| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > expdcom | Structured version Visualization version GIF version | ||
| Description: Commuted form of expd 415. (Contributed by Alan Sare, 18-Mar-2012.) Shorten expd 415. (Revised by Wolf Lammen, 28-Jul-2022.) |
| Ref | Expression |
|---|---|
| expd.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Ref | Expression |
|---|---|
| expdcom | ⊢ (𝜓 → (𝜒 → (𝜑 → 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | expd.1 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
| 2 | 1 | com12 32 | . 2 ⊢ ((𝜓 ∧ 𝜒) → (𝜑 → 𝜃)) |
| 3 | 2 | ex 412 | 1 ⊢ (𝜓 → (𝜒 → (𝜑 → 𝜃))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: expd 415 odi 8543 nndi 8587 nnmass 8588 ttukeylem5 10466 genpnmax 10960 mulexp 14066 expadd 14069 expmul 14072 cshwidxmod 14768 prmgaplem6 17027 setsstruct 17146 usgredg2vlem2 29153 usgr2trlncl 29690 clwwlkel 29975 clwwlkf1 29978 wwlksext2clwwlk 29986 n4cyclfrgr 30220 5oalem6 31588 atom1d 32282 grpomndo 37869 pell14qrexpclnn0 42854 truniALT 44531 truniALTVD 44867 iccpartigtl 47424 sbgoldbm 47785 cycldlenngric 47928 pgnbgreunbgrlem1 48103 pgnbgreunbgrlem2 48107 pgnbgreunbgrlem4 48109 pgnbgreunbgrlem5 48113 2zlidl 48228 rngccatidALTV 48260 ringccatidALTV 48294 nn0sumshdiglemA 48608 |
| Copyright terms: Public domain | W3C validator |