| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > expdcom | Structured version Visualization version GIF version | ||
| Description: Commuted form of expd 415. (Contributed by Alan Sare, 18-Mar-2012.) Shorten expd 415. (Revised by Wolf Lammen, 28-Jul-2022.) |
| Ref | Expression |
|---|---|
| expd.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Ref | Expression |
|---|---|
| expdcom | ⊢ (𝜓 → (𝜒 → (𝜑 → 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | expd.1 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
| 2 | 1 | com12 32 | . 2 ⊢ ((𝜓 ∧ 𝜒) → (𝜑 → 𝜃)) |
| 3 | 2 | ex 412 | 1 ⊢ (𝜓 → (𝜒 → (𝜑 → 𝜃))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: expd 415 odi 8546 nndi 8590 nnmass 8591 ttukeylem5 10473 genpnmax 10967 mulexp 14073 expadd 14076 expmul 14079 cshwidxmod 14775 prmgaplem6 17034 setsstruct 17153 usgredg2vlem2 29160 usgr2trlncl 29697 clwwlkel 29982 clwwlkf1 29985 wwlksext2clwwlk 29993 n4cyclfrgr 30227 5oalem6 31595 atom1d 32289 grpomndo 37876 pell14qrexpclnn0 42861 truniALT 44538 truniALTVD 44874 iccpartigtl 47428 sbgoldbm 47789 cycldlenngric 47932 pgnbgreunbgrlem1 48107 pgnbgreunbgrlem2 48111 pgnbgreunbgrlem4 48113 pgnbgreunbgrlem5 48117 2zlidl 48232 rngccatidALTV 48264 ringccatidALTV 48298 nn0sumshdiglemA 48612 |
| Copyright terms: Public domain | W3C validator |