ℕ0 → ((((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → (𝑦𝐸(𝐴 · 𝑋)) = ((𝑦 𝐴) · (𝑦𝐸𝑋))) → (((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → ((𝑦 + 1)𝐸(𝐴 · 𝑋)) = (((𝑦 + 1) 𝐴) · ((𝑦 + 1)𝐸𝑋)))))
366, 12, 18, 24, 33, 35nn0ind 12711 . . . 4 (𝑁 ∈ ℕ0 → (((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → (𝑁𝐸(𝐴 · 𝑋)) = ((𝑁 𝐴) · (𝑁𝐸𝑋))))
3736exp4c 432 . . 3 (𝑁 ∈ ℕ0 → (𝐴𝐵 → (𝑋𝑉 → (𝑊 ∈ AssAlg → (𝑁𝐸(𝐴 · 𝑋)) = ((𝑁 𝐴) · (𝑁𝐸𝑋))))))
38373imp 1110 . 2 ((𝑁 ∈ ℕ0𝐴𝐵𝑋𝑉) → (𝑊 ∈ AssAlg → (𝑁𝐸(𝐴 · 𝑋)) = ((𝑁 𝐴) · (𝑁𝐸𝑋))))
3938impcom 407 1 ((𝑊 ∈ AssAlg ∧ (𝑁 ∈ ℕ0𝐴𝐵𝑋𝑉)) → (𝑁𝐸(𝐴 · 𝑋)) = ((𝑁 𝐴) · (𝑁𝐸𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  cfv 6563  (class class class)co 7431  0cc0 11153  1c1 11154   + caddc 11156  0cn0 12524  Basecbs 17245  Scalarcsca 17301   ·𝑠 cvsca 17302  .gcmg 19098  mulGrpcmgp 20152  AssAlgcasa 21888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-seq 14040  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-plusg 17311  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-mulg 19099  df-mgp 20153  df-ur 20200  df-ring 20253  df-lmod 20877  df-assa 21891
This theorem is referenced by:  lply1binomsc  22331
  Copyright terms: Public domain W3C validator