Step | Hyp | Ref
| Expression |
1 | | oveq2 7283 |
. . . . 5
⊢ (𝑥 = ∅ → (𝐴 +o 𝑥) = (𝐴 +o ∅)) |
2 | | oveq2 7283 |
. . . . 5
⊢ (𝑥 = ∅ → (𝐵 +o 𝑥) = (𝐵 +o ∅)) |
3 | 1, 2 | sseq12d 3954 |
. . . 4
⊢ (𝑥 = ∅ → ((𝐴 +o 𝑥) ⊆ (𝐵 +o 𝑥) ↔ (𝐴 +o ∅) ⊆ (𝐵 +o
∅))) |
4 | | oveq2 7283 |
. . . . 5
⊢ (𝑥 = 𝑦 → (𝐴 +o 𝑥) = (𝐴 +o 𝑦)) |
5 | | oveq2 7283 |
. . . . 5
⊢ (𝑥 = 𝑦 → (𝐵 +o 𝑥) = (𝐵 +o 𝑦)) |
6 | 4, 5 | sseq12d 3954 |
. . . 4
⊢ (𝑥 = 𝑦 → ((𝐴 +o 𝑥) ⊆ (𝐵 +o 𝑥) ↔ (𝐴 +o 𝑦) ⊆ (𝐵 +o 𝑦))) |
7 | | oveq2 7283 |
. . . . 5
⊢ (𝑥 = suc 𝑦 → (𝐴 +o 𝑥) = (𝐴 +o suc 𝑦)) |
8 | | oveq2 7283 |
. . . . 5
⊢ (𝑥 = suc 𝑦 → (𝐵 +o 𝑥) = (𝐵 +o suc 𝑦)) |
9 | 7, 8 | sseq12d 3954 |
. . . 4
⊢ (𝑥 = suc 𝑦 → ((𝐴 +o 𝑥) ⊆ (𝐵 +o 𝑥) ↔ (𝐴 +o suc 𝑦) ⊆ (𝐵 +o suc 𝑦))) |
10 | | oveq2 7283 |
. . . . 5
⊢ (𝑥 = 𝐶 → (𝐴 +o 𝑥) = (𝐴 +o 𝐶)) |
11 | | oveq2 7283 |
. . . . 5
⊢ (𝑥 = 𝐶 → (𝐵 +o 𝑥) = (𝐵 +o 𝐶)) |
12 | 10, 11 | sseq12d 3954 |
. . . 4
⊢ (𝑥 = 𝐶 → ((𝐴 +o 𝑥) ⊆ (𝐵 +o 𝑥) ↔ (𝐴 +o 𝐶) ⊆ (𝐵 +o 𝐶))) |
13 | | oa0 8346 |
. . . . . . 7
⊢ (𝐴 ∈ On → (𝐴 +o ∅) = 𝐴) |
14 | 13 | adantr 481 |
. . . . . 6
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o ∅) = 𝐴) |
15 | | oa0 8346 |
. . . . . . 7
⊢ (𝐵 ∈ On → (𝐵 +o ∅) = 𝐵) |
16 | 15 | adantl 482 |
. . . . . 6
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 +o ∅) = 𝐵) |
17 | 14, 16 | sseq12d 3954 |
. . . . 5
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o ∅) ⊆
(𝐵 +o ∅)
↔ 𝐴 ⊆ 𝐵)) |
18 | 17 | biimpar 478 |
. . . 4
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴 ⊆ 𝐵) → (𝐴 +o ∅) ⊆ (𝐵 +o
∅)) |
19 | | oacl 8365 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴 +o 𝑦) ∈ On) |
20 | | eloni 6276 |
. . . . . . . . . . 11
⊢ ((𝐴 +o 𝑦) ∈ On → Ord (𝐴 +o 𝑦)) |
21 | 19, 20 | syl 17 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ On ∧ 𝑦 ∈ On) → Ord (𝐴 +o 𝑦)) |
22 | | oacl 8365 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 +o 𝑦) ∈ On) |
23 | | eloni 6276 |
. . . . . . . . . . 11
⊢ ((𝐵 +o 𝑦) ∈ On → Ord (𝐵 +o 𝑦)) |
24 | 22, 23 | syl 17 |
. . . . . . . . . 10
⊢ ((𝐵 ∈ On ∧ 𝑦 ∈ On) → Ord (𝐵 +o 𝑦)) |
25 | | ordsucsssuc 7670 |
. . . . . . . . . 10
⊢ ((Ord
(𝐴 +o 𝑦) ∧ Ord (𝐵 +o 𝑦)) → ((𝐴 +o 𝑦) ⊆ (𝐵 +o 𝑦) ↔ suc (𝐴 +o 𝑦) ⊆ suc (𝐵 +o 𝑦))) |
26 | 21, 24, 25 | syl2an 596 |
. . . . . . . . 9
⊢ (((𝐴 ∈ On ∧ 𝑦 ∈ On) ∧ (𝐵 ∈ On ∧ 𝑦 ∈ On)) → ((𝐴 +o 𝑦) ⊆ (𝐵 +o 𝑦) ↔ suc (𝐴 +o 𝑦) ⊆ suc (𝐵 +o 𝑦))) |
27 | 26 | anandirs 676 |
. . . . . . . 8
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑦 ∈ On) → ((𝐴 +o 𝑦) ⊆ (𝐵 +o 𝑦) ↔ suc (𝐴 +o 𝑦) ⊆ suc (𝐵 +o 𝑦))) |
28 | | oasuc 8354 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴 +o suc 𝑦) = suc (𝐴 +o 𝑦)) |
29 | 28 | adantlr 712 |
. . . . . . . . 9
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑦 ∈ On) → (𝐴 +o suc 𝑦) = suc (𝐴 +o 𝑦)) |
30 | | oasuc 8354 |
. . . . . . . . . 10
⊢ ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 +o suc 𝑦) = suc (𝐵 +o 𝑦)) |
31 | 30 | adantll 711 |
. . . . . . . . 9
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑦 ∈ On) → (𝐵 +o suc 𝑦) = suc (𝐵 +o 𝑦)) |
32 | 29, 31 | sseq12d 3954 |
. . . . . . . 8
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑦 ∈ On) → ((𝐴 +o suc 𝑦) ⊆ (𝐵 +o suc 𝑦) ↔ suc (𝐴 +o 𝑦) ⊆ suc (𝐵 +o 𝑦))) |
33 | 27, 32 | bitr4d 281 |
. . . . . . 7
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑦 ∈ On) → ((𝐴 +o 𝑦) ⊆ (𝐵 +o 𝑦) ↔ (𝐴 +o suc 𝑦) ⊆ (𝐵 +o suc 𝑦))) |
34 | 33 | biimpd 228 |
. . . . . 6
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑦 ∈ On) → ((𝐴 +o 𝑦) ⊆ (𝐵 +o 𝑦) → (𝐴 +o suc 𝑦) ⊆ (𝐵 +o suc 𝑦))) |
35 | 34 | expcom 414 |
. . . . 5
⊢ (𝑦 ∈ On → ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝑦) ⊆ (𝐵 +o 𝑦) → (𝐴 +o suc 𝑦) ⊆ (𝐵 +o suc 𝑦)))) |
36 | 35 | adantrd 492 |
. . . 4
⊢ (𝑦 ∈ On → (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴 ⊆ 𝐵) → ((𝐴 +o 𝑦) ⊆ (𝐵 +o 𝑦) → (𝐴 +o suc 𝑦) ⊆ (𝐵 +o suc 𝑦)))) |
37 | | vex 3436 |
. . . . . . 7
⊢ 𝑥 ∈ V |
38 | | ss2iun 4942 |
. . . . . . . 8
⊢
(∀𝑦 ∈
𝑥 (𝐴 +o 𝑦) ⊆ (𝐵 +o 𝑦) → ∪
𝑦 ∈ 𝑥 (𝐴 +o 𝑦) ⊆ ∪
𝑦 ∈ 𝑥 (𝐵 +o 𝑦)) |
39 | | oalim 8362 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (𝐴 +o 𝑥) = ∪ 𝑦 ∈ 𝑥 (𝐴 +o 𝑦)) |
40 | 39 | adantlr 712 |
. . . . . . . . 9
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (𝐴 +o 𝑥) = ∪ 𝑦 ∈ 𝑥 (𝐴 +o 𝑦)) |
41 | | oalim 8362 |
. . . . . . . . . 10
⊢ ((𝐵 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (𝐵 +o 𝑥) = ∪ 𝑦 ∈ 𝑥 (𝐵 +o 𝑦)) |
42 | 41 | adantll 711 |
. . . . . . . . 9
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (𝐵 +o 𝑥) = ∪ 𝑦 ∈ 𝑥 (𝐵 +o 𝑦)) |
43 | 40, 42 | sseq12d 3954 |
. . . . . . . 8
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → ((𝐴 +o 𝑥) ⊆ (𝐵 +o 𝑥) ↔ ∪
𝑦 ∈ 𝑥 (𝐴 +o 𝑦) ⊆ ∪
𝑦 ∈ 𝑥 (𝐵 +o 𝑦))) |
44 | 38, 43 | syl5ibr 245 |
. . . . . . 7
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (∀𝑦 ∈ 𝑥 (𝐴 +o 𝑦) ⊆ (𝐵 +o 𝑦) → (𝐴 +o 𝑥) ⊆ (𝐵 +o 𝑥))) |
45 | 37, 44 | mpanr1 700 |
. . . . . 6
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ Lim 𝑥) → (∀𝑦 ∈ 𝑥 (𝐴 +o 𝑦) ⊆ (𝐵 +o 𝑦) → (𝐴 +o 𝑥) ⊆ (𝐵 +o 𝑥))) |
46 | 45 | expcom 414 |
. . . . 5
⊢ (Lim
𝑥 → ((𝐴 ∈ On ∧ 𝐵 ∈ On) →
(∀𝑦 ∈ 𝑥 (𝐴 +o 𝑦) ⊆ (𝐵 +o 𝑦) → (𝐴 +o 𝑥) ⊆ (𝐵 +o 𝑥)))) |
47 | 46 | adantrd 492 |
. . . 4
⊢ (Lim
𝑥 → (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴 ⊆ 𝐵) → (∀𝑦 ∈ 𝑥 (𝐴 +o 𝑦) ⊆ (𝐵 +o 𝑦) → (𝐴 +o 𝑥) ⊆ (𝐵 +o 𝑥)))) |
48 | 3, 6, 9, 12, 18, 36, 47 | tfinds3 7711 |
. . 3
⊢ (𝐶 ∈ On → (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴 ⊆ 𝐵) → (𝐴 +o 𝐶) ⊆ (𝐵 +o 𝐶))) |
49 | 48 | exp4c 433 |
. 2
⊢ (𝐶 ∈ On → (𝐴 ∈ On → (𝐵 ∈ On → (𝐴 ⊆ 𝐵 → (𝐴 +o 𝐶) ⊆ (𝐵 +o 𝐶))))) |
50 | 49 | 3imp231 1112 |
1
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ⊆ 𝐵 → (𝐴 +o 𝐶) ⊆ (𝐵 +o 𝐶))) |