Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2zlidl Structured version   Visualization version   GIF version

Theorem 2zlidl 48270
Description: The even integers are a (left) ideal of the ring of integers. (Contributed by AV, 20-Feb-2020.)
Hypotheses
Ref Expression
2zrng.e 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
2zlidl.u 𝑈 = (LIdeal‘ℤring)
Assertion
Ref Expression
2zlidl 𝐸𝑈
Distinct variable group:   𝑥,𝑧
Allowed substitution hints:   𝑈(𝑥,𝑧)   𝐸(𝑥,𝑧)

Proof of Theorem 2zlidl
Dummy variables 𝑎 𝑏 𝑖 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2zrng.e . . 3 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
2 ssrab2 4030 . . 3 {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} ⊆ ℤ
31, 2eqsstri 3981 . 2 𝐸 ⊆ ℤ
410even 48267 . . 3 0 ∈ 𝐸
54ne0ii 4294 . 2 𝐸 ≠ ∅
6 eqeq1 2735 . . . . . . . 8 (𝑧 = 𝑗 → (𝑧 = (2 · 𝑥) ↔ 𝑗 = (2 · 𝑥)))
76rexbidv 3156 . . . . . . 7 (𝑧 = 𝑗 → (∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥) ↔ ∃𝑥 ∈ ℤ 𝑗 = (2 · 𝑥)))
87, 1elrab2 3650 . . . . . 6 (𝑗𝐸 ↔ (𝑗 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑗 = (2 · 𝑥)))
9 eqeq1 2735 . . . . . . . 8 (𝑧 = 𝑘 → (𝑧 = (2 · 𝑥) ↔ 𝑘 = (2 · 𝑥)))
109rexbidv 3156 . . . . . . 7 (𝑧 = 𝑘 → (∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥) ↔ ∃𝑥 ∈ ℤ 𝑘 = (2 · 𝑥)))
1110, 1elrab2 3650 . . . . . 6 (𝑘𝐸 ↔ (𝑘 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑘 = (2 · 𝑥)))
128, 11anbi12i 628 . . . . 5 ((𝑗𝐸𝑘𝐸) ↔ ((𝑗 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑗 = (2 · 𝑥)) ∧ (𝑘 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑘 = (2 · 𝑥))))
13 simpl 482 . . . . . . . 8 ((𝑖 ∈ ℤ ∧ ((𝑗 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑗 = (2 · 𝑥)) ∧ (𝑘 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑘 = (2 · 𝑥)))) → 𝑖 ∈ ℤ)
14 simprll 778 . . . . . . . 8 ((𝑖 ∈ ℤ ∧ ((𝑗 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑗 = (2 · 𝑥)) ∧ (𝑘 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑘 = (2 · 𝑥)))) → 𝑗 ∈ ℤ)
1513, 14zmulcld 12580 . . . . . . 7 ((𝑖 ∈ ℤ ∧ ((𝑗 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑗 = (2 · 𝑥)) ∧ (𝑘 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑘 = (2 · 𝑥)))) → (𝑖 · 𝑗) ∈ ℤ)
16 simpl 482 . . . . . . . . 9 ((𝑘 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑘 = (2 · 𝑥)) → 𝑘 ∈ ℤ)
1716adantl 481 . . . . . . . 8 (((𝑗 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑗 = (2 · 𝑥)) ∧ (𝑘 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑘 = (2 · 𝑥))) → 𝑘 ∈ ℤ)
1817adantl 481 . . . . . . 7 ((𝑖 ∈ ℤ ∧ ((𝑗 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑗 = (2 · 𝑥)) ∧ (𝑘 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑘 = (2 · 𝑥)))) → 𝑘 ∈ ℤ)
1915, 18zaddcld 12578 . . . . . 6 ((𝑖 ∈ ℤ ∧ ((𝑗 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑗 = (2 · 𝑥)) ∧ (𝑘 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑘 = (2 · 𝑥)))) → ((𝑖 · 𝑗) + 𝑘) ∈ ℤ)
20 oveq2 7354 . . . . . . . . . . . 12 (𝑥 = 𝑎 → (2 · 𝑥) = (2 · 𝑎))
2120eqeq2d 2742 . . . . . . . . . . 11 (𝑥 = 𝑎 → (𝑗 = (2 · 𝑥) ↔ 𝑗 = (2 · 𝑎)))
2221cbvrexvw 3211 . . . . . . . . . 10 (∃𝑥 ∈ ℤ 𝑗 = (2 · 𝑥) ↔ ∃𝑎 ∈ ℤ 𝑗 = (2 · 𝑎))
23 oveq2 7354 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑏 → (2 · 𝑥) = (2 · 𝑏))
2423eqeq2d 2742 . . . . . . . . . . . . . . 15 (𝑥 = 𝑏 → (𝑘 = (2 · 𝑥) ↔ 𝑘 = (2 · 𝑏)))
2524cbvrexvw 3211 . . . . . . . . . . . . . 14 (∃𝑥 ∈ ℤ 𝑘 = (2 · 𝑥) ↔ ∃𝑏 ∈ ℤ 𝑘 = (2 · 𝑏))
26 simpr 484 . . . . . . . . . . . . . . . . . . 19 (((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) ∧ 𝑖 ∈ ℤ) → 𝑖 ∈ ℤ)
27 simprll 778 . . . . . . . . . . . . . . . . . . . 20 ((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) → 𝑎 ∈ ℤ)
2827adantr 480 . . . . . . . . . . . . . . . . . . 19 (((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) ∧ 𝑖 ∈ ℤ) → 𝑎 ∈ ℤ)
2926, 28zmulcld 12580 . . . . . . . . . . . . . . . . . 18 (((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) ∧ 𝑖 ∈ ℤ) → (𝑖 · 𝑎) ∈ ℤ)
30 simp-4l 782 . . . . . . . . . . . . . . . . . 18 (((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) ∧ 𝑖 ∈ ℤ) → 𝑏 ∈ ℤ)
3129, 30zaddcld 12578 . . . . . . . . . . . . . . . . 17 (((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) ∧ 𝑖 ∈ ℤ) → ((𝑖 · 𝑎) + 𝑏) ∈ ℤ)
32 simpr 484 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) → 𝑗 = (2 · 𝑎))
3332ad2antrl 728 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) → 𝑗 = (2 · 𝑎))
3433oveq2d 7362 . . . . . . . . . . . . . . . . . . . 20 ((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) → (𝑖 · 𝑗) = (𝑖 · (2 · 𝑎)))
35 simpllr 775 . . . . . . . . . . . . . . . . . . . 20 ((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) → 𝑘 = (2 · 𝑏))
3634, 35oveq12d 7364 . . . . . . . . . . . . . . . . . . 19 ((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) → ((𝑖 · 𝑗) + 𝑘) = ((𝑖 · (2 · 𝑎)) + (2 · 𝑏)))
3736adantr 480 . . . . . . . . . . . . . . . . . 18 (((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) ∧ 𝑖 ∈ ℤ) → ((𝑖 · 𝑗) + 𝑘) = ((𝑖 · (2 · 𝑎)) + (2 · 𝑏)))
38 oveq2 7354 . . . . . . . . . . . . . . . . . 18 (𝑥 = ((𝑖 · 𝑎) + 𝑏) → (2 · 𝑥) = (2 · ((𝑖 · 𝑎) + 𝑏)))
3937, 38eqeqan12d 2745 . . . . . . . . . . . . . . . . 17 ((((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) ∧ 𝑖 ∈ ℤ) ∧ 𝑥 = ((𝑖 · 𝑎) + 𝑏)) → (((𝑖 · 𝑗) + 𝑘) = (2 · 𝑥) ↔ ((𝑖 · (2 · 𝑎)) + (2 · 𝑏)) = (2 · ((𝑖 · 𝑎) + 𝑏))))
40 zcn 12470 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 ∈ ℤ → 𝑖 ∈ ℂ)
4140adantl 481 . . . . . . . . . . . . . . . . . . . 20 (((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) ∧ 𝑖 ∈ ℤ) → 𝑖 ∈ ℂ)
42 2cnd 12200 . . . . . . . . . . . . . . . . . . . 20 (((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) ∧ 𝑖 ∈ ℤ) → 2 ∈ ℂ)
43 zcn 12470 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 ∈ ℤ → 𝑎 ∈ ℂ)
4443adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) → 𝑎 ∈ ℂ)
4544ad2antrl 728 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) → 𝑎 ∈ ℂ)
4645adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) ∧ 𝑖 ∈ ℤ) → 𝑎 ∈ ℂ)
4741, 42, 46mul12d 11319 . . . . . . . . . . . . . . . . . . 19 (((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) ∧ 𝑖 ∈ ℤ) → (𝑖 · (2 · 𝑎)) = (2 · (𝑖 · 𝑎)))
4847oveq1d 7361 . . . . . . . . . . . . . . . . . 18 (((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) ∧ 𝑖 ∈ ℤ) → ((𝑖 · (2 · 𝑎)) + (2 · 𝑏)) = ((2 · (𝑖 · 𝑎)) + (2 · 𝑏)))
4941, 46mulcld 11129 . . . . . . . . . . . . . . . . . . 19 (((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) ∧ 𝑖 ∈ ℤ) → (𝑖 · 𝑎) ∈ ℂ)
50 zcn 12470 . . . . . . . . . . . . . . . . . . . 20 (𝑏 ∈ ℤ → 𝑏 ∈ ℂ)
5150ad4antr 732 . . . . . . . . . . . . . . . . . . 19 (((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) ∧ 𝑖 ∈ ℤ) → 𝑏 ∈ ℂ)
5242, 49, 51adddid 11133 . . . . . . . . . . . . . . . . . 18 (((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) ∧ 𝑖 ∈ ℤ) → (2 · ((𝑖 · 𝑎) + 𝑏)) = ((2 · (𝑖 · 𝑎)) + (2 · 𝑏)))
5348, 52eqtr4d 2769 . . . . . . . . . . . . . . . . 17 (((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) ∧ 𝑖 ∈ ℤ) → ((𝑖 · (2 · 𝑎)) + (2 · 𝑏)) = (2 · ((𝑖 · 𝑎) + 𝑏)))
5431, 39, 53rspcedvd 3579 . . . . . . . . . . . . . . . 16 (((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) ∧ 𝑖 ∈ ℤ) → ∃𝑥 ∈ ℤ ((𝑖 · 𝑗) + 𝑘) = (2 · 𝑥))
5554exp41 434 . . . . . . . . . . . . . . 15 ((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) → (𝑘 ∈ ℤ → (((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ) → (𝑖 ∈ ℤ → ∃𝑥 ∈ ℤ ((𝑖 · 𝑗) + 𝑘) = (2 · 𝑥)))))
5655rexlimiva 3125 . . . . . . . . . . . . . 14 (∃𝑏 ∈ ℤ 𝑘 = (2 · 𝑏) → (𝑘 ∈ ℤ → (((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ) → (𝑖 ∈ ℤ → ∃𝑥 ∈ ℤ ((𝑖 · 𝑗) + 𝑘) = (2 · 𝑥)))))
5725, 56sylbi 217 . . . . . . . . . . . . 13 (∃𝑥 ∈ ℤ 𝑘 = (2 · 𝑥) → (𝑘 ∈ ℤ → (((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ) → (𝑖 ∈ ℤ → ∃𝑥 ∈ ℤ ((𝑖 · 𝑗) + 𝑘) = (2 · 𝑥)))))
5857impcom 407 . . . . . . . . . . . 12 ((𝑘 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑘 = (2 · 𝑥)) → (((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ) → (𝑖 ∈ ℤ → ∃𝑥 ∈ ℤ ((𝑖 · 𝑗) + 𝑘) = (2 · 𝑥))))
5958expdcom 414 . . . . . . . . . . 11 ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) → (𝑗 ∈ ℤ → ((𝑘 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑘 = (2 · 𝑥)) → (𝑖 ∈ ℤ → ∃𝑥 ∈ ℤ ((𝑖 · 𝑗) + 𝑘) = (2 · 𝑥)))))
6059rexlimiva 3125 . . . . . . . . . 10 (∃𝑎 ∈ ℤ 𝑗 = (2 · 𝑎) → (𝑗 ∈ ℤ → ((𝑘 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑘 = (2 · 𝑥)) → (𝑖 ∈ ℤ → ∃𝑥 ∈ ℤ ((𝑖 · 𝑗) + 𝑘) = (2 · 𝑥)))))
6122, 60sylbi 217 . . . . . . . . 9 (∃𝑥 ∈ ℤ 𝑗 = (2 · 𝑥) → (𝑗 ∈ ℤ → ((𝑘 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑘 = (2 · 𝑥)) → (𝑖 ∈ ℤ → ∃𝑥 ∈ ℤ ((𝑖 · 𝑗) + 𝑘) = (2 · 𝑥)))))
6261impcom 407 . . . . . . . 8 ((𝑗 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑗 = (2 · 𝑥)) → ((𝑘 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑘 = (2 · 𝑥)) → (𝑖 ∈ ℤ → ∃𝑥 ∈ ℤ ((𝑖 · 𝑗) + 𝑘) = (2 · 𝑥))))
6362imp 406 . . . . . . 7 (((𝑗 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑗 = (2 · 𝑥)) ∧ (𝑘 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑘 = (2 · 𝑥))) → (𝑖 ∈ ℤ → ∃𝑥 ∈ ℤ ((𝑖 · 𝑗) + 𝑘) = (2 · 𝑥)))
6463impcom 407 . . . . . 6 ((𝑖 ∈ ℤ ∧ ((𝑗 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑗 = (2 · 𝑥)) ∧ (𝑘 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑘 = (2 · 𝑥)))) → ∃𝑥 ∈ ℤ ((𝑖 · 𝑗) + 𝑘) = (2 · 𝑥))
65 eqeq1 2735 . . . . . . . 8 (𝑧 = ((𝑖 · 𝑗) + 𝑘) → (𝑧 = (2 · 𝑥) ↔ ((𝑖 · 𝑗) + 𝑘) = (2 · 𝑥)))
6665rexbidv 3156 . . . . . . 7 (𝑧 = ((𝑖 · 𝑗) + 𝑘) → (∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥) ↔ ∃𝑥 ∈ ℤ ((𝑖 · 𝑗) + 𝑘) = (2 · 𝑥)))
6766, 1elrab2 3650 . . . . . 6 (((𝑖 · 𝑗) + 𝑘) ∈ 𝐸 ↔ (((𝑖 · 𝑗) + 𝑘) ∈ ℤ ∧ ∃𝑥 ∈ ℤ ((𝑖 · 𝑗) + 𝑘) = (2 · 𝑥)))
6819, 64, 67sylanbrc 583 . . . . 5 ((𝑖 ∈ ℤ ∧ ((𝑗 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑗 = (2 · 𝑥)) ∧ (𝑘 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑘 = (2 · 𝑥)))) → ((𝑖 · 𝑗) + 𝑘) ∈ 𝐸)
6912, 68sylan2b 594 . . . 4 ((𝑖 ∈ ℤ ∧ (𝑗𝐸𝑘𝐸)) → ((𝑖 · 𝑗) + 𝑘) ∈ 𝐸)
7069ralrimivva 3175 . . 3 (𝑖 ∈ ℤ → ∀𝑗𝐸𝑘𝐸 ((𝑖 · 𝑗) + 𝑘) ∈ 𝐸)
7170rgen 3049 . 2 𝑖 ∈ ℤ ∀𝑗𝐸𝑘𝐸 ((𝑖 · 𝑗) + 𝑘) ∈ 𝐸
72 2zlidl.u . . 3 𝑈 = (LIdeal‘ℤring)
73 zringbas 21388 . . 3 ℤ = (Base‘ℤring)
74 zringplusg 21389 . . 3 + = (+g‘ℤring)
75 zringmulr 21392 . . 3 · = (.r‘ℤring)
7672, 73, 74, 75islidl 21150 . 2 (𝐸𝑈 ↔ (𝐸 ⊆ ℤ ∧ 𝐸 ≠ ∅ ∧ ∀𝑖 ∈ ℤ ∀𝑗𝐸𝑘𝐸 ((𝑖 · 𝑗) + 𝑘) ∈ 𝐸))
773, 5, 71, 76mpbir3an 1342 1 𝐸𝑈
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  {crab 3395  wss 3902  c0 4283  cfv 6481  (class class class)co 7346  cc 11001  0cc0 11003   + caddc 11006   · cmul 11008  2c2 12177  cz 12465  LIdealclidl 21141  ringczring 21381
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-addf 11082  ax-mulf 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-2 12185  df-3 12186  df-4 12187  df-5 12188  df-6 12189  df-7 12190  df-8 12191  df-9 12192  df-n0 12379  df-z 12466  df-dec 12586  df-uz 12730  df-fz 13405  df-struct 17055  df-sets 17072  df-slot 17090  df-ndx 17102  df-base 17118  df-ress 17139  df-plusg 17171  df-mulr 17172  df-starv 17173  df-sca 17174  df-vsca 17175  df-ip 17176  df-tset 17177  df-ple 17178  df-ds 17180  df-unif 17181  df-lss 20863  df-sra 21105  df-rgmod 21106  df-lidl 21143  df-cnfld 21290  df-zring 21382
This theorem is referenced by:  2zrng  48271
  Copyright terms: Public domain W3C validator