Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > expdcom | Structured version Visualization version GIF version |
Description: Commuted form of expd 415. (Contributed by Alan Sare, 18-Mar-2012.) Shorten expd 415. (Revised by Wolf Lammen, 28-Jul-2022.) |
Ref | Expression |
---|---|
expd.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Ref | Expression |
---|---|
expdcom | ⊢ (𝜓 → (𝜒 → (𝜑 → 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | expd.1 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
2 | 1 | com12 32 | . 2 ⊢ ((𝜓 ∧ 𝜒) → (𝜑 → 𝜃)) |
3 | 2 | ex 412 | 1 ⊢ (𝜓 → (𝜒 → (𝜑 → 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: expd 415 odi 8372 nndi 8416 nnmass 8417 ttukeylem5 10200 genpnmax 10694 mulexp 13750 expadd 13753 expmul 13756 cshwidxmod 14444 prmgaplem6 16685 setsstruct 16805 usgredg2vlem2 27496 usgr2trlncl 28029 clwwlkel 28311 clwwlkf1 28314 wwlksext2clwwlk 28322 n4cyclfrgr 28556 5oalem6 29922 atom1d 30616 grpomndo 35960 pell14qrexpclnn0 40604 truniALT 42050 truniALTVD 42387 iccpartigtl 44763 sbgoldbm 45124 2zlidl 45380 rngccatidALTV 45435 ringccatidALTV 45498 nn0sumshdiglemA 45853 |
Copyright terms: Public domain | W3C validator |