Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2zlidl Structured version   Visualization version   GIF version

Theorem 2zlidl 48232
Description: The even integers are a (left) ideal of the ring of integers. (Contributed by AV, 20-Feb-2020.)
Hypotheses
Ref Expression
2zrng.e 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
2zlidl.u 𝑈 = (LIdeal‘ℤring)
Assertion
Ref Expression
2zlidl 𝐸𝑈
Distinct variable group:   𝑥,𝑧
Allowed substitution hints:   𝑈(𝑥,𝑧)   𝐸(𝑥,𝑧)

Proof of Theorem 2zlidl
Dummy variables 𝑎 𝑏 𝑖 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2zrng.e . . 3 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
2 ssrab2 4046 . . 3 {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} ⊆ ℤ
31, 2eqsstri 3996 . 2 𝐸 ⊆ ℤ
410even 48229 . . 3 0 ∈ 𝐸
54ne0ii 4310 . 2 𝐸 ≠ ∅
6 eqeq1 2734 . . . . . . . 8 (𝑧 = 𝑗 → (𝑧 = (2 · 𝑥) ↔ 𝑗 = (2 · 𝑥)))
76rexbidv 3158 . . . . . . 7 (𝑧 = 𝑗 → (∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥) ↔ ∃𝑥 ∈ ℤ 𝑗 = (2 · 𝑥)))
87, 1elrab2 3665 . . . . . 6 (𝑗𝐸 ↔ (𝑗 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑗 = (2 · 𝑥)))
9 eqeq1 2734 . . . . . . . 8 (𝑧 = 𝑘 → (𝑧 = (2 · 𝑥) ↔ 𝑘 = (2 · 𝑥)))
109rexbidv 3158 . . . . . . 7 (𝑧 = 𝑘 → (∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥) ↔ ∃𝑥 ∈ ℤ 𝑘 = (2 · 𝑥)))
1110, 1elrab2 3665 . . . . . 6 (𝑘𝐸 ↔ (𝑘 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑘 = (2 · 𝑥)))
128, 11anbi12i 628 . . . . 5 ((𝑗𝐸𝑘𝐸) ↔ ((𝑗 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑗 = (2 · 𝑥)) ∧ (𝑘 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑘 = (2 · 𝑥))))
13 simpl 482 . . . . . . . 8 ((𝑖 ∈ ℤ ∧ ((𝑗 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑗 = (2 · 𝑥)) ∧ (𝑘 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑘 = (2 · 𝑥)))) → 𝑖 ∈ ℤ)
14 simprll 778 . . . . . . . 8 ((𝑖 ∈ ℤ ∧ ((𝑗 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑗 = (2 · 𝑥)) ∧ (𝑘 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑘 = (2 · 𝑥)))) → 𝑗 ∈ ℤ)
1513, 14zmulcld 12651 . . . . . . 7 ((𝑖 ∈ ℤ ∧ ((𝑗 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑗 = (2 · 𝑥)) ∧ (𝑘 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑘 = (2 · 𝑥)))) → (𝑖 · 𝑗) ∈ ℤ)
16 simpl 482 . . . . . . . . 9 ((𝑘 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑘 = (2 · 𝑥)) → 𝑘 ∈ ℤ)
1716adantl 481 . . . . . . . 8 (((𝑗 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑗 = (2 · 𝑥)) ∧ (𝑘 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑘 = (2 · 𝑥))) → 𝑘 ∈ ℤ)
1817adantl 481 . . . . . . 7 ((𝑖 ∈ ℤ ∧ ((𝑗 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑗 = (2 · 𝑥)) ∧ (𝑘 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑘 = (2 · 𝑥)))) → 𝑘 ∈ ℤ)
1915, 18zaddcld 12649 . . . . . 6 ((𝑖 ∈ ℤ ∧ ((𝑗 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑗 = (2 · 𝑥)) ∧ (𝑘 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑘 = (2 · 𝑥)))) → ((𝑖 · 𝑗) + 𝑘) ∈ ℤ)
20 oveq2 7398 . . . . . . . . . . . 12 (𝑥 = 𝑎 → (2 · 𝑥) = (2 · 𝑎))
2120eqeq2d 2741 . . . . . . . . . . 11 (𝑥 = 𝑎 → (𝑗 = (2 · 𝑥) ↔ 𝑗 = (2 · 𝑎)))
2221cbvrexvw 3217 . . . . . . . . . 10 (∃𝑥 ∈ ℤ 𝑗 = (2 · 𝑥) ↔ ∃𝑎 ∈ ℤ 𝑗 = (2 · 𝑎))
23 oveq2 7398 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑏 → (2 · 𝑥) = (2 · 𝑏))
2423eqeq2d 2741 . . . . . . . . . . . . . . 15 (𝑥 = 𝑏 → (𝑘 = (2 · 𝑥) ↔ 𝑘 = (2 · 𝑏)))
2524cbvrexvw 3217 . . . . . . . . . . . . . 14 (∃𝑥 ∈ ℤ 𝑘 = (2 · 𝑥) ↔ ∃𝑏 ∈ ℤ 𝑘 = (2 · 𝑏))
26 simpr 484 . . . . . . . . . . . . . . . . . . 19 (((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) ∧ 𝑖 ∈ ℤ) → 𝑖 ∈ ℤ)
27 simprll 778 . . . . . . . . . . . . . . . . . . . 20 ((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) → 𝑎 ∈ ℤ)
2827adantr 480 . . . . . . . . . . . . . . . . . . 19 (((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) ∧ 𝑖 ∈ ℤ) → 𝑎 ∈ ℤ)
2926, 28zmulcld 12651 . . . . . . . . . . . . . . . . . 18 (((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) ∧ 𝑖 ∈ ℤ) → (𝑖 · 𝑎) ∈ ℤ)
30 simp-4l 782 . . . . . . . . . . . . . . . . . 18 (((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) ∧ 𝑖 ∈ ℤ) → 𝑏 ∈ ℤ)
3129, 30zaddcld 12649 . . . . . . . . . . . . . . . . 17 (((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) ∧ 𝑖 ∈ ℤ) → ((𝑖 · 𝑎) + 𝑏) ∈ ℤ)
32 simpr 484 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) → 𝑗 = (2 · 𝑎))
3332ad2antrl 728 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) → 𝑗 = (2 · 𝑎))
3433oveq2d 7406 . . . . . . . . . . . . . . . . . . . 20 ((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) → (𝑖 · 𝑗) = (𝑖 · (2 · 𝑎)))
35 simpllr 775 . . . . . . . . . . . . . . . . . . . 20 ((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) → 𝑘 = (2 · 𝑏))
3634, 35oveq12d 7408 . . . . . . . . . . . . . . . . . . 19 ((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) → ((𝑖 · 𝑗) + 𝑘) = ((𝑖 · (2 · 𝑎)) + (2 · 𝑏)))
3736adantr 480 . . . . . . . . . . . . . . . . . 18 (((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) ∧ 𝑖 ∈ ℤ) → ((𝑖 · 𝑗) + 𝑘) = ((𝑖 · (2 · 𝑎)) + (2 · 𝑏)))
38 oveq2 7398 . . . . . . . . . . . . . . . . . 18 (𝑥 = ((𝑖 · 𝑎) + 𝑏) → (2 · 𝑥) = (2 · ((𝑖 · 𝑎) + 𝑏)))
3937, 38eqeqan12d 2744 . . . . . . . . . . . . . . . . 17 ((((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) ∧ 𝑖 ∈ ℤ) ∧ 𝑥 = ((𝑖 · 𝑎) + 𝑏)) → (((𝑖 · 𝑗) + 𝑘) = (2 · 𝑥) ↔ ((𝑖 · (2 · 𝑎)) + (2 · 𝑏)) = (2 · ((𝑖 · 𝑎) + 𝑏))))
40 zcn 12541 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 ∈ ℤ → 𝑖 ∈ ℂ)
4140adantl 481 . . . . . . . . . . . . . . . . . . . 20 (((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) ∧ 𝑖 ∈ ℤ) → 𝑖 ∈ ℂ)
42 2cnd 12271 . . . . . . . . . . . . . . . . . . . 20 (((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) ∧ 𝑖 ∈ ℤ) → 2 ∈ ℂ)
43 zcn 12541 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 ∈ ℤ → 𝑎 ∈ ℂ)
4443adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) → 𝑎 ∈ ℂ)
4544ad2antrl 728 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) → 𝑎 ∈ ℂ)
4645adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) ∧ 𝑖 ∈ ℤ) → 𝑎 ∈ ℂ)
4741, 42, 46mul12d 11390 . . . . . . . . . . . . . . . . . . 19 (((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) ∧ 𝑖 ∈ ℤ) → (𝑖 · (2 · 𝑎)) = (2 · (𝑖 · 𝑎)))
4847oveq1d 7405 . . . . . . . . . . . . . . . . . 18 (((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) ∧ 𝑖 ∈ ℤ) → ((𝑖 · (2 · 𝑎)) + (2 · 𝑏)) = ((2 · (𝑖 · 𝑎)) + (2 · 𝑏)))
4941, 46mulcld 11201 . . . . . . . . . . . . . . . . . . 19 (((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) ∧ 𝑖 ∈ ℤ) → (𝑖 · 𝑎) ∈ ℂ)
50 zcn 12541 . . . . . . . . . . . . . . . . . . . 20 (𝑏 ∈ ℤ → 𝑏 ∈ ℂ)
5150ad4antr 732 . . . . . . . . . . . . . . . . . . 19 (((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) ∧ 𝑖 ∈ ℤ) → 𝑏 ∈ ℂ)
5242, 49, 51adddid 11205 . . . . . . . . . . . . . . . . . 18 (((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) ∧ 𝑖 ∈ ℤ) → (2 · ((𝑖 · 𝑎) + 𝑏)) = ((2 · (𝑖 · 𝑎)) + (2 · 𝑏)))
5348, 52eqtr4d 2768 . . . . . . . . . . . . . . . . 17 (((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) ∧ 𝑖 ∈ ℤ) → ((𝑖 · (2 · 𝑎)) + (2 · 𝑏)) = (2 · ((𝑖 · 𝑎) + 𝑏)))
5431, 39, 53rspcedvd 3593 . . . . . . . . . . . . . . . 16 (((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) ∧ 𝑖 ∈ ℤ) → ∃𝑥 ∈ ℤ ((𝑖 · 𝑗) + 𝑘) = (2 · 𝑥))
5554exp41 434 . . . . . . . . . . . . . . 15 ((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) → (𝑘 ∈ ℤ → (((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ) → (𝑖 ∈ ℤ → ∃𝑥 ∈ ℤ ((𝑖 · 𝑗) + 𝑘) = (2 · 𝑥)))))
5655rexlimiva 3127 . . . . . . . . . . . . . 14 (∃𝑏 ∈ ℤ 𝑘 = (2 · 𝑏) → (𝑘 ∈ ℤ → (((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ) → (𝑖 ∈ ℤ → ∃𝑥 ∈ ℤ ((𝑖 · 𝑗) + 𝑘) = (2 · 𝑥)))))
5725, 56sylbi 217 . . . . . . . . . . . . 13 (∃𝑥 ∈ ℤ 𝑘 = (2 · 𝑥) → (𝑘 ∈ ℤ → (((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ) → (𝑖 ∈ ℤ → ∃𝑥 ∈ ℤ ((𝑖 · 𝑗) + 𝑘) = (2 · 𝑥)))))
5857impcom 407 . . . . . . . . . . . 12 ((𝑘 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑘 = (2 · 𝑥)) → (((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ) → (𝑖 ∈ ℤ → ∃𝑥 ∈ ℤ ((𝑖 · 𝑗) + 𝑘) = (2 · 𝑥))))
5958expdcom 414 . . . . . . . . . . 11 ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) → (𝑗 ∈ ℤ → ((𝑘 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑘 = (2 · 𝑥)) → (𝑖 ∈ ℤ → ∃𝑥 ∈ ℤ ((𝑖 · 𝑗) + 𝑘) = (2 · 𝑥)))))
6059rexlimiva 3127 . . . . . . . . . 10 (∃𝑎 ∈ ℤ 𝑗 = (2 · 𝑎) → (𝑗 ∈ ℤ → ((𝑘 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑘 = (2 · 𝑥)) → (𝑖 ∈ ℤ → ∃𝑥 ∈ ℤ ((𝑖 · 𝑗) + 𝑘) = (2 · 𝑥)))))
6122, 60sylbi 217 . . . . . . . . 9 (∃𝑥 ∈ ℤ 𝑗 = (2 · 𝑥) → (𝑗 ∈ ℤ → ((𝑘 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑘 = (2 · 𝑥)) → (𝑖 ∈ ℤ → ∃𝑥 ∈ ℤ ((𝑖 · 𝑗) + 𝑘) = (2 · 𝑥)))))
6261impcom 407 . . . . . . . 8 ((𝑗 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑗 = (2 · 𝑥)) → ((𝑘 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑘 = (2 · 𝑥)) → (𝑖 ∈ ℤ → ∃𝑥 ∈ ℤ ((𝑖 · 𝑗) + 𝑘) = (2 · 𝑥))))
6362imp 406 . . . . . . 7 (((𝑗 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑗 = (2 · 𝑥)) ∧ (𝑘 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑘 = (2 · 𝑥))) → (𝑖 ∈ ℤ → ∃𝑥 ∈ ℤ ((𝑖 · 𝑗) + 𝑘) = (2 · 𝑥)))
6463impcom 407 . . . . . 6 ((𝑖 ∈ ℤ ∧ ((𝑗 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑗 = (2 · 𝑥)) ∧ (𝑘 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑘 = (2 · 𝑥)))) → ∃𝑥 ∈ ℤ ((𝑖 · 𝑗) + 𝑘) = (2 · 𝑥))
65 eqeq1 2734 . . . . . . . 8 (𝑧 = ((𝑖 · 𝑗) + 𝑘) → (𝑧 = (2 · 𝑥) ↔ ((𝑖 · 𝑗) + 𝑘) = (2 · 𝑥)))
6665rexbidv 3158 . . . . . . 7 (𝑧 = ((𝑖 · 𝑗) + 𝑘) → (∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥) ↔ ∃𝑥 ∈ ℤ ((𝑖 · 𝑗) + 𝑘) = (2 · 𝑥)))
6766, 1elrab2 3665 . . . . . 6 (((𝑖 · 𝑗) + 𝑘) ∈ 𝐸 ↔ (((𝑖 · 𝑗) + 𝑘) ∈ ℤ ∧ ∃𝑥 ∈ ℤ ((𝑖 · 𝑗) + 𝑘) = (2 · 𝑥)))
6819, 64, 67sylanbrc 583 . . . . 5 ((𝑖 ∈ ℤ ∧ ((𝑗 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑗 = (2 · 𝑥)) ∧ (𝑘 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑘 = (2 · 𝑥)))) → ((𝑖 · 𝑗) + 𝑘) ∈ 𝐸)
6912, 68sylan2b 594 . . . 4 ((𝑖 ∈ ℤ ∧ (𝑗𝐸𝑘𝐸)) → ((𝑖 · 𝑗) + 𝑘) ∈ 𝐸)
7069ralrimivva 3181 . . 3 (𝑖 ∈ ℤ → ∀𝑗𝐸𝑘𝐸 ((𝑖 · 𝑗) + 𝑘) ∈ 𝐸)
7170rgen 3047 . 2 𝑖 ∈ ℤ ∀𝑗𝐸𝑘𝐸 ((𝑖 · 𝑗) + 𝑘) ∈ 𝐸
72 2zlidl.u . . 3 𝑈 = (LIdeal‘ℤring)
73 zringbas 21370 . . 3 ℤ = (Base‘ℤring)
74 zringplusg 21371 . . 3 + = (+g‘ℤring)
75 zringmulr 21374 . . 3 · = (.r‘ℤring)
7672, 73, 74, 75islidl 21132 . 2 (𝐸𝑈 ↔ (𝐸 ⊆ ℤ ∧ 𝐸 ≠ ∅ ∧ ∀𝑖 ∈ ℤ ∀𝑗𝐸𝑘𝐸 ((𝑖 · 𝑗) + 𝑘) ∈ 𝐸))
773, 5, 71, 76mpbir3an 1342 1 𝐸𝑈
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  {crab 3408  wss 3917  c0 4299  cfv 6514  (class class class)co 7390  cc 11073  0cc0 11075   + caddc 11078   · cmul 11080  2c2 12248  cz 12536  LIdealclidl 21123  ringczring 21363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-addf 11154  ax-mulf 11155
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-lss 20845  df-sra 21087  df-rgmod 21088  df-lidl 21125  df-cnfld 21272  df-zring 21364
This theorem is referenced by:  2zrng  48233
  Copyright terms: Public domain W3C validator