MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  setsstruct Structured version   Visualization version   GIF version

Theorem setsstruct 17142
Description: An extensible structure with a replaced slot is an extensible structure. (Contributed by AV, 9-Jun-2021.) (Revised by AV, 14-Nov-2021.)
Assertion
Ref Expression
setsstruct ((𝐸𝑉𝐼 ∈ (ℤ𝑀) ∧ 𝐺 Struct ⟨𝑀, 𝑁⟩) → (𝐺 sSet ⟨𝐼, 𝐸⟩) Struct ⟨𝑀, if(𝐼𝑁, 𝑁, 𝐼)⟩)

Proof of Theorem setsstruct
StepHypRef Expression
1 isstruct 17118 . . . . . 6 (𝐺 Struct ⟨𝑀, 𝑁⟩ ↔ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) ∧ Fun (𝐺 ∖ {∅}) ∧ dom 𝐺 ⊆ (𝑀...𝑁)))
2 simp2 1134 . . . . . . . . . 10 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) ∧ 𝐺 Struct ⟨𝑀, 𝑁⟩ ∧ (𝐸𝑉𝐼 ∈ (ℤ𝑀))) → 𝐺 Struct ⟨𝑀, 𝑁⟩)
3 simp3l 1198 . . . . . . . . . 10 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) ∧ 𝐺 Struct ⟨𝑀, 𝑁⟩ ∧ (𝐸𝑉𝐼 ∈ (ℤ𝑀))) → 𝐸𝑉)
4 1z 12620 . . . . . . . . . . . . . . . 16 1 ∈ ℤ
5 nnge1 12268 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ → 1 ≤ 𝑀)
6 eluzuzle 12859 . . . . . . . . . . . . . . . 16 ((1 ∈ ℤ ∧ 1 ≤ 𝑀) → (𝐼 ∈ (ℤ𝑀) → 𝐼 ∈ (ℤ‘1)))
74, 5, 6sylancr 585 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℕ → (𝐼 ∈ (ℤ𝑀) → 𝐼 ∈ (ℤ‘1)))
8 elnnuz 12894 . . . . . . . . . . . . . . 15 (𝐼 ∈ ℕ ↔ 𝐼 ∈ (ℤ‘1))
97, 8imbitrrdi 251 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ → (𝐼 ∈ (ℤ𝑀) → 𝐼 ∈ ℕ))
109adantld 489 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → ((𝐸𝑉𝐼 ∈ (ℤ𝑀)) → 𝐼 ∈ ℕ))
11103ad2ant1 1130 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) → ((𝐸𝑉𝐼 ∈ (ℤ𝑀)) → 𝐼 ∈ ℕ))
1211a1d 25 . . . . . . . . . . 11 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) → (𝐺 Struct ⟨𝑀, 𝑁⟩ → ((𝐸𝑉𝐼 ∈ (ℤ𝑀)) → 𝐼 ∈ ℕ)))
13123imp 1108 . . . . . . . . . 10 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) ∧ 𝐺 Struct ⟨𝑀, 𝑁⟩ ∧ (𝐸𝑉𝐼 ∈ (ℤ𝑀))) → 𝐼 ∈ ℕ)
142, 3, 133jca 1125 . . . . . . . . 9 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) ∧ 𝐺 Struct ⟨𝑀, 𝑁⟩ ∧ (𝐸𝑉𝐼 ∈ (ℤ𝑀))) → (𝐺 Struct ⟨𝑀, 𝑁⟩ ∧ 𝐸𝑉𝐼 ∈ ℕ))
15 op1stg 8001 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (1st ‘⟨𝑀, 𝑁⟩) = 𝑀)
1615breq2d 5155 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐼 ≤ (1st ‘⟨𝑀, 𝑁⟩) ↔ 𝐼𝑀))
17 eqidd 2726 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝐼 = 𝐼)
1816, 17, 15ifbieq12d 4552 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → if(𝐼 ≤ (1st ‘⟨𝑀, 𝑁⟩), 𝐼, (1st ‘⟨𝑀, 𝑁⟩)) = if(𝐼𝑀, 𝐼, 𝑀))
19183adant3 1129 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) → if(𝐼 ≤ (1st ‘⟨𝑀, 𝑁⟩), 𝐼, (1st ‘⟨𝑀, 𝑁⟩)) = if(𝐼𝑀, 𝐼, 𝑀))
2019adantr 479 . . . . . . . . . . . 12 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) ∧ (𝐸𝑉𝐼 ∈ (ℤ𝑀))) → if(𝐼 ≤ (1st ‘⟨𝑀, 𝑁⟩), 𝐼, (1st ‘⟨𝑀, 𝑁⟩)) = if(𝐼𝑀, 𝐼, 𝑀))
21 eluz2 12856 . . . . . . . . . . . . . . . 16 (𝐼 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝑀𝐼))
22 zre 12590 . . . . . . . . . . . . . . . . . . . 20 (𝐼 ∈ ℤ → 𝐼 ∈ ℝ)
2322rexrd 11292 . . . . . . . . . . . . . . . . . . 19 (𝐼 ∈ ℤ → 𝐼 ∈ ℝ*)
24233ad2ant2 1131 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝑀𝐼) → 𝐼 ∈ ℝ*)
25 zre 12590 . . . . . . . . . . . . . . . . . . . 20 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
2625rexrd 11292 . . . . . . . . . . . . . . . . . . 19 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ*)
27263ad2ant1 1130 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝑀𝐼) → 𝑀 ∈ ℝ*)
28 simp3 1135 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝑀𝐼) → 𝑀𝐼)
2924, 27, 283jca 1125 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝑀𝐼) → (𝐼 ∈ ℝ*𝑀 ∈ ℝ*𝑀𝐼))
3029a1d 25 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝑀𝐼) → ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) → (𝐼 ∈ ℝ*𝑀 ∈ ℝ*𝑀𝐼)))
3121, 30sylbi 216 . . . . . . . . . . . . . . 15 (𝐼 ∈ (ℤ𝑀) → ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) → (𝐼 ∈ ℝ*𝑀 ∈ ℝ*𝑀𝐼)))
3231adantl 480 . . . . . . . . . . . . . 14 ((𝐸𝑉𝐼 ∈ (ℤ𝑀)) → ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) → (𝐼 ∈ ℝ*𝑀 ∈ ℝ*𝑀𝐼)))
3332impcom 406 . . . . . . . . . . . . 13 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) ∧ (𝐸𝑉𝐼 ∈ (ℤ𝑀))) → (𝐼 ∈ ℝ*𝑀 ∈ ℝ*𝑀𝐼))
34 xrmineq 13189 . . . . . . . . . . . . 13 ((𝐼 ∈ ℝ*𝑀 ∈ ℝ*𝑀𝐼) → if(𝐼𝑀, 𝐼, 𝑀) = 𝑀)
3533, 34syl 17 . . . . . . . . . . . 12 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) ∧ (𝐸𝑉𝐼 ∈ (ℤ𝑀))) → if(𝐼𝑀, 𝐼, 𝑀) = 𝑀)
3620, 35eqtr2d 2766 . . . . . . . . . . 11 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) ∧ (𝐸𝑉𝐼 ∈ (ℤ𝑀))) → 𝑀 = if(𝐼 ≤ (1st ‘⟨𝑀, 𝑁⟩), 𝐼, (1st ‘⟨𝑀, 𝑁⟩)))
37363adant2 1128 . . . . . . . . . 10 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) ∧ 𝐺 Struct ⟨𝑀, 𝑁⟩ ∧ (𝐸𝑉𝐼 ∈ (ℤ𝑀))) → 𝑀 = if(𝐼 ≤ (1st ‘⟨𝑀, 𝑁⟩), 𝐼, (1st ‘⟨𝑀, 𝑁⟩)))
38 op2ndg 8002 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (2nd ‘⟨𝑀, 𝑁⟩) = 𝑁)
3938eqcomd 2731 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑁 = (2nd ‘⟨𝑀, 𝑁⟩))
4039breq2d 5155 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐼𝑁𝐼 ≤ (2nd ‘⟨𝑀, 𝑁⟩)))
4140, 39, 17ifbieq12d 4552 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → if(𝐼𝑁, 𝑁, 𝐼) = if(𝐼 ≤ (2nd ‘⟨𝑀, 𝑁⟩), (2nd ‘⟨𝑀, 𝑁⟩), 𝐼))
42413adant3 1129 . . . . . . . . . . 11 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) → if(𝐼𝑁, 𝑁, 𝐼) = if(𝐼 ≤ (2nd ‘⟨𝑀, 𝑁⟩), (2nd ‘⟨𝑀, 𝑁⟩), 𝐼))
43423ad2ant1 1130 . . . . . . . . . 10 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) ∧ 𝐺 Struct ⟨𝑀, 𝑁⟩ ∧ (𝐸𝑉𝐼 ∈ (ℤ𝑀))) → if(𝐼𝑁, 𝑁, 𝐼) = if(𝐼 ≤ (2nd ‘⟨𝑀, 𝑁⟩), (2nd ‘⟨𝑀, 𝑁⟩), 𝐼))
4437, 43opeq12d 4877 . . . . . . . . 9 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) ∧ 𝐺 Struct ⟨𝑀, 𝑁⟩ ∧ (𝐸𝑉𝐼 ∈ (ℤ𝑀))) → ⟨𝑀, if(𝐼𝑁, 𝑁, 𝐼)⟩ = ⟨if(𝐼 ≤ (1st ‘⟨𝑀, 𝑁⟩), 𝐼, (1st ‘⟨𝑀, 𝑁⟩)), if(𝐼 ≤ (2nd ‘⟨𝑀, 𝑁⟩), (2nd ‘⟨𝑀, 𝑁⟩), 𝐼)⟩)
4514, 44jca 510 . . . . . . . 8 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) ∧ 𝐺 Struct ⟨𝑀, 𝑁⟩ ∧ (𝐸𝑉𝐼 ∈ (ℤ𝑀))) → ((𝐺 Struct ⟨𝑀, 𝑁⟩ ∧ 𝐸𝑉𝐼 ∈ ℕ) ∧ ⟨𝑀, if(𝐼𝑁, 𝑁, 𝐼)⟩ = ⟨if(𝐼 ≤ (1st ‘⟨𝑀, 𝑁⟩), 𝐼, (1st ‘⟨𝑀, 𝑁⟩)), if(𝐼 ≤ (2nd ‘⟨𝑀, 𝑁⟩), (2nd ‘⟨𝑀, 𝑁⟩), 𝐼)⟩))
46453exp 1116 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) → (𝐺 Struct ⟨𝑀, 𝑁⟩ → ((𝐸𝑉𝐼 ∈ (ℤ𝑀)) → ((𝐺 Struct ⟨𝑀, 𝑁⟩ ∧ 𝐸𝑉𝐼 ∈ ℕ) ∧ ⟨𝑀, if(𝐼𝑁, 𝑁, 𝐼)⟩ = ⟨if(𝐼 ≤ (1st ‘⟨𝑀, 𝑁⟩), 𝐼, (1st ‘⟨𝑀, 𝑁⟩)), if(𝐼 ≤ (2nd ‘⟨𝑀, 𝑁⟩), (2nd ‘⟨𝑀, 𝑁⟩), 𝐼)⟩))))
47463ad2ant1 1130 . . . . . 6 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) ∧ Fun (𝐺 ∖ {∅}) ∧ dom 𝐺 ⊆ (𝑀...𝑁)) → (𝐺 Struct ⟨𝑀, 𝑁⟩ → ((𝐸𝑉𝐼 ∈ (ℤ𝑀)) → ((𝐺 Struct ⟨𝑀, 𝑁⟩ ∧ 𝐸𝑉𝐼 ∈ ℕ) ∧ ⟨𝑀, if(𝐼𝑁, 𝑁, 𝐼)⟩ = ⟨if(𝐼 ≤ (1st ‘⟨𝑀, 𝑁⟩), 𝐼, (1st ‘⟨𝑀, 𝑁⟩)), if(𝐼 ≤ (2nd ‘⟨𝑀, 𝑁⟩), (2nd ‘⟨𝑀, 𝑁⟩), 𝐼)⟩))))
481, 47sylbi 216 . . . . 5 (𝐺 Struct ⟨𝑀, 𝑁⟩ → (𝐺 Struct ⟨𝑀, 𝑁⟩ → ((𝐸𝑉𝐼 ∈ (ℤ𝑀)) → ((𝐺 Struct ⟨𝑀, 𝑁⟩ ∧ 𝐸𝑉𝐼 ∈ ℕ) ∧ ⟨𝑀, if(𝐼𝑁, 𝑁, 𝐼)⟩ = ⟨if(𝐼 ≤ (1st ‘⟨𝑀, 𝑁⟩), 𝐼, (1st ‘⟨𝑀, 𝑁⟩)), if(𝐼 ≤ (2nd ‘⟨𝑀, 𝑁⟩), (2nd ‘⟨𝑀, 𝑁⟩), 𝐼)⟩))))
4948pm2.43i 52 . . . 4 (𝐺 Struct ⟨𝑀, 𝑁⟩ → ((𝐸𝑉𝐼 ∈ (ℤ𝑀)) → ((𝐺 Struct ⟨𝑀, 𝑁⟩ ∧ 𝐸𝑉𝐼 ∈ ℕ) ∧ ⟨𝑀, if(𝐼𝑁, 𝑁, 𝐼)⟩ = ⟨if(𝐼 ≤ (1st ‘⟨𝑀, 𝑁⟩), 𝐼, (1st ‘⟨𝑀, 𝑁⟩)), if(𝐼 ≤ (2nd ‘⟨𝑀, 𝑁⟩), (2nd ‘⟨𝑀, 𝑁⟩), 𝐼)⟩)))
5049expdcom 413 . . 3 (𝐸𝑉 → (𝐼 ∈ (ℤ𝑀) → (𝐺 Struct ⟨𝑀, 𝑁⟩ → ((𝐺 Struct ⟨𝑀, 𝑁⟩ ∧ 𝐸𝑉𝐼 ∈ ℕ) ∧ ⟨𝑀, if(𝐼𝑁, 𝑁, 𝐼)⟩ = ⟨if(𝐼 ≤ (1st ‘⟨𝑀, 𝑁⟩), 𝐼, (1st ‘⟨𝑀, 𝑁⟩)), if(𝐼 ≤ (2nd ‘⟨𝑀, 𝑁⟩), (2nd ‘⟨𝑀, 𝑁⟩), 𝐼)⟩))))
51503imp 1108 . 2 ((𝐸𝑉𝐼 ∈ (ℤ𝑀) ∧ 𝐺 Struct ⟨𝑀, 𝑁⟩) → ((𝐺 Struct ⟨𝑀, 𝑁⟩ ∧ 𝐸𝑉𝐼 ∈ ℕ) ∧ ⟨𝑀, if(𝐼𝑁, 𝑁, 𝐼)⟩ = ⟨if(𝐼 ≤ (1st ‘⟨𝑀, 𝑁⟩), 𝐼, (1st ‘⟨𝑀, 𝑁⟩)), if(𝐼 ≤ (2nd ‘⟨𝑀, 𝑁⟩), (2nd ‘⟨𝑀, 𝑁⟩), 𝐼)⟩))
52 setsstruct2 17140 . 2 (((𝐺 Struct ⟨𝑀, 𝑁⟩ ∧ 𝐸𝑉𝐼 ∈ ℕ) ∧ ⟨𝑀, if(𝐼𝑁, 𝑁, 𝐼)⟩ = ⟨if(𝐼 ≤ (1st ‘⟨𝑀, 𝑁⟩), 𝐼, (1st ‘⟨𝑀, 𝑁⟩)), if(𝐼 ≤ (2nd ‘⟨𝑀, 𝑁⟩), (2nd ‘⟨𝑀, 𝑁⟩), 𝐼)⟩) → (𝐺 sSet ⟨𝐼, 𝐸⟩) Struct ⟨𝑀, if(𝐼𝑁, 𝑁, 𝐼)⟩)
5351, 52syl 17 1 ((𝐸𝑉𝐼 ∈ (ℤ𝑀) ∧ 𝐺 Struct ⟨𝑀, 𝑁⟩) → (𝐺 sSet ⟨𝐼, 𝐸⟩) Struct ⟨𝑀, if(𝐼𝑁, 𝑁, 𝐼)⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  cdif 3937  wss 3940  c0 4318  ifcif 4524  {csn 4624  cop 4630   class class class wbr 5143  dom cdm 5672  Fun wfun 6536  cfv 6542  (class class class)co 7415  1st c1st 7987  2nd c2nd 7988  1c1 11137  *cxr 11275  cle 11277  cn 12240  cz 12586  cuz 12850  ...cfz 13514   Struct cstr 17112   sSet csts 17129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7737  ax-cnex 11192  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212  ax-pre-mulgt0 11213
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3960  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-om 7868  df-1st 7989  df-2nd 7990  df-frecs 8283  df-wrecs 8314  df-recs 8388  df-rdg 8427  df-1o 8483  df-er 8721  df-en 8961  df-dom 8962  df-sdom 8963  df-fin 8964  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11474  df-neg 11475  df-nn 12241  df-n0 12501  df-z 12587  df-uz 12851  df-fz 13515  df-struct 17113  df-sets 17130
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator