| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > expdcom | Structured version Visualization version GIF version | ||
| Description: Commuted form of expd 415. (Contributed by Alan Sare, 18-Mar-2012.) Shorten expd 415. (Revised by Wolf Lammen, 28-Jul-2022.) |
| Ref | Expression |
|---|---|
| expd.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Ref | Expression |
|---|---|
| expdcom | ⊢ (𝜓 → (𝜒 → (𝜑 → 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | expd.1 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
| 2 | 1 | com12 32 | . 2 ⊢ ((𝜓 ∧ 𝜒) → (𝜑 → 𝜃)) |
| 3 | 2 | ex 412 | 1 ⊢ (𝜓 → (𝜒 → (𝜑 → 𝜃))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: expd 415 odi 8504 nndi 8548 nnmass 8549 ttukeylem5 10426 genpnmax 10920 mulexp 14026 expadd 14029 expmul 14032 cshwidxmod 14727 prmgaplem6 16986 setsstruct 17105 usgredg2vlem2 29189 usgr2trlncl 29723 clwwlkel 30008 clwwlkf1 30011 wwlksext2clwwlk 30019 n4cyclfrgr 30253 5oalem6 31621 atom1d 32315 grpomndo 37854 pell14qrexpclnn0 42839 truniALT 44515 truniALTVD 44851 iccpartigtl 47408 sbgoldbm 47769 cycldlenngric 47913 pgnbgreunbgrlem1 48098 pgnbgreunbgrlem2 48102 pgnbgreunbgrlem4 48104 pgnbgreunbgrlem5 48108 2zlidl 48225 rngccatidALTV 48257 ringccatidALTV 48291 nn0sumshdiglemA 48605 |
| Copyright terms: Public domain | W3C validator |