| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > expdcom | Structured version Visualization version GIF version | ||
| Description: Commuted form of expd 415. (Contributed by Alan Sare, 18-Mar-2012.) Shorten expd 415. (Revised by Wolf Lammen, 28-Jul-2022.) |
| Ref | Expression |
|---|---|
| expd.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Ref | Expression |
|---|---|
| expdcom | ⊢ (𝜓 → (𝜒 → (𝜑 → 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | expd.1 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
| 2 | 1 | com12 32 | . 2 ⊢ ((𝜓 ∧ 𝜒) → (𝜑 → 𝜃)) |
| 3 | 2 | ex 412 | 1 ⊢ (𝜓 → (𝜒 → (𝜑 → 𝜃))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: expd 415 odi 8591 nndi 8635 nnmass 8636 ttukeylem5 10527 genpnmax 11021 mulexp 14119 expadd 14122 expmul 14125 cshwidxmod 14821 prmgaplem6 17076 setsstruct 17195 usgredg2vlem2 29205 usgr2trlncl 29742 clwwlkel 30027 clwwlkf1 30030 wwlksext2clwwlk 30038 n4cyclfrgr 30272 5oalem6 31640 atom1d 32334 grpomndo 37899 pell14qrexpclnn0 42889 truniALT 44566 truniALTVD 44902 iccpartigtl 47437 sbgoldbm 47798 cycldlenngric 47941 2zlidl 48215 rngccatidALTV 48247 ringccatidALTV 48281 nn0sumshdiglemA 48599 |
| Copyright terms: Public domain | W3C validator |