MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  assamulgscm Structured version   Visualization version   GIF version

Theorem assamulgscm 21866
Description: Exponentiation of a scalar multiplication in an associative algebra: (𝑎 · 𝑋)↑𝑁 = (𝑎𝑁) × (𝑋𝑁). (Contributed by AV, 26-Aug-2019.)
Hypotheses
Ref Expression
assamulgscm.v 𝑉 = (Base‘𝑊)
assamulgscm.f 𝐹 = (Scalar‘𝑊)
assamulgscm.b 𝐵 = (Base‘𝐹)
assamulgscm.s · = ( ·𝑠𝑊)
assamulgscm.g 𝐺 = (mulGrp‘𝐹)
assamulgscm.p = (.g𝐺)
assamulgscm.h 𝐻 = (mulGrp‘𝑊)
assamulgscm.e 𝐸 = (.g𝐻)
Assertion
Ref Expression
assamulgscm ((𝑊 ∈ AssAlg ∧ (𝑁 ∈ ℕ0𝐴𝐵𝑋𝑉)) → (𝑁𝐸(𝐴 · 𝑋)) = ((𝑁 𝐴) · (𝑁𝐸𝑋)))

Proof of Theorem assamulgscm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7417 . . . . . . 7 (𝑥 = 0 → (𝑥𝐸(𝐴 · 𝑋)) = (0𝐸(𝐴 · 𝑋)))
2 oveq1 7417 . . . . . . . 8 (𝑥 = 0 → (𝑥 𝐴) = (0 𝐴))
3 oveq1 7417 . . . . . . . 8 (𝑥 = 0 → (𝑥𝐸𝑋) = (0𝐸𝑋))
42, 3oveq12d 7428 . . . . . . 7 (𝑥 = 0 → ((𝑥 𝐴) · (𝑥𝐸𝑋)) = ((0 𝐴) · (0𝐸𝑋)))
51, 4eqeq12d 2752 . . . . . 6 (𝑥 = 0 → ((𝑥𝐸(𝐴 · 𝑋)) = ((𝑥 𝐴) · (𝑥𝐸𝑋)) ↔ (0𝐸(𝐴 · 𝑋)) = ((0 𝐴) · (0𝐸𝑋))))
65imbi2d 340 . . . . 5 (𝑥 = 0 → ((((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → (𝑥𝐸(𝐴 · 𝑋)) = ((𝑥 𝐴) · (𝑥𝐸𝑋))) ↔ (((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → (0𝐸(𝐴 · 𝑋)) = ((0 𝐴) · (0𝐸𝑋)))))
7 oveq1 7417 . . . . . . 7 (𝑥 = 𝑦 → (𝑥𝐸(𝐴 · 𝑋)) = (𝑦𝐸(𝐴 · 𝑋)))
8 oveq1 7417 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥 𝐴) = (𝑦 𝐴))
9 oveq1 7417 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥𝐸𝑋) = (𝑦𝐸𝑋))
108, 9oveq12d 7428 . . . . . . 7 (𝑥 = 𝑦 → ((𝑥 𝐴) · (𝑥𝐸𝑋)) = ((𝑦 𝐴) · (𝑦𝐸𝑋)))
117, 10eqeq12d 2752 . . . . . 6 (𝑥 = 𝑦 → ((𝑥𝐸(𝐴 · 𝑋)) = ((𝑥 𝐴) · (𝑥𝐸𝑋)) ↔ (𝑦𝐸(𝐴 · 𝑋)) = ((𝑦 𝐴) · (𝑦𝐸𝑋))))
1211imbi2d 340 . . . . 5 (𝑥 = 𝑦 → ((((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → (𝑥𝐸(𝐴 · 𝑋)) = ((𝑥 𝐴) · (𝑥𝐸𝑋))) ↔ (((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → (𝑦𝐸(𝐴 · 𝑋)) = ((𝑦 𝐴) · (𝑦𝐸𝑋)))))
13 oveq1 7417 . . . . . . 7 (𝑥 = (𝑦 + 1) → (𝑥𝐸(𝐴 · 𝑋)) = ((𝑦 + 1)𝐸(𝐴 · 𝑋)))
14 oveq1 7417 . . . . . . . 8 (𝑥 = (𝑦 + 1) → (𝑥 𝐴) = ((𝑦 + 1) 𝐴))
15 oveq1 7417 . . . . . . . 8 (𝑥 = (𝑦 + 1) → (𝑥𝐸𝑋) = ((𝑦 + 1)𝐸𝑋))
1614, 15oveq12d 7428 . . . . . . 7 (𝑥 = (𝑦 + 1) → ((𝑥 𝐴) · (𝑥𝐸𝑋)) = (((𝑦 + 1) 𝐴) · ((𝑦 + 1)𝐸𝑋)))
1713, 16eqeq12d 2752 . . . . . 6 (𝑥 = (𝑦 + 1) → ((𝑥𝐸(𝐴 · 𝑋)) = ((𝑥 𝐴) · (𝑥𝐸𝑋)) ↔ ((𝑦 + 1)𝐸(𝐴 · 𝑋)) = (((𝑦 + 1) 𝐴) · ((𝑦 + 1)𝐸𝑋))))
1817imbi2d 340 . . . . 5 (𝑥 = (𝑦 + 1) → ((((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → (𝑥𝐸(𝐴 · 𝑋)) = ((𝑥 𝐴) · (𝑥𝐸𝑋))) ↔ (((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → ((𝑦 + 1)𝐸(𝐴 · 𝑋)) = (((𝑦 + 1) 𝐴) · ((𝑦 + 1)𝐸𝑋)))))
19 oveq1 7417 . . . . . . 7 (𝑥 = 𝑁 → (𝑥𝐸(𝐴 · 𝑋)) = (𝑁𝐸(𝐴 · 𝑋)))
20 oveq1 7417 . . . . . . . 8 (𝑥 = 𝑁 → (𝑥 𝐴) = (𝑁 𝐴))
21 oveq1 7417 . . . . . . . 8 (𝑥 = 𝑁 → (𝑥𝐸𝑋) = (𝑁𝐸𝑋))
2220, 21oveq12d 7428 . . . . . . 7 (𝑥 = 𝑁 → ((𝑥 𝐴) · (𝑥𝐸𝑋)) = ((𝑁 𝐴) · (𝑁𝐸𝑋)))
2319, 22eqeq12d 2752 . . . . . 6 (𝑥 = 𝑁 → ((𝑥𝐸(𝐴 · 𝑋)) = ((𝑥 𝐴) · (𝑥𝐸𝑋)) ↔ (𝑁𝐸(𝐴 · 𝑋)) = ((𝑁 𝐴) · (𝑁𝐸𝑋))))
2423imbi2d 340 . . . . 5 (𝑥 = 𝑁 → ((((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → (𝑥𝐸(𝐴 · 𝑋)) = ((𝑥 𝐴) · (𝑥𝐸𝑋))) ↔ (((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → (𝑁𝐸(𝐴 · 𝑋)) = ((𝑁 𝐴) · (𝑁𝐸𝑋)))))
25 assamulgscm.v . . . . . 6 𝑉 = (Base‘𝑊)
26 assamulgscm.f . . . . . 6 𝐹 = (Scalar‘𝑊)
27 assamulgscm.b . . . . . 6 𝐵 = (Base‘𝐹)
28 assamulgscm.s . . . . . 6 · = ( ·𝑠𝑊)
29 assamulgscm.g . . . . . 6 𝐺 = (mulGrp‘𝐹)
30 assamulgscm.p . . . . . 6 = (.g𝐺)
31 assamulgscm.h . . . . . 6 𝐻 = (mulGrp‘𝑊)
32 assamulgscm.e . . . . . 6 𝐸 = (.g𝐻)
3325, 26, 27, 28, 29, 30, 31, 32assamulgscmlem1 21864 . . . . 5 (((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → (0𝐸(𝐴 · 𝑋)) = ((0 𝐴) · (0𝐸𝑋)))
3425, 26, 27, 28, 29, 30, 31, 32assamulgscmlem2 21865 . . . . . 6 (𝑦 ∈ ℕ0 → (((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → ((𝑦𝐸(𝐴 · 𝑋)) = ((𝑦 𝐴) · (𝑦𝐸𝑋)) → ((𝑦 + 1)𝐸(𝐴 · 𝑋)) = (((𝑦 + 1) 𝐴) · ((𝑦 + 1)𝐸𝑋)))))
3534a2d 29 . . . . 5 (𝑦 ∈ ℕ0 → ((((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → (𝑦𝐸(𝐴 · 𝑋)) = ((𝑦 𝐴) · (𝑦𝐸𝑋))) → (((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → ((𝑦 + 1)𝐸(𝐴 · 𝑋)) = (((𝑦 + 1) 𝐴) · ((𝑦 + 1)𝐸𝑋)))))
366, 12, 18, 24, 33, 35nn0ind 12693 . . . 4 (𝑁 ∈ ℕ0 → (((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → (𝑁𝐸(𝐴 · 𝑋)) = ((𝑁 𝐴) · (𝑁𝐸𝑋))))
3736exp4c 432 . . 3 (𝑁 ∈ ℕ0 → (𝐴𝐵 → (𝑋𝑉 → (𝑊 ∈ AssAlg → (𝑁𝐸(𝐴 · 𝑋)) = ((𝑁 𝐴) · (𝑁𝐸𝑋))))))
38373imp 1110 . 2 ((𝑁 ∈ ℕ0𝐴𝐵𝑋𝑉) → (𝑊 ∈ AssAlg → (𝑁𝐸(𝐴 · 𝑋)) = ((𝑁 𝐴) · (𝑁𝐸𝑋))))
3938impcom 407 1 ((𝑊 ∈ AssAlg ∧ (𝑁 ∈ ℕ0𝐴𝐵𝑋𝑉)) → (𝑁𝐸(𝐴 · 𝑋)) = ((𝑁 𝐴) · (𝑁𝐸𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cfv 6536  (class class class)co 7410  0cc0 11134  1c1 11135   + caddc 11137  0cn0 12506  Basecbs 17233  Scalarcsca 17279   ·𝑠 cvsca 17280  .gcmg 19055  mulGrpcmgp 20105  AssAlgcasa 21815
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-n0 12507  df-z 12594  df-uz 12858  df-fz 13530  df-seq 14025  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-plusg 17289  df-0g 17460  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-mulg 19056  df-mgp 20106  df-ur 20147  df-ring 20200  df-lmod 20824  df-assa 21818
This theorem is referenced by:  lply1binomsc  22254
  Copyright terms: Public domain W3C validator