MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oawordri Structured version   Visualization version   GIF version

Theorem oawordri 8517
Description: Weak ordering property of ordinal addition. Proposition 8.7 of [TakeutiZaring] p. 59. (Contributed by NM, 7-Dec-2004.)
Assertion
Ref Expression
oawordri ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 → (𝐴 +o 𝐶) ⊆ (𝐵 +o 𝐶)))

Proof of Theorem oawordri
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7398 . . . . 5 (𝑥 = ∅ → (𝐴 +o 𝑥) = (𝐴 +o ∅))
2 oveq2 7398 . . . . 5 (𝑥 = ∅ → (𝐵 +o 𝑥) = (𝐵 +o ∅))
31, 2sseq12d 3983 . . . 4 (𝑥 = ∅ → ((𝐴 +o 𝑥) ⊆ (𝐵 +o 𝑥) ↔ (𝐴 +o ∅) ⊆ (𝐵 +o ∅)))
4 oveq2 7398 . . . . 5 (𝑥 = 𝑦 → (𝐴 +o 𝑥) = (𝐴 +o 𝑦))
5 oveq2 7398 . . . . 5 (𝑥 = 𝑦 → (𝐵 +o 𝑥) = (𝐵 +o 𝑦))
64, 5sseq12d 3983 . . . 4 (𝑥 = 𝑦 → ((𝐴 +o 𝑥) ⊆ (𝐵 +o 𝑥) ↔ (𝐴 +o 𝑦) ⊆ (𝐵 +o 𝑦)))
7 oveq2 7398 . . . . 5 (𝑥 = suc 𝑦 → (𝐴 +o 𝑥) = (𝐴 +o suc 𝑦))
8 oveq2 7398 . . . . 5 (𝑥 = suc 𝑦 → (𝐵 +o 𝑥) = (𝐵 +o suc 𝑦))
97, 8sseq12d 3983 . . . 4 (𝑥 = suc 𝑦 → ((𝐴 +o 𝑥) ⊆ (𝐵 +o 𝑥) ↔ (𝐴 +o suc 𝑦) ⊆ (𝐵 +o suc 𝑦)))
10 oveq2 7398 . . . . 5 (𝑥 = 𝐶 → (𝐴 +o 𝑥) = (𝐴 +o 𝐶))
11 oveq2 7398 . . . . 5 (𝑥 = 𝐶 → (𝐵 +o 𝑥) = (𝐵 +o 𝐶))
1210, 11sseq12d 3983 . . . 4 (𝑥 = 𝐶 → ((𝐴 +o 𝑥) ⊆ (𝐵 +o 𝑥) ↔ (𝐴 +o 𝐶) ⊆ (𝐵 +o 𝐶)))
13 oa0 8483 . . . . . . 7 (𝐴 ∈ On → (𝐴 +o ∅) = 𝐴)
1413adantr 480 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o ∅) = 𝐴)
15 oa0 8483 . . . . . . 7 (𝐵 ∈ On → (𝐵 +o ∅) = 𝐵)
1615adantl 481 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 +o ∅) = 𝐵)
1714, 16sseq12d 3983 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o ∅) ⊆ (𝐵 +o ∅) ↔ 𝐴𝐵))
1817biimpar 477 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → (𝐴 +o ∅) ⊆ (𝐵 +o ∅))
19 oacl 8502 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴 +o 𝑦) ∈ On)
20 eloni 6345 . . . . . . . . . . 11 ((𝐴 +o 𝑦) ∈ On → Ord (𝐴 +o 𝑦))
2119, 20syl 17 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → Ord (𝐴 +o 𝑦))
22 oacl 8502 . . . . . . . . . . 11 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 +o 𝑦) ∈ On)
23 eloni 6345 . . . . . . . . . . 11 ((𝐵 +o 𝑦) ∈ On → Ord (𝐵 +o 𝑦))
2422, 23syl 17 . . . . . . . . . 10 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → Ord (𝐵 +o 𝑦))
25 ordsucsssuc 7801 . . . . . . . . . 10 ((Ord (𝐴 +o 𝑦) ∧ Ord (𝐵 +o 𝑦)) → ((𝐴 +o 𝑦) ⊆ (𝐵 +o 𝑦) ↔ suc (𝐴 +o 𝑦) ⊆ suc (𝐵 +o 𝑦)))
2621, 24, 25syl2an 596 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝑦 ∈ On) ∧ (𝐵 ∈ On ∧ 𝑦 ∈ On)) → ((𝐴 +o 𝑦) ⊆ (𝐵 +o 𝑦) ↔ suc (𝐴 +o 𝑦) ⊆ suc (𝐵 +o 𝑦)))
2726anandirs 679 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑦 ∈ On) → ((𝐴 +o 𝑦) ⊆ (𝐵 +o 𝑦) ↔ suc (𝐴 +o 𝑦) ⊆ suc (𝐵 +o 𝑦)))
28 oasuc 8491 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴 +o suc 𝑦) = suc (𝐴 +o 𝑦))
2928adantlr 715 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑦 ∈ On) → (𝐴 +o suc 𝑦) = suc (𝐴 +o 𝑦))
30 oasuc 8491 . . . . . . . . . 10 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 +o suc 𝑦) = suc (𝐵 +o 𝑦))
3130adantll 714 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑦 ∈ On) → (𝐵 +o suc 𝑦) = suc (𝐵 +o 𝑦))
3229, 31sseq12d 3983 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑦 ∈ On) → ((𝐴 +o suc 𝑦) ⊆ (𝐵 +o suc 𝑦) ↔ suc (𝐴 +o 𝑦) ⊆ suc (𝐵 +o 𝑦)))
3327, 32bitr4d 282 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑦 ∈ On) → ((𝐴 +o 𝑦) ⊆ (𝐵 +o 𝑦) ↔ (𝐴 +o suc 𝑦) ⊆ (𝐵 +o suc 𝑦)))
3433biimpd 229 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑦 ∈ On) → ((𝐴 +o 𝑦) ⊆ (𝐵 +o 𝑦) → (𝐴 +o suc 𝑦) ⊆ (𝐵 +o suc 𝑦)))
3534expcom 413 . . . . 5 (𝑦 ∈ On → ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝑦) ⊆ (𝐵 +o 𝑦) → (𝐴 +o suc 𝑦) ⊆ (𝐵 +o suc 𝑦))))
3635adantrd 491 . . . 4 (𝑦 ∈ On → (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → ((𝐴 +o 𝑦) ⊆ (𝐵 +o 𝑦) → (𝐴 +o suc 𝑦) ⊆ (𝐵 +o suc 𝑦))))
37 vex 3454 . . . . . . 7 𝑥 ∈ V
38 ss2iun 4977 . . . . . . . 8 (∀𝑦𝑥 (𝐴 +o 𝑦) ⊆ (𝐵 +o 𝑦) → 𝑦𝑥 (𝐴 +o 𝑦) ⊆ 𝑦𝑥 (𝐵 +o 𝑦))
39 oalim 8499 . . . . . . . . . 10 ((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (𝐴 +o 𝑥) = 𝑦𝑥 (𝐴 +o 𝑦))
4039adantlr 715 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (𝐴 +o 𝑥) = 𝑦𝑥 (𝐴 +o 𝑦))
41 oalim 8499 . . . . . . . . . 10 ((𝐵 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (𝐵 +o 𝑥) = 𝑦𝑥 (𝐵 +o 𝑦))
4241adantll 714 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (𝐵 +o 𝑥) = 𝑦𝑥 (𝐵 +o 𝑦))
4340, 42sseq12d 3983 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → ((𝐴 +o 𝑥) ⊆ (𝐵 +o 𝑥) ↔ 𝑦𝑥 (𝐴 +o 𝑦) ⊆ 𝑦𝑥 (𝐵 +o 𝑦)))
4438, 43imbitrrid 246 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (∀𝑦𝑥 (𝐴 +o 𝑦) ⊆ (𝐵 +o 𝑦) → (𝐴 +o 𝑥) ⊆ (𝐵 +o 𝑥)))
4537, 44mpanr1 703 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ Lim 𝑥) → (∀𝑦𝑥 (𝐴 +o 𝑦) ⊆ (𝐵 +o 𝑦) → (𝐴 +o 𝑥) ⊆ (𝐵 +o 𝑥)))
4645expcom 413 . . . . 5 (Lim 𝑥 → ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∀𝑦𝑥 (𝐴 +o 𝑦) ⊆ (𝐵 +o 𝑦) → (𝐴 +o 𝑥) ⊆ (𝐵 +o 𝑥))))
4746adantrd 491 . . . 4 (Lim 𝑥 → (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → (∀𝑦𝑥 (𝐴 +o 𝑦) ⊆ (𝐵 +o 𝑦) → (𝐴 +o 𝑥) ⊆ (𝐵 +o 𝑥))))
483, 6, 9, 12, 18, 36, 47tfinds3 7844 . . 3 (𝐶 ∈ On → (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → (𝐴 +o 𝐶) ⊆ (𝐵 +o 𝐶)))
4948exp4c 432 . 2 (𝐶 ∈ On → (𝐴 ∈ On → (𝐵 ∈ On → (𝐴𝐵 → (𝐴 +o 𝐶) ⊆ (𝐵 +o 𝐶)))))
50493imp231 1112 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 → (𝐴 +o 𝐶) ⊆ (𝐵 +o 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  Vcvv 3450  wss 3917  c0 4299   ciun 4958  Ord word 6334  Oncon0 6335  Lim wlim 6336  suc csuc 6337  (class class class)co 7390   +o coa 8434
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-oadd 8441
This theorem is referenced by:  oaword2  8520  omwordri  8539  oaabs2  8616  omabs2  43328  oaun3lem2  43371  naddwordnexlem4  43397
  Copyright terms: Public domain W3C validator