MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlkf1 Structured version   Visualization version   GIF version

Theorem clwwlkf1 28413
Description: Lemma 3 for clwwlkf1o 28415: 𝐹 is a 1-1 function. (Contributed by AV, 28-Sep-2018.) (Revised by AV, 26-Apr-2021.) (Revised by AV, 1-Nov-2022.)
Hypotheses
Ref Expression
clwwlkf1o.d 𝐷 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑤) = (𝑤‘0)}
clwwlkf1o.f 𝐹 = (𝑡𝐷 ↦ (𝑡 prefix 𝑁))
Assertion
Ref Expression
clwwlkf1 (𝑁 ∈ ℕ → 𝐹:𝐷1-1→(𝑁 ClWWalksN 𝐺))
Distinct variable groups:   𝑤,𝐺   𝑤,𝑁   𝑡,𝐷   𝑡,𝐺,𝑤   𝑡,𝑁
Allowed substitution hints:   𝐷(𝑤)   𝐹(𝑤,𝑡)

Proof of Theorem clwwlkf1
Dummy variables 𝑖 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 clwwlkf1o.d . . 3 𝐷 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑤) = (𝑤‘0)}
2 clwwlkf1o.f . . 3 𝐹 = (𝑡𝐷 ↦ (𝑡 prefix 𝑁))
31, 2clwwlkf 28411 . 2 (𝑁 ∈ ℕ → 𝐹:𝐷⟶(𝑁 ClWWalksN 𝐺))
41, 2clwwlkfv 28412 . . . . . 6 (𝑥𝐷 → (𝐹𝑥) = (𝑥 prefix 𝑁))
51, 2clwwlkfv 28412 . . . . . 6 (𝑦𝐷 → (𝐹𝑦) = (𝑦 prefix 𝑁))
64, 5eqeqan12d 2752 . . . . 5 ((𝑥𝐷𝑦𝐷) → ((𝐹𝑥) = (𝐹𝑦) ↔ (𝑥 prefix 𝑁) = (𝑦 prefix 𝑁)))
76adantl 482 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑥𝐷𝑦𝐷)) → ((𝐹𝑥) = (𝐹𝑦) ↔ (𝑥 prefix 𝑁) = (𝑦 prefix 𝑁)))
8 fveq2 6774 . . . . . . . . 9 (𝑤 = 𝑥 → (lastS‘𝑤) = (lastS‘𝑥))
9 fveq1 6773 . . . . . . . . 9 (𝑤 = 𝑥 → (𝑤‘0) = (𝑥‘0))
108, 9eqeq12d 2754 . . . . . . . 8 (𝑤 = 𝑥 → ((lastS‘𝑤) = (𝑤‘0) ↔ (lastS‘𝑥) = (𝑥‘0)))
1110, 1elrab2 3627 . . . . . . 7 (𝑥𝐷 ↔ (𝑥 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑥) = (𝑥‘0)))
12 fveq2 6774 . . . . . . . . 9 (𝑤 = 𝑦 → (lastS‘𝑤) = (lastS‘𝑦))
13 fveq1 6773 . . . . . . . . 9 (𝑤 = 𝑦 → (𝑤‘0) = (𝑦‘0))
1412, 13eqeq12d 2754 . . . . . . . 8 (𝑤 = 𝑦 → ((lastS‘𝑤) = (𝑤‘0) ↔ (lastS‘𝑦) = (𝑦‘0)))
1514, 1elrab2 3627 . . . . . . 7 (𝑦𝐷 ↔ (𝑦 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑦) = (𝑦‘0)))
1611, 15anbi12i 627 . . . . . 6 ((𝑥𝐷𝑦𝐷) ↔ ((𝑥 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑥) = (𝑥‘0)) ∧ (𝑦 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑦) = (𝑦‘0))))
17 eqid 2738 . . . . . . . . . 10 (Vtx‘𝐺) = (Vtx‘𝐺)
18 eqid 2738 . . . . . . . . . 10 (Edg‘𝐺) = (Edg‘𝐺)
1917, 18wwlknp 28208 . . . . . . . . 9 (𝑥 ∈ (𝑁 WWalksN 𝐺) → (𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑥𝑖), (𝑥‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
2017, 18wwlknp 28208 . . . . . . . . . . . . 13 (𝑦 ∈ (𝑁 WWalksN 𝐺) → (𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑦𝑖), (𝑦‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
21 simprlr 777 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0))) → (♯‘𝑥) = (𝑁 + 1))
22 simpllr 773 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0))) → (♯‘𝑦) = (𝑁 + 1))
2321, 22eqtr4d 2781 . . . . . . . . . . . . . . . . . . . 20 ((((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0))) → (♯‘𝑥) = (♯‘𝑦))
2423ad2antlr 724 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0)))) ∧ (𝑥 prefix 𝑁) = (𝑦 prefix 𝑁)) → (♯‘𝑥) = (♯‘𝑦))
25 nncn 11981 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
26 ax-1cn 10929 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 1 ∈ ℂ
27 pncan 11227 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 1) − 1) = 𝑁)
2827eqcomd 2744 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → 𝑁 = ((𝑁 + 1) − 1))
2925, 26, 28sylancl 586 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ ℕ → 𝑁 = ((𝑁 + 1) − 1))
30 oveq1 7282 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((♯‘𝑥) = (𝑁 + 1) → ((♯‘𝑥) − 1) = ((𝑁 + 1) − 1))
3130eqcomd 2744 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((♯‘𝑥) = (𝑁 + 1) → ((𝑁 + 1) − 1) = ((♯‘𝑥) − 1))
3229, 31sylan9eqr 2800 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((♯‘𝑥) = (𝑁 + 1) ∧ 𝑁 ∈ ℕ) → 𝑁 = ((♯‘𝑥) − 1))
3332oveq2d 7291 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((♯‘𝑥) = (𝑁 + 1) ∧ 𝑁 ∈ ℕ) → (𝑥 prefix 𝑁) = (𝑥 prefix ((♯‘𝑥) − 1)))
3432oveq2d 7291 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((♯‘𝑥) = (𝑁 + 1) ∧ 𝑁 ∈ ℕ) → (𝑦 prefix 𝑁) = (𝑦 prefix ((♯‘𝑥) − 1)))
3533, 34eqeq12d 2754 . . . . . . . . . . . . . . . . . . . . . . . 24 (((♯‘𝑥) = (𝑁 + 1) ∧ 𝑁 ∈ ℕ) → ((𝑥 prefix 𝑁) = (𝑦 prefix 𝑁) ↔ (𝑥 prefix ((♯‘𝑥) − 1)) = (𝑦 prefix ((♯‘𝑥) − 1))))
3635ex 413 . . . . . . . . . . . . . . . . . . . . . . 23 ((♯‘𝑥) = (𝑁 + 1) → (𝑁 ∈ ℕ → ((𝑥 prefix 𝑁) = (𝑦 prefix 𝑁) ↔ (𝑥 prefix ((♯‘𝑥) − 1)) = (𝑦 prefix ((♯‘𝑥) − 1)))))
3736ad2antlr 724 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0)) → (𝑁 ∈ ℕ → ((𝑥 prefix 𝑁) = (𝑦 prefix 𝑁) ↔ (𝑥 prefix ((♯‘𝑥) − 1)) = (𝑦 prefix ((♯‘𝑥) − 1)))))
3837adantl 482 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0))) → (𝑁 ∈ ℕ → ((𝑥 prefix 𝑁) = (𝑦 prefix 𝑁) ↔ (𝑥 prefix ((♯‘𝑥) − 1)) = (𝑦 prefix ((♯‘𝑥) − 1)))))
3938impcom 408 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0)))) → ((𝑥 prefix 𝑁) = (𝑦 prefix 𝑁) ↔ (𝑥 prefix ((♯‘𝑥) − 1)) = (𝑦 prefix ((♯‘𝑥) − 1))))
4039biimpa 477 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0)))) ∧ (𝑥 prefix 𝑁) = (𝑦 prefix 𝑁)) → (𝑥 prefix ((♯‘𝑥) − 1)) = (𝑦 prefix ((♯‘𝑥) − 1)))
41 simpll 764 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) → 𝑦 ∈ Word (Vtx‘𝐺))
42 simpll 764 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0)) → 𝑥 ∈ Word (Vtx‘𝐺))
4341, 42anim12ci 614 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0))) → (𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑦 ∈ Word (Vtx‘𝐺)))
4443adantl 482 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0)))) → (𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑦 ∈ Word (Vtx‘𝐺)))
45 nnnn0 12240 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
46 0nn0 12248 . . . . . . . . . . . . . . . . . . . . . . . . 25 0 ∈ ℕ0
4745, 46jctil 520 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℕ → (0 ∈ ℕ0𝑁 ∈ ℕ0))
4847adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0)))) → (0 ∈ ℕ0𝑁 ∈ ℕ0))
49 nnre 11980 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
5049lep1d 11906 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ ℕ → 𝑁 ≤ (𝑁 + 1))
51 breq2 5078 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((♯‘𝑥) = (𝑁 + 1) → (𝑁 ≤ (♯‘𝑥) ↔ 𝑁 ≤ (𝑁 + 1)))
5250, 51syl5ibr 245 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((♯‘𝑥) = (𝑁 + 1) → (𝑁 ∈ ℕ → 𝑁 ≤ (♯‘𝑥)))
5352ad2antlr 724 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0)) → (𝑁 ∈ ℕ → 𝑁 ≤ (♯‘𝑥)))
5453adantl 482 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0))) → (𝑁 ∈ ℕ → 𝑁 ≤ (♯‘𝑥)))
5554impcom 408 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0)))) → 𝑁 ≤ (♯‘𝑥))
56 breq2 5078 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((♯‘𝑦) = (𝑁 + 1) → (𝑁 ≤ (♯‘𝑦) ↔ 𝑁 ≤ (𝑁 + 1)))
5750, 56syl5ibr 245 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((♯‘𝑦) = (𝑁 + 1) → (𝑁 ∈ ℕ → 𝑁 ≤ (♯‘𝑦)))
5857ad2antlr 724 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) → (𝑁 ∈ ℕ → 𝑁 ≤ (♯‘𝑦)))
5958adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0))) → (𝑁 ∈ ℕ → 𝑁 ≤ (♯‘𝑦)))
6059impcom 408 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0)))) → 𝑁 ≤ (♯‘𝑦))
61 pfxval 14386 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ ℕ0) → (𝑥 prefix 𝑁) = (𝑥 substr ⟨0, 𝑁⟩))
6261ad2ant2rl 746 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑦 ∈ Word (Vtx‘𝐺)) ∧ (0 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑥 prefix 𝑁) = (𝑥 substr ⟨0, 𝑁⟩))
63 pfxval 14386 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑦 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ ℕ0) → (𝑦 prefix 𝑁) = (𝑦 substr ⟨0, 𝑁⟩))
6463ad2ant2l 743 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑦 ∈ Word (Vtx‘𝐺)) ∧ (0 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑦 prefix 𝑁) = (𝑦 substr ⟨0, 𝑁⟩))
6562, 64eqeq12d 2754 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑦 ∈ Word (Vtx‘𝐺)) ∧ (0 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑥 prefix 𝑁) = (𝑦 prefix 𝑁) ↔ (𝑥 substr ⟨0, 𝑁⟩) = (𝑦 substr ⟨0, 𝑁⟩)))
66653adant3 1131 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑦 ∈ Word (Vtx‘𝐺)) ∧ (0 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑥) ∧ 𝑁 ≤ (♯‘𝑦))) → ((𝑥 prefix 𝑁) = (𝑦 prefix 𝑁) ↔ (𝑥 substr ⟨0, 𝑁⟩) = (𝑦 substr ⟨0, 𝑁⟩)))
67 swrdspsleq 14378 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑦 ∈ Word (Vtx‘𝐺)) ∧ (0 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑥) ∧ 𝑁 ≤ (♯‘𝑦))) → ((𝑥 substr ⟨0, 𝑁⟩) = (𝑦 substr ⟨0, 𝑁⟩) ↔ ∀𝑖 ∈ (0..^𝑁)(𝑥𝑖) = (𝑦𝑖)))
6866, 67bitrd 278 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑦 ∈ Word (Vtx‘𝐺)) ∧ (0 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑥) ∧ 𝑁 ≤ (♯‘𝑦))) → ((𝑥 prefix 𝑁) = (𝑦 prefix 𝑁) ↔ ∀𝑖 ∈ (0..^𝑁)(𝑥𝑖) = (𝑦𝑖)))
6944, 48, 55, 60, 68syl112anc 1373 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0)))) → ((𝑥 prefix 𝑁) = (𝑦 prefix 𝑁) ↔ ∀𝑖 ∈ (0..^𝑁)(𝑥𝑖) = (𝑦𝑖)))
70 lbfzo0 13427 . . . . . . . . . . . . . . . . . . . . . . . . 25 (0 ∈ (0..^𝑁) ↔ 𝑁 ∈ ℕ)
7170biimpri 227 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℕ → 0 ∈ (0..^𝑁))
7271adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0)))) → 0 ∈ (0..^𝑁))
73 fveq2 6774 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑖 = 0 → (𝑥𝑖) = (𝑥‘0))
74 fveq2 6774 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑖 = 0 → (𝑦𝑖) = (𝑦‘0))
7573, 74eqeq12d 2754 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑖 = 0 → ((𝑥𝑖) = (𝑦𝑖) ↔ (𝑥‘0) = (𝑦‘0)))
7675rspcv 3557 . . . . . . . . . . . . . . . . . . . . . . 23 (0 ∈ (0..^𝑁) → (∀𝑖 ∈ (0..^𝑁)(𝑥𝑖) = (𝑦𝑖) → (𝑥‘0) = (𝑦‘0)))
7772, 76syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0)))) → (∀𝑖 ∈ (0..^𝑁)(𝑥𝑖) = (𝑦𝑖) → (𝑥‘0) = (𝑦‘0)))
7869, 77sylbid 239 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0)))) → ((𝑥 prefix 𝑁) = (𝑦 prefix 𝑁) → (𝑥‘0) = (𝑦‘0)))
7978imp 407 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0)))) ∧ (𝑥 prefix 𝑁) = (𝑦 prefix 𝑁)) → (𝑥‘0) = (𝑦‘0))
80 simpr 485 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0)) → (lastS‘𝑥) = (𝑥‘0))
81 simpr 485 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) → (lastS‘𝑦) = (𝑦‘0))
8280, 81eqeqan12rd 2753 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0))) → ((lastS‘𝑥) = (lastS‘𝑦) ↔ (𝑥‘0) = (𝑦‘0)))
8382ad2antlr 724 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0)))) ∧ (𝑥 prefix 𝑁) = (𝑦 prefix 𝑁)) → ((lastS‘𝑥) = (lastS‘𝑦) ↔ (𝑥‘0) = (𝑦‘0)))
8479, 83mpbird 256 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0)))) ∧ (𝑥 prefix 𝑁) = (𝑦 prefix 𝑁)) → (lastS‘𝑥) = (lastS‘𝑦))
8524, 40, 84jca32 516 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0)))) ∧ (𝑥 prefix 𝑁) = (𝑦 prefix 𝑁)) → ((♯‘𝑥) = (♯‘𝑦) ∧ ((𝑥 prefix ((♯‘𝑥) − 1)) = (𝑦 prefix ((♯‘𝑥) − 1)) ∧ (lastS‘𝑥) = (lastS‘𝑦))))
8642adantl 482 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0))) → 𝑥 ∈ Word (Vtx‘𝐺))
8786adantl 482 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0)))) → 𝑥 ∈ Word (Vtx‘𝐺))
8841adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0))) → 𝑦 ∈ Word (Vtx‘𝐺))
8988adantl 482 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0)))) → 𝑦 ∈ Word (Vtx‘𝐺))
90 1red 10976 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℕ → 1 ∈ ℝ)
91 nngt0 12004 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℕ → 0 < 𝑁)
92 0lt1 11497 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 0 < 1
9392a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℕ → 0 < 1)
9449, 90, 91, 93addgt0d 11550 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℕ → 0 < (𝑁 + 1))
95 breq2 5078 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((♯‘𝑥) = (𝑁 + 1) → (0 < (♯‘𝑥) ↔ 0 < (𝑁 + 1)))
9694, 95syl5ibr 245 . . . . . . . . . . . . . . . . . . . . . . . 24 ((♯‘𝑥) = (𝑁 + 1) → (𝑁 ∈ ℕ → 0 < (♯‘𝑥)))
9796ad2antlr 724 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0)) → (𝑁 ∈ ℕ → 0 < (♯‘𝑥)))
9897adantl 482 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0))) → (𝑁 ∈ ℕ → 0 < (♯‘𝑥)))
9998impcom 408 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0)))) → 0 < (♯‘𝑥))
10087, 89, 993jca 1127 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0)))) → (𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑦 ∈ Word (Vtx‘𝐺) ∧ 0 < (♯‘𝑥)))
101100adantr 481 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0)))) ∧ (𝑥 prefix 𝑁) = (𝑦 prefix 𝑁)) → (𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑦 ∈ Word (Vtx‘𝐺) ∧ 0 < (♯‘𝑥)))
102 pfxsuff1eqwrdeq 14412 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑦 ∈ Word (Vtx‘𝐺) ∧ 0 < (♯‘𝑥)) → (𝑥 = 𝑦 ↔ ((♯‘𝑥) = (♯‘𝑦) ∧ ((𝑥 prefix ((♯‘𝑥) − 1)) = (𝑦 prefix ((♯‘𝑥) − 1)) ∧ (lastS‘𝑥) = (lastS‘𝑦)))))
103101, 102syl 17 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0)))) ∧ (𝑥 prefix 𝑁) = (𝑦 prefix 𝑁)) → (𝑥 = 𝑦 ↔ ((♯‘𝑥) = (♯‘𝑦) ∧ ((𝑥 prefix ((♯‘𝑥) − 1)) = (𝑦 prefix ((♯‘𝑥) − 1)) ∧ (lastS‘𝑥) = (lastS‘𝑦)))))
10485, 103mpbird 256 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0)))) ∧ (𝑥 prefix 𝑁) = (𝑦 prefix 𝑁)) → 𝑥 = 𝑦)
105104exp31 420 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → ((((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0))) → ((𝑥 prefix 𝑁) = (𝑦 prefix 𝑁) → 𝑥 = 𝑦)))
106105expdcom 415 . . . . . . . . . . . . . . 15 (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (lastS‘𝑦) = (𝑦‘0)) → (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0)) → (𝑁 ∈ ℕ → ((𝑥 prefix 𝑁) = (𝑦 prefix 𝑁) → 𝑥 = 𝑦))))
107106ex 413 . . . . . . . . . . . . . 14 ((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1)) → ((lastS‘𝑦) = (𝑦‘0) → (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0)) → (𝑁 ∈ ℕ → ((𝑥 prefix 𝑁) = (𝑦 prefix 𝑁) → 𝑥 = 𝑦)))))
1081073adant3 1131 . . . . . . . . . . . . 13 ((𝑦 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑦) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑦𝑖), (𝑦‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → ((lastS‘𝑦) = (𝑦‘0) → (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0)) → (𝑁 ∈ ℕ → ((𝑥 prefix 𝑁) = (𝑦 prefix 𝑁) → 𝑥 = 𝑦)))))
10920, 108syl 17 . . . . . . . . . . . 12 (𝑦 ∈ (𝑁 WWalksN 𝐺) → ((lastS‘𝑦) = (𝑦‘0) → (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0)) → (𝑁 ∈ ℕ → ((𝑥 prefix 𝑁) = (𝑦 prefix 𝑁) → 𝑥 = 𝑦)))))
110109imp 407 . . . . . . . . . . 11 ((𝑦 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑦) = (𝑦‘0)) → (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) ∧ (lastS‘𝑥) = (𝑥‘0)) → (𝑁 ∈ ℕ → ((𝑥 prefix 𝑁) = (𝑦 prefix 𝑁) → 𝑥 = 𝑦))))
111110expdcom 415 . . . . . . . . . 10 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1)) → ((lastS‘𝑥) = (𝑥‘0) → ((𝑦 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑦) = (𝑦‘0)) → (𝑁 ∈ ℕ → ((𝑥 prefix 𝑁) = (𝑦 prefix 𝑁) → 𝑥 = 𝑦)))))
1121113adant3 1131 . . . . . . . . 9 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑥𝑖), (𝑥‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → ((lastS‘𝑥) = (𝑥‘0) → ((𝑦 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑦) = (𝑦‘0)) → (𝑁 ∈ ℕ → ((𝑥 prefix 𝑁) = (𝑦 prefix 𝑁) → 𝑥 = 𝑦)))))
11319, 112syl 17 . . . . . . . 8 (𝑥 ∈ (𝑁 WWalksN 𝐺) → ((lastS‘𝑥) = (𝑥‘0) → ((𝑦 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑦) = (𝑦‘0)) → (𝑁 ∈ ℕ → ((𝑥 prefix 𝑁) = (𝑦 prefix 𝑁) → 𝑥 = 𝑦)))))
114113imp31 418 . . . . . . 7 (((𝑥 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑥) = (𝑥‘0)) ∧ (𝑦 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑦) = (𝑦‘0))) → (𝑁 ∈ ℕ → ((𝑥 prefix 𝑁) = (𝑦 prefix 𝑁) → 𝑥 = 𝑦)))
115114com12 32 . . . . . 6 (𝑁 ∈ ℕ → (((𝑥 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑥) = (𝑥‘0)) ∧ (𝑦 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑦) = (𝑦‘0))) → ((𝑥 prefix 𝑁) = (𝑦 prefix 𝑁) → 𝑥 = 𝑦)))
11616, 115syl5bi 241 . . . . 5 (𝑁 ∈ ℕ → ((𝑥𝐷𝑦𝐷) → ((𝑥 prefix 𝑁) = (𝑦 prefix 𝑁) → 𝑥 = 𝑦)))
117116imp 407 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑥𝐷𝑦𝐷)) → ((𝑥 prefix 𝑁) = (𝑦 prefix 𝑁) → 𝑥 = 𝑦))
1187, 117sylbid 239 . . 3 ((𝑁 ∈ ℕ ∧ (𝑥𝐷𝑦𝐷)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
119118ralrimivva 3123 . 2 (𝑁 ∈ ℕ → ∀𝑥𝐷𝑦𝐷 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
120 dff13 7128 . 2 (𝐹:𝐷1-1→(𝑁 ClWWalksN 𝐺) ↔ (𝐹:𝐷⟶(𝑁 ClWWalksN 𝐺) ∧ ∀𝑥𝐷𝑦𝐷 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
1213, 119, 120sylanbrc 583 1 (𝑁 ∈ ℕ → 𝐹:𝐷1-1→(𝑁 ClWWalksN 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  {crab 3068  {cpr 4563  cop 4567   class class class wbr 5074  cmpt 5157  wf 6429  1-1wf1 6430  cfv 6433  (class class class)co 7275  cc 10869  0cc0 10871  1c1 10872   + caddc 10874   < clt 11009  cle 11010  cmin 11205  cn 11973  0cn0 12233  ..^cfzo 13382  chash 14044  Word cword 14217  lastSclsw 14265   substr csubstr 14353   prefix cpfx 14383  Vtxcvtx 27366  Edgcedg 27417   WWalksN cwwlksn 28191   ClWWalksN cclwwlkn 28388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-xnn0 12306  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383  df-hash 14045  df-word 14218  df-lsw 14266  df-s1 14301  df-substr 14354  df-pfx 14384  df-wwlks 28195  df-wwlksn 28196  df-clwwlk 28346  df-clwwlkn 28389
This theorem is referenced by:  clwwlkf1o  28415
  Copyright terms: Public domain W3C validator