MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlkf1 Structured version   Visualization version   GIF version

Theorem clwwlkf1 28159
Description: Lemma 3 for clwwlkf1o 28161: 𝐹 is a 1-1 function. (Contributed by AV, 28-Sep-2018.) (Revised by AV, 26-Apr-2021.) (Revised by AV, 1-Nov-2022.)
Hypotheses
Ref Expression
clwwlkf1o.d 𝐷 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑤) = (𝑤‘0)}
clwwlkf1o.f 𝐹 = (𝑡𝐷 ↦ (𝑡 prefix 𝑁))
Assertion
Ref Expression
clwwlkf1 (𝑁 ∈ ℕ → 𝐹:𝐷1-1→(𝑁 ClWWalksN 𝐺))
Distinct variable groups:   𝑤,𝐺   𝑤,𝑁   𝑡,𝐷   𝑡,𝐺,𝑤   𝑡,𝑁
Allowed substitution hints:   𝐷(𝑤)   𝐹(𝑤,𝑡)

Proof of Theorem clwwlkf1
Dummy variables 𝑖 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 clwwlkf1o.d . . 3 𝐷 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑤) = (𝑤‘0)}
2 clwwlkf1o.f . . 3 𝐹 = (𝑡𝐷 ↦ (𝑡 prefix 𝑁))
31, 2clwwlkf 28157 . 2 (𝑁 ∈ ℕ → 𝐹:𝐷⟶(𝑁 ClWWalksN 𝐺))
41, 2clwwlkfv 28158 . . . . . 6 (𝑥𝐷 → (𝐹𝑥) = (𝑥 prefix 𝑁))
51, 2clwwlkfv 28158 . . . . . 6 (𝑦𝐷 → (𝐹𝑦) = (𝑦 prefix 𝑁))
64, 5eqeqan12d 2752 . . . . 5 ((𝑥𝐷𝑦𝐷) → ((𝐹𝑥) = (𝐹𝑦) ↔ (𝑥 prefix 𝑁) = (𝑦 prefix 𝑁)))
76adantl 485 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑥𝐷𝑦𝐷)) → ((𝐹𝑥) = (𝐹𝑦) ↔ (𝑥 prefix 𝑁) = (𝑦 prefix 𝑁)))
8 fveq2 6736 . . . . . . . . 9 (𝑤 = 𝑥 → (lastS‘𝑤) = (lastS‘𝑥))
9 fveq1 6735 . . . . . . . . 9 (𝑤 = 𝑥 → (𝑤‘0) = (𝑥‘0))
108, 9eqeq12d 2754 . . . . . . . 8 (𝑤 = 𝑥 → ((lastS‘𝑤) = (𝑤‘0) ↔ (lastS‘𝑥) = (𝑥‘0)))
1110, 1elrab2 3618 . . . . . . 7 (𝑥𝐷 ↔ (𝑥 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑥) = (𝑥‘0)))
12 fveq2 6736 . . . . . . . . 9 (𝑤 = 𝑦 → (lastS‘𝑤) = (lastS‘𝑦))
13 fveq1 6735 . . . . . . . . 9 (𝑤 = 𝑦 → (𝑤‘0) = (𝑦‘0))
1412, 13eqeq12d 2754 . . . . . . . 8 (𝑤 = 𝑦 → ((lastS‘𝑤) = (𝑤‘0) ↔ (lastS‘𝑦) = (𝑦‘0)))
1514, 1elrab2 3618 . . . . . . 7 (𝑦𝐷 ↔ (𝑦 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑦) = (𝑦‘0)))
1611, 15anbi12i 630 . . . . . 6 ((𝑥𝐷𝑦𝐷) ↔ ((𝑥 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑥) = (𝑥‘0)) ∧ (𝑦 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑦) = (𝑦‘0))))
17 eqid 2738 . . . . . . . . . 10 (Vtx‘𝐺) = (Vtx‘𝐺)
18 eqid 2738 . . . . . . . . . 10 (Edg‘𝐺) = (Edg‘𝐺)
1917, 18wwlknp 27954 . . . . . . . . 9 (𝑥 ∈ (𝑁 WWalksN 𝐺) → (𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑥𝑖), (𝑥‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
2017, 18wwlknp 27954 . . . . . . . . . . . . 13 (𝑦 ∈ (𝑁 WWalksN 𝐺) → (𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑦𝑖), (𝑦‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
21 simprlr 780 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0))) → (♯‘𝑥) = (𝑁 + 1))
22 simpllr 776 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0))) → (♯‘𝑦) = (𝑁 + 1))
2321, 22eqtr4d 2781 . . . . . . . . . . . . . . . . . . . 20 ((((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0))) → (♯‘𝑥) = (♯‘𝑦))
2423ad2antlr 727 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0)))) ∧ (𝑥 prefix 𝑁) = (𝑦 prefix 𝑁)) → (♯‘𝑥) = (♯‘𝑦))
25 nncn 11863 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
26 ax-1cn 10812 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 1 ∈ ℂ
27 pncan 11109 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 1) − 1) = 𝑁)
2827eqcomd 2744 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → 𝑁 = ((𝑁 + 1) − 1))
2925, 26, 28sylancl 589 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ ℕ → 𝑁 = ((𝑁 + 1) − 1))
30 oveq1 7239 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((♯‘𝑥) = (𝑁 + 1) → ((♯‘𝑥) − 1) = ((𝑁 + 1) − 1))
3130eqcomd 2744 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((♯‘𝑥) = (𝑁 + 1) → ((𝑁 + 1) − 1) = ((♯‘𝑥) − 1))
3229, 31sylan9eqr 2801 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((♯‘𝑥) = (𝑁 + 1) ∧ 𝑁 ∈ ℕ) → 𝑁 = ((♯‘𝑥) − 1))
3332oveq2d 7248 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((♯‘𝑥) = (𝑁 + 1) ∧ 𝑁 ∈ ℕ) → (𝑥 prefix 𝑁) = (𝑥 prefix ((♯‘𝑥) − 1)))
3432oveq2d 7248 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((♯‘𝑥) = (𝑁 + 1) ∧ 𝑁 ∈ ℕ) → (𝑦 prefix 𝑁) = (𝑦 prefix ((♯‘𝑥) − 1)))
3533, 34eqeq12d 2754 . . . . . . . . . . . . . . . . . . . . . . . 24 (((♯‘𝑥) = (𝑁 + 1) ∧ 𝑁 ∈ ℕ) → ((𝑥 prefix 𝑁) = (𝑦 prefix 𝑁) ↔ (𝑥 prefix ((♯‘𝑥) − 1)) = (𝑦 prefix ((♯‘𝑥) − 1))))
3635ex 416 . . . . . . . . . . . . . . . . . . . . . . 23 ((♯‘𝑥) = (𝑁 + 1) → (𝑁 ∈ ℕ → ((𝑥 prefix 𝑁) = (𝑦 prefix 𝑁) ↔ (𝑥 prefix ((♯‘𝑥) − 1)) = (𝑦 prefix ((♯‘𝑥) − 1)))))
3736ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0)) → (𝑁 ∈ ℕ → ((𝑥 prefix 𝑁) = (𝑦 prefix 𝑁) ↔ (𝑥 prefix ((♯‘𝑥) − 1)) = (𝑦 prefix ((♯‘𝑥) − 1)))))
3837adantl 485 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0))) → (𝑁 ∈ ℕ → ((𝑥 prefix 𝑁) = (𝑦 prefix 𝑁) ↔ (𝑥 prefix ((♯‘𝑥) − 1)) = (𝑦 prefix ((♯‘𝑥) − 1)))))
3938impcom 411 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0)))) → ((𝑥 prefix 𝑁) = (𝑦 prefix 𝑁) ↔ (𝑥 prefix ((♯‘𝑥) − 1)) = (𝑦 prefix ((♯‘𝑥) − 1))))
4039biimpa 480 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0)))) ∧ (𝑥 prefix 𝑁) = (𝑦 prefix 𝑁)) → (𝑥 prefix ((♯‘𝑥) − 1)) = (𝑦 prefix ((♯‘𝑥) − 1)))
41 simpll 767 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) → 𝑦 ∈ Word (Vtx‘𝐺))
42 simpll 767 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0)) → 𝑥 ∈ Word (Vtx‘𝐺))
4341, 42anim12ci 617 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0))) → (𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑦 ∈ Word (Vtx‘𝐺)))
4443adantl 485 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0)))) → (𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑦 ∈ Word (Vtx‘𝐺)))
45 nnnn0 12122 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
46 0nn0 12130 . . . . . . . . . . . . . . . . . . . . . . . . 25 0 ∈ ℕ0
4745, 46jctil 523 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℕ → (0 ∈ ℕ0𝑁 ∈ ℕ0))
4847adantr 484 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0)))) → (0 ∈ ℕ0𝑁 ∈ ℕ0))
49 nnre 11862 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
5049lep1d 11788 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ ℕ → 𝑁 ≤ (𝑁 + 1))
51 breq2 5072 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((♯‘𝑥) = (𝑁 + 1) → (𝑁 ≤ (♯‘𝑥) ↔ 𝑁 ≤ (𝑁 + 1)))
5250, 51syl5ibr 249 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((♯‘𝑥) = (𝑁 + 1) → (𝑁 ∈ ℕ → 𝑁 ≤ (♯‘𝑥)))
5352ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0)) → (𝑁 ∈ ℕ → 𝑁 ≤ (♯‘𝑥)))
5453adantl 485 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0))) → (𝑁 ∈ ℕ → 𝑁 ≤ (♯‘𝑥)))
5554impcom 411 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0)))) → 𝑁 ≤ (♯‘𝑥))
56 breq2 5072 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((♯‘𝑦) = (𝑁 + 1) → (𝑁 ≤ (♯‘𝑦) ↔ 𝑁 ≤ (𝑁 + 1)))
5750, 56syl5ibr 249 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((♯‘𝑦) = (𝑁 + 1) → (𝑁 ∈ ℕ → 𝑁 ≤ (♯‘𝑦)))
5857ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) → (𝑁 ∈ ℕ → 𝑁 ≤ (♯‘𝑦)))
5958adantr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0))) → (𝑁 ∈ ℕ → 𝑁 ≤ (♯‘𝑦)))
6059impcom 411 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0)))) → 𝑁 ≤ (♯‘𝑦))
61 pfxval 14266 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ ℕ0) → (𝑥 prefix 𝑁) = (𝑥 substr ⟨0, 𝑁⟩))
6261ad2ant2rl 749 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑦 ∈ Word (Vtx‘𝐺)) ∧ (0 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑥 prefix 𝑁) = (𝑥 substr ⟨0, 𝑁⟩))
63 pfxval 14266 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑦 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ ℕ0) → (𝑦 prefix 𝑁) = (𝑦 substr ⟨0, 𝑁⟩))
6463ad2ant2l 746 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑦 ∈ Word (Vtx‘𝐺)) ∧ (0 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑦 prefix 𝑁) = (𝑦 substr ⟨0, 𝑁⟩))
6562, 64eqeq12d 2754 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑦 ∈ Word (Vtx‘𝐺)) ∧ (0 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑥 prefix 𝑁) = (𝑦 prefix 𝑁) ↔ (𝑥 substr ⟨0, 𝑁⟩) = (𝑦 substr ⟨0, 𝑁⟩)))
66653adant3 1134 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑦 ∈ Word (Vtx‘𝐺)) ∧ (0 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑥) ∧ 𝑁 ≤ (♯‘𝑦))) → ((𝑥 prefix 𝑁) = (𝑦 prefix 𝑁) ↔ (𝑥 substr ⟨0, 𝑁⟩) = (𝑦 substr ⟨0, 𝑁⟩)))
67 swrdspsleq 14258 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑦 ∈ Word (Vtx‘𝐺)) ∧ (0 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑥) ∧ 𝑁 ≤ (♯‘𝑦))) → ((𝑥 substr ⟨0, 𝑁⟩) = (𝑦 substr ⟨0, 𝑁⟩) ↔ ∀𝑖 ∈ (0..^𝑁)(𝑥𝑖) = (𝑦𝑖)))
6866, 67bitrd 282 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑦 ∈ Word (Vtx‘𝐺)) ∧ (0 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑥) ∧ 𝑁 ≤ (♯‘𝑦))) → ((𝑥 prefix 𝑁) = (𝑦 prefix 𝑁) ↔ ∀𝑖 ∈ (0..^𝑁)(𝑥𝑖) = (𝑦𝑖)))
6944, 48, 55, 60, 68syl112anc 1376 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0)))) → ((𝑥 prefix 𝑁) = (𝑦 prefix 𝑁) ↔ ∀𝑖 ∈ (0..^𝑁)(𝑥𝑖) = (𝑦𝑖)))
70 lbfzo0 13307 . . . . . . . . . . . . . . . . . . . . . . . . 25 (0 ∈ (0..^𝑁) ↔ 𝑁 ∈ ℕ)
7170biimpri 231 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℕ → 0 ∈ (0..^𝑁))
7271adantr 484 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0)))) → 0 ∈ (0..^𝑁))
73 fveq2 6736 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑖 = 0 → (𝑥𝑖) = (𝑥‘0))
74 fveq2 6736 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑖 = 0 → (𝑦𝑖) = (𝑦‘0))
7573, 74eqeq12d 2754 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑖 = 0 → ((𝑥𝑖) = (𝑦𝑖) ↔ (𝑥‘0) = (𝑦‘0)))
7675rspcv 3545 . . . . . . . . . . . . . . . . . . . . . . 23 (0 ∈ (0..^𝑁) → (∀𝑖 ∈ (0..^𝑁)(𝑥𝑖) = (𝑦𝑖) → (𝑥‘0) = (𝑦‘0)))
7772, 76syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0)))) → (∀𝑖 ∈ (0..^𝑁)(𝑥𝑖) = (𝑦𝑖) → (𝑥‘0) = (𝑦‘0)))
7869, 77sylbid 243 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0)))) → ((𝑥 prefix 𝑁) = (𝑦 prefix 𝑁) → (𝑥‘0) = (𝑦‘0)))
7978imp 410 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0)))) ∧ (𝑥 prefix 𝑁) = (𝑦 prefix 𝑁)) → (𝑥‘0) = (𝑦‘0))
80 simpr 488 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0)) → (lastS‘𝑥) = (𝑥‘0))
81 simpr 488 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) → (lastS‘𝑦) = (𝑦‘0))
8280, 81eqeqan12rd 2753 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0))) → ((lastS‘𝑥) = (lastS‘𝑦) ↔ (𝑥‘0) = (𝑦‘0)))
8382ad2antlr 727 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0)))) ∧ (𝑥 prefix 𝑁) = (𝑦 prefix 𝑁)) → ((lastS‘𝑥) = (lastS‘𝑦) ↔ (𝑥‘0) = (𝑦‘0)))
8479, 83mpbird 260 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0)))) ∧ (𝑥 prefix 𝑁) = (𝑦 prefix 𝑁)) → (lastS‘𝑥) = (lastS‘𝑦))
8524, 40, 84jca32 519 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0)))) ∧ (𝑥 prefix 𝑁) = (𝑦 prefix 𝑁)) → ((♯‘𝑥) = (♯‘𝑦) ∧ ((𝑥 prefix ((♯‘𝑥) − 1)) = (𝑦 prefix ((♯‘𝑥) − 1)) ∧ (lastS‘𝑥) = (lastS‘𝑦))))
8642adantl 485 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0))) → 𝑥 ∈ Word (Vtx‘𝐺))
8786adantl 485 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0)))) → 𝑥 ∈ Word (Vtx‘𝐺))
8841adantr 484 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0))) → 𝑦 ∈ Word (Vtx‘𝐺))
8988adantl 485 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0)))) → 𝑦 ∈ Word (Vtx‘𝐺))
90 1red 10859 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℕ → 1 ∈ ℝ)
91 nngt0 11886 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℕ → 0 < 𝑁)
92 0lt1 11379 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 0 < 1
9392a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℕ → 0 < 1)
9449, 90, 91, 93addgt0d 11432 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℕ → 0 < (𝑁 + 1))
95 breq2 5072 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((♯‘𝑥) = (𝑁 + 1) → (0 < (♯‘𝑥) ↔ 0 < (𝑁 + 1)))
9694, 95syl5ibr 249 . . . . . . . . . . . . . . . . . . . . . . . 24 ((♯‘𝑥) = (𝑁 + 1) → (𝑁 ∈ ℕ → 0 < (♯‘𝑥)))
9796ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0)) → (𝑁 ∈ ℕ → 0 < (♯‘𝑥)))
9897adantl 485 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0))) → (𝑁 ∈ ℕ → 0 < (♯‘𝑥)))
9998impcom 411 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0)))) → 0 < (♯‘𝑥))
10087, 89, 993jca 1130 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0)))) → (𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑦 ∈ Word (Vtx‘𝐺) ∧ 0 < (♯‘𝑥)))
101100adantr 484 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0)))) ∧ (𝑥 prefix 𝑁) = (𝑦 prefix 𝑁)) → (𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑦 ∈ Word (Vtx‘𝐺) ∧ 0 < (♯‘𝑥)))
102 pfxsuff1eqwrdeq 14292 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑦 ∈ Word (Vtx‘𝐺) ∧ 0 < (♯‘𝑥)) → (𝑥 = 𝑦 ↔ ((♯‘𝑥) = (♯‘𝑦) ∧ ((𝑥 prefix ((♯‘𝑥) − 1)) = (𝑦 prefix ((♯‘𝑥) − 1)) ∧ (lastS‘𝑥) = (lastS‘𝑦)))))
103101, 102syl 17 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0)))) ∧ (𝑥 prefix 𝑁) = (𝑦 prefix 𝑁)) → (𝑥 = 𝑦 ↔ ((♯‘𝑥) = (♯‘𝑦) ∧ ((𝑥 prefix ((♯‘𝑥) − 1)) = (𝑦 prefix ((♯‘𝑥) − 1)) ∧ (lastS‘𝑥) = (lastS‘𝑦)))))
10485, 103mpbird 260 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0)))) ∧ (𝑥 prefix 𝑁) = (𝑦 prefix 𝑁)) → 𝑥 = 𝑦)
105104exp31 423 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → ((((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0))) → ((𝑥 prefix 𝑁) = (𝑦 prefix 𝑁) → 𝑥 = 𝑦)))
106105expdcom 418 . . . . . . . . . . . . . . 15 (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) → (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0)) → (𝑁 ∈ ℕ → ((𝑥 prefix 𝑁) = (𝑦 prefix 𝑁) → 𝑥 = 𝑦))))
107106ex 416 . . . . . . . . . . . . . 14 ((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) → ((lastS‘𝑦) = (𝑦‘0) → (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0)) → (𝑁 ∈ ℕ → ((𝑥 prefix 𝑁) = (𝑦 prefix 𝑁) → 𝑥 = 𝑦)))))
1081073adant3 1134 . . . . . . . . . . . . 13 ((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑦𝑖), (𝑦‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → ((lastS‘𝑦) = (𝑦‘0) → (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0)) → (𝑁 ∈ ℕ → ((𝑥 prefix 𝑁) = (𝑦 prefix 𝑁) → 𝑥 = 𝑦)))))
10920, 108syl 17 . . . . . . . . . . . 12 (𝑦 ∈ (𝑁 WWalksN 𝐺) → ((lastS‘𝑦) = (𝑦‘0) → (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0)) → (𝑁 ∈ ℕ → ((𝑥 prefix 𝑁) = (𝑦 prefix 𝑁) → 𝑥 = 𝑦)))))
110109imp 410 . . . . . . . . . . 11 ((𝑦 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑦) = (𝑦‘0)) → (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0)) → (𝑁 ∈ ℕ → ((𝑥 prefix 𝑁) = (𝑦 prefix 𝑁) → 𝑥 = 𝑦))))
111110expdcom 418 . . . . . . . . . 10 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) → ((lastS‘𝑥) = (𝑥‘0) → ((𝑦 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑦) = (𝑦‘0)) → (𝑁 ∈ ℕ → ((𝑥 prefix 𝑁) = (𝑦 prefix 𝑁) → 𝑥 = 𝑦)))))
1121113adant3 1134 . . . . . . . . 9 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑥𝑖), (𝑥‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → ((lastS‘𝑥) = (𝑥‘0) → ((𝑦 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑦) = (𝑦‘0)) → (𝑁 ∈ ℕ → ((𝑥 prefix 𝑁) = (𝑦 prefix 𝑁) → 𝑥 = 𝑦)))))
11319, 112syl 17 . . . . . . . 8 (𝑥 ∈ (𝑁 WWalksN 𝐺) → ((lastS‘𝑥) = (𝑥‘0) → ((𝑦 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑦) = (𝑦‘0)) → (𝑁 ∈ ℕ → ((𝑥 prefix 𝑁) = (𝑦 prefix 𝑁) → 𝑥 = 𝑦)))))
114113imp31 421 . . . . . . 7 (((𝑥 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑥) = (𝑥‘0)) ∧ (𝑦 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑦) = (𝑦‘0))) → (𝑁 ∈ ℕ → ((𝑥 prefix 𝑁) = (𝑦 prefix 𝑁) → 𝑥 = 𝑦)))
115114com12 32 . . . . . 6 (𝑁 ∈ ℕ → (((𝑥 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑥) = (𝑥‘0)) ∧ (𝑦 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑦) = (𝑦‘0))) → ((𝑥 prefix 𝑁) = (𝑦 prefix 𝑁) → 𝑥 = 𝑦)))
11616, 115syl5bi 245 . . . . 5 (𝑁 ∈ ℕ → ((𝑥𝐷𝑦𝐷) → ((𝑥 prefix 𝑁) = (𝑦 prefix 𝑁) → 𝑥 = 𝑦)))
117116imp 410 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑥𝐷𝑦𝐷)) → ((𝑥 prefix 𝑁) = (𝑦 prefix 𝑁) → 𝑥 = 𝑦))
1187, 117sylbid 243 . . 3 ((𝑁 ∈ ℕ ∧ (𝑥𝐷𝑦𝐷)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
119118ralrimivva 3113 . 2 (𝑁 ∈ ℕ → ∀𝑥𝐷𝑦𝐷 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
120 dff13 7086 . 2 (𝐹:𝐷1-1→(𝑁 ClWWalksN 𝐺) ↔ (𝐹:𝐷⟶(𝑁 ClWWalksN 𝐺) ∧ ∀𝑥𝐷𝑦𝐷 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
1213, 119, 120sylanbrc 586 1 (𝑁 ∈ ℕ → 𝐹:𝐷1-1→(𝑁 ClWWalksN 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2111  wral 3062  {crab 3066  {cpr 4558  cop 4562   class class class wbr 5068  cmpt 5150  wf 6394  1-1wf1 6395  cfv 6398  (class class class)co 7232  cc 10752  0cc0 10754  1c1 10755   + caddc 10757   < clt 10892  cle 10893  cmin 11087  cn 11855  0cn0 12115  ..^cfzo 13263  chash 13924  Word cword 14097  lastSclsw 14145   substr csubstr 14233   prefix cpfx 14263  Vtxcvtx 27114  Edgcedg 27165   WWalksN cwwlksn 27937   ClWWalksN cclwwlkn 28134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2159  ax-12 2176  ax-ext 2709  ax-rep 5194  ax-sep 5207  ax-nul 5214  ax-pow 5273  ax-pr 5337  ax-un 7542  ax-cnex 10810  ax-resscn 10811  ax-1cn 10812  ax-icn 10813  ax-addcl 10814  ax-addrcl 10815  ax-mulcl 10816  ax-mulrcl 10817  ax-mulcom 10818  ax-addass 10819  ax-mulass 10820  ax-distr 10821  ax-i2m1 10822  ax-1ne0 10823  ax-1rid 10824  ax-rnegex 10825  ax-rrecex 10826  ax-cnre 10827  ax-pre-lttri 10828  ax-pre-lttrn 10829  ax-pre-ltadd 10830  ax-pre-mulgt0 10831
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2072  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3067  df-rex 3068  df-reu 3069  df-rab 3071  df-v 3423  df-sbc 3710  df-csb 3827  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4253  df-if 4455  df-pw 4530  df-sn 4557  df-pr 4559  df-tp 4561  df-op 4563  df-uni 4835  df-int 4875  df-iun 4921  df-br 5069  df-opab 5131  df-mpt 5151  df-tr 5177  df-id 5470  df-eprel 5475  df-po 5483  df-so 5484  df-fr 5524  df-we 5526  df-xp 5572  df-rel 5573  df-cnv 5574  df-co 5575  df-dm 5576  df-rn 5577  df-res 5578  df-ima 5579  df-pred 6176  df-ord 6234  df-on 6235  df-lim 6236  df-suc 6237  df-iota 6356  df-fun 6400  df-fn 6401  df-f 6402  df-f1 6403  df-fo 6404  df-f1o 6405  df-fv 6406  df-riota 7189  df-ov 7235  df-oprab 7236  df-mpo 7237  df-om 7664  df-1st 7780  df-2nd 7781  df-wrecs 8068  df-recs 8129  df-rdg 8167  df-1o 8223  df-er 8412  df-map 8531  df-en 8648  df-dom 8649  df-sdom 8650  df-fin 8651  df-card 9580  df-pnf 10894  df-mnf 10895  df-xr 10896  df-ltxr 10897  df-le 10898  df-sub 11089  df-neg 11090  df-nn 11856  df-n0 12116  df-xnn0 12188  df-z 12202  df-uz 12464  df-fz 13121  df-fzo 13264  df-hash 13925  df-word 14098  df-lsw 14146  df-s1 14181  df-substr 14234  df-pfx 14264  df-wwlks 27941  df-wwlksn 27942  df-clwwlk 28092  df-clwwlkn 28135
This theorem is referenced by:  clwwlkf1o  28161
  Copyright terms: Public domain W3C validator