![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > expdcom | Structured version Visualization version GIF version |
Description: Commuted form of expd 414. (Contributed by Alan Sare, 18-Mar-2012.) Shorten expd 414. (Revised by Wolf Lammen, 28-Jul-2022.) |
Ref | Expression |
---|---|
expd.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Ref | Expression |
---|---|
expdcom | ⊢ (𝜓 → (𝜒 → (𝜑 → 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | expd.1 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
2 | 1 | com12 32 | . 2 ⊢ ((𝜓 ∧ 𝜒) → (𝜑 → 𝜃)) |
3 | 2 | ex 411 | 1 ⊢ (𝜓 → (𝜒 → (𝜑 → 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 395 |
This theorem is referenced by: expd 414 odi 8609 nndi 8653 nnmass 8654 ttukeylem5 10556 genpnmax 11050 mulexp 14121 expadd 14124 expmul 14127 cshwidxmod 14811 prmgaplem6 17058 setsstruct 17178 usgredg2vlem2 29162 usgr2trlncl 29697 clwwlkel 29979 clwwlkf1 29982 wwlksext2clwwlk 29990 n4cyclfrgr 30224 5oalem6 31592 atom1d 32286 grpomndo 37576 pell14qrexpclnn0 42523 truniALT 44217 truniALTVD 44554 iccpartigtl 46995 sbgoldbm 47356 2zlidl 47617 rngccatidALTV 47649 ringccatidALTV 47683 nn0sumshdiglemA 48007 |
Copyright terms: Public domain | W3C validator |