Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > expdcom | Structured version Visualization version GIF version |
Description: Commuted form of expd 416. (Contributed by Alan Sare, 18-Mar-2012.) Shorten expd 416. (Revised by Wolf Lammen, 28-Jul-2022.) |
Ref | Expression |
---|---|
expd.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Ref | Expression |
---|---|
expdcom | ⊢ (𝜓 → (𝜒 → (𝜑 → 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | expd.1 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
2 | 1 | com12 32 | . 2 ⊢ ((𝜓 ∧ 𝜒) → (𝜑 → 𝜃)) |
3 | 2 | ex 413 | 1 ⊢ (𝜓 → (𝜒 → (𝜑 → 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: expd 416 odi 8410 nndi 8454 nnmass 8455 ttukeylem5 10269 genpnmax 10763 mulexp 13822 expadd 13825 expmul 13828 cshwidxmod 14516 prmgaplem6 16757 setsstruct 16877 usgredg2vlem2 27593 usgr2trlncl 28128 clwwlkel 28410 clwwlkf1 28413 wwlksext2clwwlk 28421 n4cyclfrgr 28655 5oalem6 30021 atom1d 30715 grpomndo 36033 pell14qrexpclnn0 40688 truniALT 42161 truniALTVD 42498 iccpartigtl 44875 sbgoldbm 45236 2zlidl 45492 rngccatidALTV 45547 ringccatidALTV 45610 nn0sumshdiglemA 45965 |
Copyright terms: Public domain | W3C validator |