![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > expdcom | Structured version Visualization version GIF version |
Description: Commuted form of expd 415. (Contributed by Alan Sare, 18-Mar-2012.) Shorten expd 415. (Revised by Wolf Lammen, 28-Jul-2022.) |
Ref | Expression |
---|---|
expd.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Ref | Expression |
---|---|
expdcom | ⊢ (𝜓 → (𝜒 → (𝜑 → 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | expd.1 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
2 | 1 | com12 32 | . 2 ⊢ ((𝜓 ∧ 𝜒) → (𝜑 → 𝜃)) |
3 | 2 | ex 412 | 1 ⊢ (𝜓 → (𝜒 → (𝜑 → 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: expd 415 odi 8615 nndi 8659 nnmass 8660 ttukeylem5 10550 genpnmax 11044 mulexp 14138 expadd 14141 expmul 14144 cshwidxmod 14837 prmgaplem6 17089 setsstruct 17209 usgredg2vlem2 29257 usgr2trlncl 29792 clwwlkel 30074 clwwlkf1 30077 wwlksext2clwwlk 30085 n4cyclfrgr 30319 5oalem6 31687 atom1d 32381 grpomndo 37861 pell14qrexpclnn0 42853 truniALT 44538 truniALTVD 44875 iccpartigtl 47347 sbgoldbm 47708 2zlidl 48083 rngccatidALTV 48115 ringccatidALTV 48149 nn0sumshdiglemA 48468 |
Copyright terms: Public domain | W3C validator |