| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > expdcom | Structured version Visualization version GIF version | ||
| Description: Commuted form of expd 415. (Contributed by Alan Sare, 18-Mar-2012.) Shorten expd 415. (Revised by Wolf Lammen, 28-Jul-2022.) |
| Ref | Expression |
|---|---|
| expd.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Ref | Expression |
|---|---|
| expdcom | ⊢ (𝜓 → (𝜒 → (𝜑 → 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | expd.1 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
| 2 | 1 | com12 32 | . 2 ⊢ ((𝜓 ∧ 𝜒) → (𝜑 → 𝜃)) |
| 3 | 2 | ex 412 | 1 ⊢ (𝜓 → (𝜒 → (𝜑 → 𝜃))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: expd 415 odi 8500 nndi 8544 nnmass 8545 ttukeylem5 10411 genpnmax 10905 mulexp 14010 expadd 14013 expmul 14016 cshwidxmod 14712 prmgaplem6 16970 setsstruct 17089 usgredg2vlem2 29206 usgr2trlncl 29740 clwwlkel 30028 clwwlkf1 30031 wwlksext2clwwlk 30039 n4cyclfrgr 30273 5oalem6 31641 atom1d 32335 grpomndo 37935 pell14qrexpclnn0 42983 truniALT 44658 truniALTVD 44994 iccpartigtl 47547 sbgoldbm 47908 cycldlenngric 48052 pgnbgreunbgrlem1 48237 pgnbgreunbgrlem2 48241 pgnbgreunbgrlem4 48243 pgnbgreunbgrlem5 48247 2zlidl 48364 rngccatidALTV 48396 ringccatidALTV 48430 nn0sumshdiglemA 48744 |
| Copyright terms: Public domain | W3C validator |