MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlkf1 Structured version   Visualization version   GIF version

Theorem clwwlkf1 27834
Description: Lemma 3 for clwwlkf1o 27836: F is a 1-1 function. (Contributed by AV, 28-Sep-2018.) (Revised by AV, 26-Apr-2021.) (Revised by AV, 1-Nov-2022.)
Hypotheses
Ref Expression
clwwlkf1o.d 𝐷 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑤) = (𝑤‘0)}
clwwlkf1o.f 𝐹 = (𝑡𝐷 ↦ (𝑡 prefix 𝑁))
Assertion
Ref Expression
clwwlkf1 (𝑁 ∈ ℕ → 𝐹:𝐷1-1→(𝑁 ClWWalksN 𝐺))
Distinct variable groups:   𝑤,𝐺   𝑤,𝑁   𝑡,𝐷   𝑡,𝐺,𝑤   𝑡,𝑁
Allowed substitution hints:   𝐷(𝑤)   𝐹(𝑤,𝑡)

Proof of Theorem clwwlkf1
Dummy variables 𝑖 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 clwwlkf1o.d . . 3 𝐷 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑤) = (𝑤‘0)}
2 clwwlkf1o.f . . 3 𝐹 = (𝑡𝐷 ↦ (𝑡 prefix 𝑁))
31, 2clwwlkf 27832 . 2 (𝑁 ∈ ℕ → 𝐹:𝐷⟶(𝑁 ClWWalksN 𝐺))
41, 2clwwlkfv 27833 . . . . . 6 (𝑥𝐷 → (𝐹𝑥) = (𝑥 prefix 𝑁))
51, 2clwwlkfv 27833 . . . . . 6 (𝑦𝐷 → (𝐹𝑦) = (𝑦 prefix 𝑁))
64, 5eqeqan12d 2815 . . . . 5 ((𝑥𝐷𝑦𝐷) → ((𝐹𝑥) = (𝐹𝑦) ↔ (𝑥 prefix 𝑁) = (𝑦 prefix 𝑁)))
76adantl 485 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑥𝐷𝑦𝐷)) → ((𝐹𝑥) = (𝐹𝑦) ↔ (𝑥 prefix 𝑁) = (𝑦 prefix 𝑁)))
8 fveq2 6645 . . . . . . . . 9 (𝑤 = 𝑥 → (lastS‘𝑤) = (lastS‘𝑥))
9 fveq1 6644 . . . . . . . . 9 (𝑤 = 𝑥 → (𝑤‘0) = (𝑥‘0))
108, 9eqeq12d 2814 . . . . . . . 8 (𝑤 = 𝑥 → ((lastS‘𝑤) = (𝑤‘0) ↔ (lastS‘𝑥) = (𝑥‘0)))
1110, 1elrab2 3631 . . . . . . 7 (𝑥𝐷 ↔ (𝑥 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑥) = (𝑥‘0)))
12 fveq2 6645 . . . . . . . . 9 (𝑤 = 𝑦 → (lastS‘𝑤) = (lastS‘𝑦))
13 fveq1 6644 . . . . . . . . 9 (𝑤 = 𝑦 → (𝑤‘0) = (𝑦‘0))
1412, 13eqeq12d 2814 . . . . . . . 8 (𝑤 = 𝑦 → ((lastS‘𝑤) = (𝑤‘0) ↔ (lastS‘𝑦) = (𝑦‘0)))
1514, 1elrab2 3631 . . . . . . 7 (𝑦𝐷 ↔ (𝑦 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑦) = (𝑦‘0)))
1611, 15anbi12i 629 . . . . . 6 ((𝑥𝐷𝑦𝐷) ↔ ((𝑥 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑥) = (𝑥‘0)) ∧ (𝑦 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑦) = (𝑦‘0))))
17 eqid 2798 . . . . . . . . . 10 (Vtx‘𝐺) = (Vtx‘𝐺)
18 eqid 2798 . . . . . . . . . 10 (Edg‘𝐺) = (Edg‘𝐺)
1917, 18wwlknp 27629 . . . . . . . . 9 (𝑥 ∈ (𝑁 WWalksN 𝐺) → (𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑥𝑖), (𝑥‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
2017, 18wwlknp 27629 . . . . . . . . . . . . 13 (𝑦 ∈ (𝑁 WWalksN 𝐺) → (𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑦𝑖), (𝑦‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
21 simprlr 779 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0))) → (♯‘𝑥) = (𝑁 + 1))
22 simpllr 775 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0))) → (♯‘𝑦) = (𝑁 + 1))
2321, 22eqtr4d 2836 . . . . . . . . . . . . . . . . . . . 20 ((((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0))) → (♯‘𝑥) = (♯‘𝑦))
2423ad2antlr 726 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0)))) ∧ (𝑥 prefix 𝑁) = (𝑦 prefix 𝑁)) → (♯‘𝑥) = (♯‘𝑦))
25 nncn 11633 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
26 ax-1cn 10584 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 1 ∈ ℂ
27 pncan 10881 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 1) − 1) = 𝑁)
2827eqcomd 2804 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → 𝑁 = ((𝑁 + 1) − 1))
2925, 26, 28sylancl 589 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ ℕ → 𝑁 = ((𝑁 + 1) − 1))
30 oveq1 7142 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((♯‘𝑥) = (𝑁 + 1) → ((♯‘𝑥) − 1) = ((𝑁 + 1) − 1))
3130eqcomd 2804 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((♯‘𝑥) = (𝑁 + 1) → ((𝑁 + 1) − 1) = ((♯‘𝑥) − 1))
3229, 31sylan9eqr 2855 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((♯‘𝑥) = (𝑁 + 1) ∧ 𝑁 ∈ ℕ) → 𝑁 = ((♯‘𝑥) − 1))
3332oveq2d 7151 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((♯‘𝑥) = (𝑁 + 1) ∧ 𝑁 ∈ ℕ) → (𝑥 prefix 𝑁) = (𝑥 prefix ((♯‘𝑥) − 1)))
3432oveq2d 7151 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((♯‘𝑥) = (𝑁 + 1) ∧ 𝑁 ∈ ℕ) → (𝑦 prefix 𝑁) = (𝑦 prefix ((♯‘𝑥) − 1)))
3533, 34eqeq12d 2814 . . . . . . . . . . . . . . . . . . . . . . . 24 (((♯‘𝑥) = (𝑁 + 1) ∧ 𝑁 ∈ ℕ) → ((𝑥 prefix 𝑁) = (𝑦 prefix 𝑁) ↔ (𝑥 prefix ((♯‘𝑥) − 1)) = (𝑦 prefix ((♯‘𝑥) − 1))))
3635ex 416 . . . . . . . . . . . . . . . . . . . . . . 23 ((♯‘𝑥) = (𝑁 + 1) → (𝑁 ∈ ℕ → ((𝑥 prefix 𝑁) = (𝑦 prefix 𝑁) ↔ (𝑥 prefix ((♯‘𝑥) − 1)) = (𝑦 prefix ((♯‘𝑥) − 1)))))
3736ad2antlr 726 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0)) → (𝑁 ∈ ℕ → ((𝑥 prefix 𝑁) = (𝑦 prefix 𝑁) ↔ (𝑥 prefix ((♯‘𝑥) − 1)) = (𝑦 prefix ((♯‘𝑥) − 1)))))
3837adantl 485 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0))) → (𝑁 ∈ ℕ → ((𝑥 prefix 𝑁) = (𝑦 prefix 𝑁) ↔ (𝑥 prefix ((♯‘𝑥) − 1)) = (𝑦 prefix ((♯‘𝑥) − 1)))))
3938impcom 411 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0)))) → ((𝑥 prefix 𝑁) = (𝑦 prefix 𝑁) ↔ (𝑥 prefix ((♯‘𝑥) − 1)) = (𝑦 prefix ((♯‘𝑥) − 1))))
4039biimpa 480 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0)))) ∧ (𝑥 prefix 𝑁) = (𝑦 prefix 𝑁)) → (𝑥 prefix ((♯‘𝑥) − 1)) = (𝑦 prefix ((♯‘𝑥) − 1)))
41 simpll 766 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) → 𝑦 ∈ Word (Vtx‘𝐺))
42 simpll 766 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0)) → 𝑥 ∈ Word (Vtx‘𝐺))
4341, 42anim12ci 616 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0))) → (𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑦 ∈ Word (Vtx‘𝐺)))
4443adantl 485 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0)))) → (𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑦 ∈ Word (Vtx‘𝐺)))
45 nnnn0 11892 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
46 0nn0 11900 . . . . . . . . . . . . . . . . . . . . . . . . 25 0 ∈ ℕ0
4745, 46jctil 523 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℕ → (0 ∈ ℕ0𝑁 ∈ ℕ0))
4847adantr 484 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0)))) → (0 ∈ ℕ0𝑁 ∈ ℕ0))
49 nnre 11632 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
5049lep1d 11560 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ ℕ → 𝑁 ≤ (𝑁 + 1))
51 breq2 5034 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((♯‘𝑥) = (𝑁 + 1) → (𝑁 ≤ (♯‘𝑥) ↔ 𝑁 ≤ (𝑁 + 1)))
5250, 51syl5ibr 249 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((♯‘𝑥) = (𝑁 + 1) → (𝑁 ∈ ℕ → 𝑁 ≤ (♯‘𝑥)))
5352ad2antlr 726 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0)) → (𝑁 ∈ ℕ → 𝑁 ≤ (♯‘𝑥)))
5453adantl 485 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0))) → (𝑁 ∈ ℕ → 𝑁 ≤ (♯‘𝑥)))
5554impcom 411 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0)))) → 𝑁 ≤ (♯‘𝑥))
56 breq2 5034 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((♯‘𝑦) = (𝑁 + 1) → (𝑁 ≤ (♯‘𝑦) ↔ 𝑁 ≤ (𝑁 + 1)))
5750, 56syl5ibr 249 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((♯‘𝑦) = (𝑁 + 1) → (𝑁 ∈ ℕ → 𝑁 ≤ (♯‘𝑦)))
5857ad2antlr 726 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) → (𝑁 ∈ ℕ → 𝑁 ≤ (♯‘𝑦)))
5958adantr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0))) → (𝑁 ∈ ℕ → 𝑁 ≤ (♯‘𝑦)))
6059impcom 411 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0)))) → 𝑁 ≤ (♯‘𝑦))
61 pfxval 14026 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ ℕ0) → (𝑥 prefix 𝑁) = (𝑥 substr ⟨0, 𝑁⟩))
6261ad2ant2rl 748 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑦 ∈ Word (Vtx‘𝐺)) ∧ (0 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑥 prefix 𝑁) = (𝑥 substr ⟨0, 𝑁⟩))
63 pfxval 14026 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑦 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ ℕ0) → (𝑦 prefix 𝑁) = (𝑦 substr ⟨0, 𝑁⟩))
6463ad2ant2l 745 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑦 ∈ Word (Vtx‘𝐺)) ∧ (0 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑦 prefix 𝑁) = (𝑦 substr ⟨0, 𝑁⟩))
6562, 64eqeq12d 2814 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑦 ∈ Word (Vtx‘𝐺)) ∧ (0 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑥 prefix 𝑁) = (𝑦 prefix 𝑁) ↔ (𝑥 substr ⟨0, 𝑁⟩) = (𝑦 substr ⟨0, 𝑁⟩)))
66653adant3 1129 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑦 ∈ Word (Vtx‘𝐺)) ∧ (0 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑥) ∧ 𝑁 ≤ (♯‘𝑦))) → ((𝑥 prefix 𝑁) = (𝑦 prefix 𝑁) ↔ (𝑥 substr ⟨0, 𝑁⟩) = (𝑦 substr ⟨0, 𝑁⟩)))
67 swrdspsleq 14018 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑦 ∈ Word (Vtx‘𝐺)) ∧ (0 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑥) ∧ 𝑁 ≤ (♯‘𝑦))) → ((𝑥 substr ⟨0, 𝑁⟩) = (𝑦 substr ⟨0, 𝑁⟩) ↔ ∀𝑖 ∈ (0..^𝑁)(𝑥𝑖) = (𝑦𝑖)))
6866, 67bitrd 282 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑦 ∈ Word (Vtx‘𝐺)) ∧ (0 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑥) ∧ 𝑁 ≤ (♯‘𝑦))) → ((𝑥 prefix 𝑁) = (𝑦 prefix 𝑁) ↔ ∀𝑖 ∈ (0..^𝑁)(𝑥𝑖) = (𝑦𝑖)))
6944, 48, 55, 60, 68syl112anc 1371 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0)))) → ((𝑥 prefix 𝑁) = (𝑦 prefix 𝑁) ↔ ∀𝑖 ∈ (0..^𝑁)(𝑥𝑖) = (𝑦𝑖)))
70 lbfzo0 13072 . . . . . . . . . . . . . . . . . . . . . . . . 25 (0 ∈ (0..^𝑁) ↔ 𝑁 ∈ ℕ)
7170biimpri 231 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℕ → 0 ∈ (0..^𝑁))
7271adantr 484 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0)))) → 0 ∈ (0..^𝑁))
73 fveq2 6645 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑖 = 0 → (𝑥𝑖) = (𝑥‘0))
74 fveq2 6645 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑖 = 0 → (𝑦𝑖) = (𝑦‘0))
7573, 74eqeq12d 2814 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑖 = 0 → ((𝑥𝑖) = (𝑦𝑖) ↔ (𝑥‘0) = (𝑦‘0)))
7675rspcv 3566 . . . . . . . . . . . . . . . . . . . . . . 23 (0 ∈ (0..^𝑁) → (∀𝑖 ∈ (0..^𝑁)(𝑥𝑖) = (𝑦𝑖) → (𝑥‘0) = (𝑦‘0)))
7772, 76syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0)))) → (∀𝑖 ∈ (0..^𝑁)(𝑥𝑖) = (𝑦𝑖) → (𝑥‘0) = (𝑦‘0)))
7869, 77sylbid 243 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0)))) → ((𝑥 prefix 𝑁) = (𝑦 prefix 𝑁) → (𝑥‘0) = (𝑦‘0)))
7978imp 410 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0)))) ∧ (𝑥 prefix 𝑁) = (𝑦 prefix 𝑁)) → (𝑥‘0) = (𝑦‘0))
80 simpr 488 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0)) → (lastS‘𝑥) = (𝑥‘0))
81 simpr 488 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) → (lastS‘𝑦) = (𝑦‘0))
8280, 81eqeqan12rd 2817 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0))) → ((lastS‘𝑥) = (lastS‘𝑦) ↔ (𝑥‘0) = (𝑦‘0)))
8382ad2antlr 726 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0)))) ∧ (𝑥 prefix 𝑁) = (𝑦 prefix 𝑁)) → ((lastS‘𝑥) = (lastS‘𝑦) ↔ (𝑥‘0) = (𝑦‘0)))
8479, 83mpbird 260 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0)))) ∧ (𝑥 prefix 𝑁) = (𝑦 prefix 𝑁)) → (lastS‘𝑥) = (lastS‘𝑦))
8524, 40, 84jca32 519 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0)))) ∧ (𝑥 prefix 𝑁) = (𝑦 prefix 𝑁)) → ((♯‘𝑥) = (♯‘𝑦) ∧ ((𝑥 prefix ((♯‘𝑥) − 1)) = (𝑦 prefix ((♯‘𝑥) − 1)) ∧ (lastS‘𝑥) = (lastS‘𝑦))))
8642adantl 485 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0))) → 𝑥 ∈ Word (Vtx‘𝐺))
8786adantl 485 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0)))) → 𝑥 ∈ Word (Vtx‘𝐺))
8841adantr 484 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0))) → 𝑦 ∈ Word (Vtx‘𝐺))
8988adantl 485 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0)))) → 𝑦 ∈ Word (Vtx‘𝐺))
90 1red 10631 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℕ → 1 ∈ ℝ)
91 nngt0 11656 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℕ → 0 < 𝑁)
92 0lt1 11151 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 0 < 1
9392a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℕ → 0 < 1)
9449, 90, 91, 93addgt0d 11204 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℕ → 0 < (𝑁 + 1))
95 breq2 5034 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((♯‘𝑥) = (𝑁 + 1) → (0 < (♯‘𝑥) ↔ 0 < (𝑁 + 1)))
9694, 95syl5ibr 249 . . . . . . . . . . . . . . . . . . . . . . . 24 ((♯‘𝑥) = (𝑁 + 1) → (𝑁 ∈ ℕ → 0 < (♯‘𝑥)))
9796ad2antlr 726 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0)) → (𝑁 ∈ ℕ → 0 < (♯‘𝑥)))
9897adantl 485 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0))) → (𝑁 ∈ ℕ → 0 < (♯‘𝑥)))
9998impcom 411 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0)))) → 0 < (♯‘𝑥))
10087, 89, 993jca 1125 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0)))) → (𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑦 ∈ Word (Vtx‘𝐺) ∧ 0 < (♯‘𝑥)))
101100adantr 484 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0)))) ∧ (𝑥 prefix 𝑁) = (𝑦 prefix 𝑁)) → (𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑦 ∈ Word (Vtx‘𝐺) ∧ 0 < (♯‘𝑥)))
102 pfxsuff1eqwrdeq 14052 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑦 ∈ Word (Vtx‘𝐺) ∧ 0 < (♯‘𝑥)) → (𝑥 = 𝑦 ↔ ((♯‘𝑥) = (♯‘𝑦) ∧ ((𝑥 prefix ((♯‘𝑥) − 1)) = (𝑦 prefix ((♯‘𝑥) − 1)) ∧ (lastS‘𝑥) = (lastS‘𝑦)))))
103101, 102syl 17 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0)))) ∧ (𝑥 prefix 𝑁) = (𝑦 prefix 𝑁)) → (𝑥 = 𝑦 ↔ ((♯‘𝑥) = (♯‘𝑦) ∧ ((𝑥 prefix ((♯‘𝑥) − 1)) = (𝑦 prefix ((♯‘𝑥) − 1)) ∧ (lastS‘𝑥) = (lastS‘𝑦)))))
10485, 103mpbird 260 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0)))) ∧ (𝑥 prefix 𝑁) = (𝑦 prefix 𝑁)) → 𝑥 = 𝑦)
105104exp31 423 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → ((((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0))) → ((𝑥 prefix 𝑁) = (𝑦 prefix 𝑁) → 𝑥 = 𝑦)))
106105expdcom 418 . . . . . . . . . . . . . . 15 (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) → (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0)) → (𝑁 ∈ ℕ → ((𝑥 prefix 𝑁) = (𝑦 prefix 𝑁) → 𝑥 = 𝑦))))
107106ex 416 . . . . . . . . . . . . . 14 ((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) → ((lastS‘𝑦) = (𝑦‘0) → (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0)) → (𝑁 ∈ ℕ → ((𝑥 prefix 𝑁) = (𝑦 prefix 𝑁) → 𝑥 = 𝑦)))))
1081073adant3 1129 . . . . . . . . . . . . 13 ((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑦𝑖), (𝑦‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → ((lastS‘𝑦) = (𝑦‘0) → (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0)) → (𝑁 ∈ ℕ → ((𝑥 prefix 𝑁) = (𝑦 prefix 𝑁) → 𝑥 = 𝑦)))))
10920, 108syl 17 . . . . . . . . . . . 12 (𝑦 ∈ (𝑁 WWalksN 𝐺) → ((lastS‘𝑦) = (𝑦‘0) → (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0)) → (𝑁 ∈ ℕ → ((𝑥 prefix 𝑁) = (𝑦 prefix 𝑁) → 𝑥 = 𝑦)))))
110109imp 410 . . . . . . . . . . 11 ((𝑦 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑦) = (𝑦‘0)) → (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0)) → (𝑁 ∈ ℕ → ((𝑥 prefix 𝑁) = (𝑦 prefix 𝑁) → 𝑥 = 𝑦))))
111110expdcom 418 . . . . . . . . . 10 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) → ((lastS‘𝑥) = (𝑥‘0) → ((𝑦 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑦) = (𝑦‘0)) → (𝑁 ∈ ℕ → ((𝑥 prefix 𝑁) = (𝑦 prefix 𝑁) → 𝑥 = 𝑦)))))
1121113adant3 1129 . . . . . . . . 9 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑥𝑖), (𝑥‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → ((lastS‘𝑥) = (𝑥‘0) → ((𝑦 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑦) = (𝑦‘0)) → (𝑁 ∈ ℕ → ((𝑥 prefix 𝑁) = (𝑦 prefix 𝑁) → 𝑥 = 𝑦)))))
11319, 112syl 17 . . . . . . . 8 (𝑥 ∈ (𝑁 WWalksN 𝐺) → ((lastS‘𝑥) = (𝑥‘0) → ((𝑦 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑦) = (𝑦‘0)) → (𝑁 ∈ ℕ → ((𝑥 prefix 𝑁) = (𝑦 prefix 𝑁) → 𝑥 = 𝑦)))))
114113imp31 421 . . . . . . 7 (((𝑥 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑥) = (𝑥‘0)) ∧ (𝑦 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑦) = (𝑦‘0))) → (𝑁 ∈ ℕ → ((𝑥 prefix 𝑁) = (𝑦 prefix 𝑁) → 𝑥 = 𝑦)))
115114com12 32 . . . . . 6 (𝑁 ∈ ℕ → (((𝑥 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑥) = (𝑥‘0)) ∧ (𝑦 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑦) = (𝑦‘0))) → ((𝑥 prefix 𝑁) = (𝑦 prefix 𝑁) → 𝑥 = 𝑦)))
11616, 115syl5bi 245 . . . . 5 (𝑁 ∈ ℕ → ((𝑥𝐷𝑦𝐷) → ((𝑥 prefix 𝑁) = (𝑦 prefix 𝑁) → 𝑥 = 𝑦)))
117116imp 410 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑥𝐷𝑦𝐷)) → ((𝑥 prefix 𝑁) = (𝑦 prefix 𝑁) → 𝑥 = 𝑦))
1187, 117sylbid 243 . . 3 ((𝑁 ∈ ℕ ∧ (𝑥𝐷𝑦𝐷)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
119118ralrimivva 3156 . 2 (𝑁 ∈ ℕ → ∀𝑥𝐷𝑦𝐷 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
120 dff13 6991 . 2 (𝐹:𝐷1-1→(𝑁 ClWWalksN 𝐺) ↔ (𝐹:𝐷⟶(𝑁 ClWWalksN 𝐺) ∧ ∀𝑥𝐷𝑦𝐷 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
1213, 119, 120sylanbrc 586 1 (𝑁 ∈ ℕ → 𝐹:𝐷1-1→(𝑁 ClWWalksN 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wral 3106  {crab 3110  {cpr 4527  cop 4531   class class class wbr 5030  cmpt 5110  wf 6320  1-1wf1 6321  cfv 6324  (class class class)co 7135  cc 10524  0cc0 10526  1c1 10527   + caddc 10529   < clt 10664  cle 10665  cmin 10859  cn 11625  0cn0 11885  ..^cfzo 13028  chash 13686  Word cword 13857  lastSclsw 13905   substr csubstr 13993   prefix cpfx 14023  Vtxcvtx 26789  Edgcedg 26840   WWalksN cwwlksn 27612   ClWWalksN cclwwlkn 27809
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-fz 12886  df-fzo 13029  df-hash 13687  df-word 13858  df-lsw 13906  df-s1 13941  df-substr 13994  df-pfx 14024  df-wwlks 27616  df-wwlksn 27617  df-clwwlk 27767  df-clwwlkn 27810
This theorem is referenced by:  clwwlkf1o  27836
  Copyright terms: Public domain W3C validator