Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2zlidl Structured version   Visualization version   GIF version

Theorem 2zlidl 48182
Description: The even integers are a (left) ideal of the ring of integers. (Contributed by AV, 20-Feb-2020.)
Hypotheses
Ref Expression
2zrng.e 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
2zlidl.u 𝑈 = (LIdeal‘ℤring)
Assertion
Ref Expression
2zlidl 𝐸𝑈
Distinct variable group:   𝑥,𝑧
Allowed substitution hints:   𝑈(𝑥,𝑧)   𝐸(𝑥,𝑧)

Proof of Theorem 2zlidl
Dummy variables 𝑎 𝑏 𝑖 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2zrng.e . . 3 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
2 ssrab2 4060 . . 3 {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} ⊆ ℤ
31, 2eqsstri 4010 . 2 𝐸 ⊆ ℤ
410even 48179 . . 3 0 ∈ 𝐸
54ne0ii 4324 . 2 𝐸 ≠ ∅
6 eqeq1 2740 . . . . . . . 8 (𝑧 = 𝑗 → (𝑧 = (2 · 𝑥) ↔ 𝑗 = (2 · 𝑥)))
76rexbidv 3165 . . . . . . 7 (𝑧 = 𝑗 → (∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥) ↔ ∃𝑥 ∈ ℤ 𝑗 = (2 · 𝑥)))
87, 1elrab2 3679 . . . . . 6 (𝑗𝐸 ↔ (𝑗 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑗 = (2 · 𝑥)))
9 eqeq1 2740 . . . . . . . 8 (𝑧 = 𝑘 → (𝑧 = (2 · 𝑥) ↔ 𝑘 = (2 · 𝑥)))
109rexbidv 3165 . . . . . . 7 (𝑧 = 𝑘 → (∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥) ↔ ∃𝑥 ∈ ℤ 𝑘 = (2 · 𝑥)))
1110, 1elrab2 3679 . . . . . 6 (𝑘𝐸 ↔ (𝑘 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑘 = (2 · 𝑥)))
128, 11anbi12i 628 . . . . 5 ((𝑗𝐸𝑘𝐸) ↔ ((𝑗 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑗 = (2 · 𝑥)) ∧ (𝑘 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑘 = (2 · 𝑥))))
13 simpl 482 . . . . . . . 8 ((𝑖 ∈ ℤ ∧ ((𝑗 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑗 = (2 · 𝑥)) ∧ (𝑘 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑘 = (2 · 𝑥)))) → 𝑖 ∈ ℤ)
14 simprll 778 . . . . . . . 8 ((𝑖 ∈ ℤ ∧ ((𝑗 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑗 = (2 · 𝑥)) ∧ (𝑘 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑘 = (2 · 𝑥)))) → 𝑗 ∈ ℤ)
1513, 14zmulcld 12708 . . . . . . 7 ((𝑖 ∈ ℤ ∧ ((𝑗 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑗 = (2 · 𝑥)) ∧ (𝑘 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑘 = (2 · 𝑥)))) → (𝑖 · 𝑗) ∈ ℤ)
16 simpl 482 . . . . . . . . 9 ((𝑘 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑘 = (2 · 𝑥)) → 𝑘 ∈ ℤ)
1716adantl 481 . . . . . . . 8 (((𝑗 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑗 = (2 · 𝑥)) ∧ (𝑘 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑘 = (2 · 𝑥))) → 𝑘 ∈ ℤ)
1817adantl 481 . . . . . . 7 ((𝑖 ∈ ℤ ∧ ((𝑗 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑗 = (2 · 𝑥)) ∧ (𝑘 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑘 = (2 · 𝑥)))) → 𝑘 ∈ ℤ)
1915, 18zaddcld 12706 . . . . . 6 ((𝑖 ∈ ℤ ∧ ((𝑗 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑗 = (2 · 𝑥)) ∧ (𝑘 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑘 = (2 · 𝑥)))) → ((𝑖 · 𝑗) + 𝑘) ∈ ℤ)
20 oveq2 7418 . . . . . . . . . . . 12 (𝑥 = 𝑎 → (2 · 𝑥) = (2 · 𝑎))
2120eqeq2d 2747 . . . . . . . . . . 11 (𝑥 = 𝑎 → (𝑗 = (2 · 𝑥) ↔ 𝑗 = (2 · 𝑎)))
2221cbvrexvw 3225 . . . . . . . . . 10 (∃𝑥 ∈ ℤ 𝑗 = (2 · 𝑥) ↔ ∃𝑎 ∈ ℤ 𝑗 = (2 · 𝑎))
23 oveq2 7418 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑏 → (2 · 𝑥) = (2 · 𝑏))
2423eqeq2d 2747 . . . . . . . . . . . . . . 15 (𝑥 = 𝑏 → (𝑘 = (2 · 𝑥) ↔ 𝑘 = (2 · 𝑏)))
2524cbvrexvw 3225 . . . . . . . . . . . . . 14 (∃𝑥 ∈ ℤ 𝑘 = (2 · 𝑥) ↔ ∃𝑏 ∈ ℤ 𝑘 = (2 · 𝑏))
26 simpr 484 . . . . . . . . . . . . . . . . . . 19 (((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) ∧ 𝑖 ∈ ℤ) → 𝑖 ∈ ℤ)
27 simprll 778 . . . . . . . . . . . . . . . . . . . 20 ((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) → 𝑎 ∈ ℤ)
2827adantr 480 . . . . . . . . . . . . . . . . . . 19 (((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) ∧ 𝑖 ∈ ℤ) → 𝑎 ∈ ℤ)
2926, 28zmulcld 12708 . . . . . . . . . . . . . . . . . 18 (((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) ∧ 𝑖 ∈ ℤ) → (𝑖 · 𝑎) ∈ ℤ)
30 simp-4l 782 . . . . . . . . . . . . . . . . . 18 (((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) ∧ 𝑖 ∈ ℤ) → 𝑏 ∈ ℤ)
3129, 30zaddcld 12706 . . . . . . . . . . . . . . . . 17 (((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) ∧ 𝑖 ∈ ℤ) → ((𝑖 · 𝑎) + 𝑏) ∈ ℤ)
32 simpr 484 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) → 𝑗 = (2 · 𝑎))
3332ad2antrl 728 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) → 𝑗 = (2 · 𝑎))
3433oveq2d 7426 . . . . . . . . . . . . . . . . . . . 20 ((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) → (𝑖 · 𝑗) = (𝑖 · (2 · 𝑎)))
35 simpllr 775 . . . . . . . . . . . . . . . . . . . 20 ((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) → 𝑘 = (2 · 𝑏))
3634, 35oveq12d 7428 . . . . . . . . . . . . . . . . . . 19 ((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) → ((𝑖 · 𝑗) + 𝑘) = ((𝑖 · (2 · 𝑎)) + (2 · 𝑏)))
3736adantr 480 . . . . . . . . . . . . . . . . . 18 (((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) ∧ 𝑖 ∈ ℤ) → ((𝑖 · 𝑗) + 𝑘) = ((𝑖 · (2 · 𝑎)) + (2 · 𝑏)))
38 oveq2 7418 . . . . . . . . . . . . . . . . . 18 (𝑥 = ((𝑖 · 𝑎) + 𝑏) → (2 · 𝑥) = (2 · ((𝑖 · 𝑎) + 𝑏)))
3937, 38eqeqan12d 2750 . . . . . . . . . . . . . . . . 17 ((((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) ∧ 𝑖 ∈ ℤ) ∧ 𝑥 = ((𝑖 · 𝑎) + 𝑏)) → (((𝑖 · 𝑗) + 𝑘) = (2 · 𝑥) ↔ ((𝑖 · (2 · 𝑎)) + (2 · 𝑏)) = (2 · ((𝑖 · 𝑎) + 𝑏))))
40 zcn 12598 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 ∈ ℤ → 𝑖 ∈ ℂ)
4140adantl 481 . . . . . . . . . . . . . . . . . . . 20 (((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) ∧ 𝑖 ∈ ℤ) → 𝑖 ∈ ℂ)
42 2cnd 12323 . . . . . . . . . . . . . . . . . . . 20 (((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) ∧ 𝑖 ∈ ℤ) → 2 ∈ ℂ)
43 zcn 12598 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 ∈ ℤ → 𝑎 ∈ ℂ)
4443adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) → 𝑎 ∈ ℂ)
4544ad2antrl 728 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) → 𝑎 ∈ ℂ)
4645adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) ∧ 𝑖 ∈ ℤ) → 𝑎 ∈ ℂ)
4741, 42, 46mul12d 11449 . . . . . . . . . . . . . . . . . . 19 (((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) ∧ 𝑖 ∈ ℤ) → (𝑖 · (2 · 𝑎)) = (2 · (𝑖 · 𝑎)))
4847oveq1d 7425 . . . . . . . . . . . . . . . . . 18 (((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) ∧ 𝑖 ∈ ℤ) → ((𝑖 · (2 · 𝑎)) + (2 · 𝑏)) = ((2 · (𝑖 · 𝑎)) + (2 · 𝑏)))
4941, 46mulcld 11260 . . . . . . . . . . . . . . . . . . 19 (((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) ∧ 𝑖 ∈ ℤ) → (𝑖 · 𝑎) ∈ ℂ)
50 zcn 12598 . . . . . . . . . . . . . . . . . . . 20 (𝑏 ∈ ℤ → 𝑏 ∈ ℂ)
5150ad4antr 732 . . . . . . . . . . . . . . . . . . 19 (((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) ∧ 𝑖 ∈ ℤ) → 𝑏 ∈ ℂ)
5242, 49, 51adddid 11264 . . . . . . . . . . . . . . . . . 18 (((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) ∧ 𝑖 ∈ ℤ) → (2 · ((𝑖 · 𝑎) + 𝑏)) = ((2 · (𝑖 · 𝑎)) + (2 · 𝑏)))
5348, 52eqtr4d 2774 . . . . . . . . . . . . . . . . 17 (((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) ∧ 𝑖 ∈ ℤ) → ((𝑖 · (2 · 𝑎)) + (2 · 𝑏)) = (2 · ((𝑖 · 𝑎) + 𝑏)))
5431, 39, 53rspcedvd 3608 . . . . . . . . . . . . . . . 16 (((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) ∧ 𝑖 ∈ ℤ) → ∃𝑥 ∈ ℤ ((𝑖 · 𝑗) + 𝑘) = (2 · 𝑥))
5554exp41 434 . . . . . . . . . . . . . . 15 ((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) → (𝑘 ∈ ℤ → (((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ) → (𝑖 ∈ ℤ → ∃𝑥 ∈ ℤ ((𝑖 · 𝑗) + 𝑘) = (2 · 𝑥)))))
5655rexlimiva 3134 . . . . . . . . . . . . . 14 (∃𝑏 ∈ ℤ 𝑘 = (2 · 𝑏) → (𝑘 ∈ ℤ → (((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ) → (𝑖 ∈ ℤ → ∃𝑥 ∈ ℤ ((𝑖 · 𝑗) + 𝑘) = (2 · 𝑥)))))
5725, 56sylbi 217 . . . . . . . . . . . . 13 (∃𝑥 ∈ ℤ 𝑘 = (2 · 𝑥) → (𝑘 ∈ ℤ → (((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ) → (𝑖 ∈ ℤ → ∃𝑥 ∈ ℤ ((𝑖 · 𝑗) + 𝑘) = (2 · 𝑥)))))
5857impcom 407 . . . . . . . . . . . 12 ((𝑘 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑘 = (2 · 𝑥)) → (((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ) → (𝑖 ∈ ℤ → ∃𝑥 ∈ ℤ ((𝑖 · 𝑗) + 𝑘) = (2 · 𝑥))))
5958expdcom 414 . . . . . . . . . . 11 ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) → (𝑗 ∈ ℤ → ((𝑘 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑘 = (2 · 𝑥)) → (𝑖 ∈ ℤ → ∃𝑥 ∈ ℤ ((𝑖 · 𝑗) + 𝑘) = (2 · 𝑥)))))
6059rexlimiva 3134 . . . . . . . . . 10 (∃𝑎 ∈ ℤ 𝑗 = (2 · 𝑎) → (𝑗 ∈ ℤ → ((𝑘 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑘 = (2 · 𝑥)) → (𝑖 ∈ ℤ → ∃𝑥 ∈ ℤ ((𝑖 · 𝑗) + 𝑘) = (2 · 𝑥)))))
6122, 60sylbi 217 . . . . . . . . 9 (∃𝑥 ∈ ℤ 𝑗 = (2 · 𝑥) → (𝑗 ∈ ℤ → ((𝑘 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑘 = (2 · 𝑥)) → (𝑖 ∈ ℤ → ∃𝑥 ∈ ℤ ((𝑖 · 𝑗) + 𝑘) = (2 · 𝑥)))))
6261impcom 407 . . . . . . . 8 ((𝑗 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑗 = (2 · 𝑥)) → ((𝑘 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑘 = (2 · 𝑥)) → (𝑖 ∈ ℤ → ∃𝑥 ∈ ℤ ((𝑖 · 𝑗) + 𝑘) = (2 · 𝑥))))
6362imp 406 . . . . . . 7 (((𝑗 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑗 = (2 · 𝑥)) ∧ (𝑘 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑘 = (2 · 𝑥))) → (𝑖 ∈ ℤ → ∃𝑥 ∈ ℤ ((𝑖 · 𝑗) + 𝑘) = (2 · 𝑥)))
6463impcom 407 . . . . . 6 ((𝑖 ∈ ℤ ∧ ((𝑗 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑗 = (2 · 𝑥)) ∧ (𝑘 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑘 = (2 · 𝑥)))) → ∃𝑥 ∈ ℤ ((𝑖 · 𝑗) + 𝑘) = (2 · 𝑥))
65 eqeq1 2740 . . . . . . . 8 (𝑧 = ((𝑖 · 𝑗) + 𝑘) → (𝑧 = (2 · 𝑥) ↔ ((𝑖 · 𝑗) + 𝑘) = (2 · 𝑥)))
6665rexbidv 3165 . . . . . . 7 (𝑧 = ((𝑖 · 𝑗) + 𝑘) → (∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥) ↔ ∃𝑥 ∈ ℤ ((𝑖 · 𝑗) + 𝑘) = (2 · 𝑥)))
6766, 1elrab2 3679 . . . . . 6 (((𝑖 · 𝑗) + 𝑘) ∈ 𝐸 ↔ (((𝑖 · 𝑗) + 𝑘) ∈ ℤ ∧ ∃𝑥 ∈ ℤ ((𝑖 · 𝑗) + 𝑘) = (2 · 𝑥)))
6819, 64, 67sylanbrc 583 . . . . 5 ((𝑖 ∈ ℤ ∧ ((𝑗 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑗 = (2 · 𝑥)) ∧ (𝑘 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑘 = (2 · 𝑥)))) → ((𝑖 · 𝑗) + 𝑘) ∈ 𝐸)
6912, 68sylan2b 594 . . . 4 ((𝑖 ∈ ℤ ∧ (𝑗𝐸𝑘𝐸)) → ((𝑖 · 𝑗) + 𝑘) ∈ 𝐸)
7069ralrimivva 3188 . . 3 (𝑖 ∈ ℤ → ∀𝑗𝐸𝑘𝐸 ((𝑖 · 𝑗) + 𝑘) ∈ 𝐸)
7170rgen 3054 . 2 𝑖 ∈ ℤ ∀𝑗𝐸𝑘𝐸 ((𝑖 · 𝑗) + 𝑘) ∈ 𝐸
72 2zlidl.u . . 3 𝑈 = (LIdeal‘ℤring)
73 zringbas 21419 . . 3 ℤ = (Base‘ℤring)
74 zringplusg 21420 . . 3 + = (+g‘ℤring)
75 zringmulr 21423 . . 3 · = (.r‘ℤring)
7672, 73, 74, 75islidl 21181 . 2 (𝐸𝑈 ↔ (𝐸 ⊆ ℤ ∧ 𝐸 ≠ ∅ ∧ ∀𝑖 ∈ ℤ ∀𝑗𝐸𝑘𝐸 ((𝑖 · 𝑗) + 𝑘) ∈ 𝐸))
773, 5, 71, 76mpbir3an 1342 1 𝐸𝑈
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2933  wral 3052  wrex 3061  {crab 3420  wss 3931  c0 4313  cfv 6536  (class class class)co 7410  cc 11132  0cc0 11134   + caddc 11137   · cmul 11139  2c2 12300  cz 12593  LIdealclidl 21172  ringczring 21412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-addf 11213  ax-mulf 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-fz 13530  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-starv 17291  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-lss 20894  df-sra 21136  df-rgmod 21137  df-lidl 21174  df-cnfld 21321  df-zring 21413
This theorem is referenced by:  2zrng  48183
  Copyright terms: Public domain W3C validator