![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > expdcom | Structured version Visualization version GIF version |
Description: Commuted form of expd 414. (Contributed by Alan Sare, 18-Mar-2012.) Shorten expd 414. (Revised by Wolf Lammen, 28-Jul-2022.) |
Ref | Expression |
---|---|
expd.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Ref | Expression |
---|---|
expdcom | ⊢ (𝜓 → (𝜒 → (𝜑 → 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | expd.1 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
2 | 1 | com12 32 | . 2 ⊢ ((𝜓 ∧ 𝜒) → (𝜑 → 𝜃)) |
3 | 2 | ex 411 | 1 ⊢ (𝜓 → (𝜒 → (𝜑 → 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 395 |
This theorem is referenced by: expd 414 odi 8581 nndi 8625 nnmass 8626 ttukeylem5 10510 genpnmax 11004 mulexp 14071 expadd 14074 expmul 14077 cshwidxmod 14757 prmgaplem6 16993 setsstruct 17113 usgredg2vlem2 28750 usgr2trlncl 29284 clwwlkel 29566 clwwlkf1 29569 wwlksext2clwwlk 29577 n4cyclfrgr 29811 5oalem6 31179 atom1d 31873 grpomndo 37046 pell14qrexpclnn0 41906 truniALT 43604 truniALTVD 43941 iccpartigtl 46389 sbgoldbm 46750 2zlidl 46920 rngccatidALTV 46975 ringccatidALTV 47038 nn0sumshdiglemA 47392 |
Copyright terms: Public domain | W3C validator |