| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > expdcom | Structured version Visualization version GIF version | ||
| Description: Commuted form of expd 415. (Contributed by Alan Sare, 18-Mar-2012.) Shorten expd 415. (Revised by Wolf Lammen, 28-Jul-2022.) |
| Ref | Expression |
|---|---|
| expd.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Ref | Expression |
|---|---|
| expdcom | ⊢ (𝜓 → (𝜒 → (𝜑 → 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | expd.1 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
| 2 | 1 | com12 32 | . 2 ⊢ ((𝜓 ∧ 𝜒) → (𝜑 → 𝜃)) |
| 3 | 2 | ex 412 | 1 ⊢ (𝜓 → (𝜒 → (𝜑 → 𝜃))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: expd 415 odi 8494 nndi 8538 nnmass 8539 ttukeylem5 10401 genpnmax 10895 mulexp 14005 expadd 14008 expmul 14011 cshwidxmod 14707 prmgaplem6 16965 setsstruct 17084 usgredg2vlem2 29202 usgr2trlncl 29736 clwwlkel 30021 clwwlkf1 30024 wwlksext2clwwlk 30032 n4cyclfrgr 30266 5oalem6 31634 atom1d 32328 grpomndo 37914 pell14qrexpclnn0 42898 truniALT 44573 truniALTVD 44909 iccpartigtl 47453 sbgoldbm 47814 cycldlenngric 47958 pgnbgreunbgrlem1 48143 pgnbgreunbgrlem2 48147 pgnbgreunbgrlem4 48149 pgnbgreunbgrlem5 48153 2zlidl 48270 rngccatidALTV 48302 ringccatidALTV 48336 nn0sumshdiglemA 48650 |
| Copyright terms: Public domain | W3C validator |