MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expdcom Structured version   Visualization version   GIF version

Theorem expdcom 415
Description: Commuted form of expd 416. (Contributed by Alan Sare, 18-Mar-2012.) Shorten expd 416. (Revised by Wolf Lammen, 28-Jul-2022.)
Hypothesis
Ref Expression
expd.1 (𝜑 → ((𝜓𝜒) → 𝜃))
Assertion
Ref Expression
expdcom (𝜓 → (𝜒 → (𝜑𝜃)))

Proof of Theorem expdcom
StepHypRef Expression
1 expd.1 . . 3 (𝜑 → ((𝜓𝜒) → 𝜃))
21com12 32 . 2 ((𝜓𝜒) → (𝜑𝜃))
32ex 413 1 (𝜓 → (𝜒 → (𝜑𝜃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397
This theorem is referenced by:  expd  416  odi  8410  nndi  8454  nnmass  8455  ttukeylem5  10269  genpnmax  10763  mulexp  13822  expadd  13825  expmul  13828  cshwidxmod  14516  prmgaplem6  16757  setsstruct  16877  usgredg2vlem2  27593  usgr2trlncl  28128  clwwlkel  28410  clwwlkf1  28413  wwlksext2clwwlk  28421  n4cyclfrgr  28655  5oalem6  30021  atom1d  30715  grpomndo  36033  pell14qrexpclnn0  40688  truniALT  42161  truniALTVD  42498  iccpartigtl  44875  sbgoldbm  45236  2zlidl  45492  rngccatidALTV  45547  ringccatidALTV  45610  nn0sumshdiglemA  45965
  Copyright terms: Public domain W3C validator