MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oawordri Structured version   Visualization version   GIF version

Theorem oawordri 8452
Description: Weak ordering property of ordinal addition. Proposition 8.7 of [TakeutiZaring] p. 59. (Contributed by NM, 7-Dec-2004.)
Assertion
Ref Expression
oawordri ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 → (𝐴 +o 𝐶) ⊆ (𝐵 +o 𝐶)))

Proof of Theorem oawordri
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7345 . . . . 5 (𝑥 = ∅ → (𝐴 +o 𝑥) = (𝐴 +o ∅))
2 oveq2 7345 . . . . 5 (𝑥 = ∅ → (𝐵 +o 𝑥) = (𝐵 +o ∅))
31, 2sseq12d 3965 . . . 4 (𝑥 = ∅ → ((𝐴 +o 𝑥) ⊆ (𝐵 +o 𝑥) ↔ (𝐴 +o ∅) ⊆ (𝐵 +o ∅)))
4 oveq2 7345 . . . . 5 (𝑥 = 𝑦 → (𝐴 +o 𝑥) = (𝐴 +o 𝑦))
5 oveq2 7345 . . . . 5 (𝑥 = 𝑦 → (𝐵 +o 𝑥) = (𝐵 +o 𝑦))
64, 5sseq12d 3965 . . . 4 (𝑥 = 𝑦 → ((𝐴 +o 𝑥) ⊆ (𝐵 +o 𝑥) ↔ (𝐴 +o 𝑦) ⊆ (𝐵 +o 𝑦)))
7 oveq2 7345 . . . . 5 (𝑥 = suc 𝑦 → (𝐴 +o 𝑥) = (𝐴 +o suc 𝑦))
8 oveq2 7345 . . . . 5 (𝑥 = suc 𝑦 → (𝐵 +o 𝑥) = (𝐵 +o suc 𝑦))
97, 8sseq12d 3965 . . . 4 (𝑥 = suc 𝑦 → ((𝐴 +o 𝑥) ⊆ (𝐵 +o 𝑥) ↔ (𝐴 +o suc 𝑦) ⊆ (𝐵 +o suc 𝑦)))
10 oveq2 7345 . . . . 5 (𝑥 = 𝐶 → (𝐴 +o 𝑥) = (𝐴 +o 𝐶))
11 oveq2 7345 . . . . 5 (𝑥 = 𝐶 → (𝐵 +o 𝑥) = (𝐵 +o 𝐶))
1210, 11sseq12d 3965 . . . 4 (𝑥 = 𝐶 → ((𝐴 +o 𝑥) ⊆ (𝐵 +o 𝑥) ↔ (𝐴 +o 𝐶) ⊆ (𝐵 +o 𝐶)))
13 oa0 8417 . . . . . . 7 (𝐴 ∈ On → (𝐴 +o ∅) = 𝐴)
1413adantr 481 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o ∅) = 𝐴)
15 oa0 8417 . . . . . . 7 (𝐵 ∈ On → (𝐵 +o ∅) = 𝐵)
1615adantl 482 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 +o ∅) = 𝐵)
1714, 16sseq12d 3965 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o ∅) ⊆ (𝐵 +o ∅) ↔ 𝐴𝐵))
1817biimpar 478 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → (𝐴 +o ∅) ⊆ (𝐵 +o ∅))
19 oacl 8436 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴 +o 𝑦) ∈ On)
20 eloni 6312 . . . . . . . . . . 11 ((𝐴 +o 𝑦) ∈ On → Ord (𝐴 +o 𝑦))
2119, 20syl 17 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → Ord (𝐴 +o 𝑦))
22 oacl 8436 . . . . . . . . . . 11 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 +o 𝑦) ∈ On)
23 eloni 6312 . . . . . . . . . . 11 ((𝐵 +o 𝑦) ∈ On → Ord (𝐵 +o 𝑦))
2422, 23syl 17 . . . . . . . . . 10 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → Ord (𝐵 +o 𝑦))
25 ordsucsssuc 7736 . . . . . . . . . 10 ((Ord (𝐴 +o 𝑦) ∧ Ord (𝐵 +o 𝑦)) → ((𝐴 +o 𝑦) ⊆ (𝐵 +o 𝑦) ↔ suc (𝐴 +o 𝑦) ⊆ suc (𝐵 +o 𝑦)))
2621, 24, 25syl2an 596 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝑦 ∈ On) ∧ (𝐵 ∈ On ∧ 𝑦 ∈ On)) → ((𝐴 +o 𝑦) ⊆ (𝐵 +o 𝑦) ↔ suc (𝐴 +o 𝑦) ⊆ suc (𝐵 +o 𝑦)))
2726anandirs 676 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑦 ∈ On) → ((𝐴 +o 𝑦) ⊆ (𝐵 +o 𝑦) ↔ suc (𝐴 +o 𝑦) ⊆ suc (𝐵 +o 𝑦)))
28 oasuc 8425 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴 +o suc 𝑦) = suc (𝐴 +o 𝑦))
2928adantlr 712 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑦 ∈ On) → (𝐴 +o suc 𝑦) = suc (𝐴 +o 𝑦))
30 oasuc 8425 . . . . . . . . . 10 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 +o suc 𝑦) = suc (𝐵 +o 𝑦))
3130adantll 711 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑦 ∈ On) → (𝐵 +o suc 𝑦) = suc (𝐵 +o 𝑦))
3229, 31sseq12d 3965 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑦 ∈ On) → ((𝐴 +o suc 𝑦) ⊆ (𝐵 +o suc 𝑦) ↔ suc (𝐴 +o 𝑦) ⊆ suc (𝐵 +o 𝑦)))
3327, 32bitr4d 281 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑦 ∈ On) → ((𝐴 +o 𝑦) ⊆ (𝐵 +o 𝑦) ↔ (𝐴 +o suc 𝑦) ⊆ (𝐵 +o suc 𝑦)))
3433biimpd 228 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑦 ∈ On) → ((𝐴 +o 𝑦) ⊆ (𝐵 +o 𝑦) → (𝐴 +o suc 𝑦) ⊆ (𝐵 +o suc 𝑦)))
3534expcom 414 . . . . 5 (𝑦 ∈ On → ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝑦) ⊆ (𝐵 +o 𝑦) → (𝐴 +o suc 𝑦) ⊆ (𝐵 +o suc 𝑦))))
3635adantrd 492 . . . 4 (𝑦 ∈ On → (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → ((𝐴 +o 𝑦) ⊆ (𝐵 +o 𝑦) → (𝐴 +o suc 𝑦) ⊆ (𝐵 +o suc 𝑦))))
37 vex 3445 . . . . . . 7 𝑥 ∈ V
38 ss2iun 4959 . . . . . . . 8 (∀𝑦𝑥 (𝐴 +o 𝑦) ⊆ (𝐵 +o 𝑦) → 𝑦𝑥 (𝐴 +o 𝑦) ⊆ 𝑦𝑥 (𝐵 +o 𝑦))
39 oalim 8433 . . . . . . . . . 10 ((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (𝐴 +o 𝑥) = 𝑦𝑥 (𝐴 +o 𝑦))
4039adantlr 712 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (𝐴 +o 𝑥) = 𝑦𝑥 (𝐴 +o 𝑦))
41 oalim 8433 . . . . . . . . . 10 ((𝐵 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (𝐵 +o 𝑥) = 𝑦𝑥 (𝐵 +o 𝑦))
4241adantll 711 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (𝐵 +o 𝑥) = 𝑦𝑥 (𝐵 +o 𝑦))
4340, 42sseq12d 3965 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → ((𝐴 +o 𝑥) ⊆ (𝐵 +o 𝑥) ↔ 𝑦𝑥 (𝐴 +o 𝑦) ⊆ 𝑦𝑥 (𝐵 +o 𝑦)))
4438, 43syl5ibr 245 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (∀𝑦𝑥 (𝐴 +o 𝑦) ⊆ (𝐵 +o 𝑦) → (𝐴 +o 𝑥) ⊆ (𝐵 +o 𝑥)))
4537, 44mpanr1 700 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ Lim 𝑥) → (∀𝑦𝑥 (𝐴 +o 𝑦) ⊆ (𝐵 +o 𝑦) → (𝐴 +o 𝑥) ⊆ (𝐵 +o 𝑥)))
4645expcom 414 . . . . 5 (Lim 𝑥 → ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∀𝑦𝑥 (𝐴 +o 𝑦) ⊆ (𝐵 +o 𝑦) → (𝐴 +o 𝑥) ⊆ (𝐵 +o 𝑥))))
4746adantrd 492 . . . 4 (Lim 𝑥 → (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → (∀𝑦𝑥 (𝐴 +o 𝑦) ⊆ (𝐵 +o 𝑦) → (𝐴 +o 𝑥) ⊆ (𝐵 +o 𝑥))))
483, 6, 9, 12, 18, 36, 47tfinds3 7779 . . 3 (𝐶 ∈ On → (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → (𝐴 +o 𝐶) ⊆ (𝐵 +o 𝐶)))
4948exp4c 433 . 2 (𝐶 ∈ On → (𝐴 ∈ On → (𝐵 ∈ On → (𝐴𝐵 → (𝐴 +o 𝐶) ⊆ (𝐵 +o 𝐶)))))
50493imp231 1112 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 → (𝐴 +o 𝐶) ⊆ (𝐵 +o 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1540  wcel 2105  wral 3061  Vcvv 3441  wss 3898  c0 4269   ciun 4941  Ord word 6301  Oncon0 6302  Lim wlim 6303  suc csuc 6304  (class class class)co 7337   +o coa 8364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5229  ax-sep 5243  ax-nul 5250  ax-pr 5372  ax-un 7650
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5176  df-tr 5210  df-id 5518  df-eprel 5524  df-po 5532  df-so 5533  df-fr 5575  df-we 5577  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-pred 6238  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-ov 7340  df-oprab 7341  df-mpo 7342  df-om 7781  df-2nd 7900  df-frecs 8167  df-wrecs 8198  df-recs 8272  df-rdg 8311  df-oadd 8371
This theorem is referenced by:  oaword2  8455  omwordri  8474  oaabs2  8550  omabs2  41317
  Copyright terms: Public domain W3C validator