MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  setsstruct Structured version   Visualization version   GIF version

Theorem setsstruct 17113
Description: An extensible structure with a replaced slot is an extensible structure. (Contributed by AV, 9-Jun-2021.) (Revised by AV, 14-Nov-2021.)
Assertion
Ref Expression
setsstruct ((𝐸𝑉𝐼 ∈ (ℤ𝑀) ∧ 𝐺 Struct ⟨𝑀, 𝑁⟩) → (𝐺 sSet ⟨𝐼, 𝐸⟩) Struct ⟨𝑀, if(𝐼𝑁, 𝑁, 𝐼)⟩)

Proof of Theorem setsstruct
StepHypRef Expression
1 isstruct 17089 . . . . . 6 (𝐺 Struct ⟨𝑀, 𝑁⟩ ↔ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) ∧ Fun (𝐺 ∖ {∅}) ∧ dom 𝐺 ⊆ (𝑀...𝑁)))
2 simp2 1135 . . . . . . . . . 10 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) ∧ 𝐺 Struct ⟨𝑀, 𝑁⟩ ∧ (𝐸𝑉𝐼 ∈ (ℤ𝑀))) → 𝐺 Struct ⟨𝑀, 𝑁⟩)
3 simp3l 1199 . . . . . . . . . 10 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) ∧ 𝐺 Struct ⟨𝑀, 𝑁⟩ ∧ (𝐸𝑉𝐼 ∈ (ℤ𝑀))) → 𝐸𝑉)
4 1z 12596 . . . . . . . . . . . . . . . 16 1 ∈ ℤ
5 nnge1 12244 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ → 1 ≤ 𝑀)
6 eluzuzle 12835 . . . . . . . . . . . . . . . 16 ((1 ∈ ℤ ∧ 1 ≤ 𝑀) → (𝐼 ∈ (ℤ𝑀) → 𝐼 ∈ (ℤ‘1)))
74, 5, 6sylancr 585 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℕ → (𝐼 ∈ (ℤ𝑀) → 𝐼 ∈ (ℤ‘1)))
8 elnnuz 12870 . . . . . . . . . . . . . . 15 (𝐼 ∈ ℕ ↔ 𝐼 ∈ (ℤ‘1))
97, 8imbitrrdi 251 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ → (𝐼 ∈ (ℤ𝑀) → 𝐼 ∈ ℕ))
109adantld 489 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → ((𝐸𝑉𝐼 ∈ (ℤ𝑀)) → 𝐼 ∈ ℕ))
11103ad2ant1 1131 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) → ((𝐸𝑉𝐼 ∈ (ℤ𝑀)) → 𝐼 ∈ ℕ))
1211a1d 25 . . . . . . . . . . 11 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) → (𝐺 Struct ⟨𝑀, 𝑁⟩ → ((𝐸𝑉𝐼 ∈ (ℤ𝑀)) → 𝐼 ∈ ℕ)))
13123imp 1109 . . . . . . . . . 10 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) ∧ 𝐺 Struct ⟨𝑀, 𝑁⟩ ∧ (𝐸𝑉𝐼 ∈ (ℤ𝑀))) → 𝐼 ∈ ℕ)
142, 3, 133jca 1126 . . . . . . . . 9 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) ∧ 𝐺 Struct ⟨𝑀, 𝑁⟩ ∧ (𝐸𝑉𝐼 ∈ (ℤ𝑀))) → (𝐺 Struct ⟨𝑀, 𝑁⟩ ∧ 𝐸𝑉𝐼 ∈ ℕ))
15 op1stg 7989 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (1st ‘⟨𝑀, 𝑁⟩) = 𝑀)
1615breq2d 5159 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐼 ≤ (1st ‘⟨𝑀, 𝑁⟩) ↔ 𝐼𝑀))
17 eqidd 2731 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝐼 = 𝐼)
1816, 17, 15ifbieq12d 4555 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → if(𝐼 ≤ (1st ‘⟨𝑀, 𝑁⟩), 𝐼, (1st ‘⟨𝑀, 𝑁⟩)) = if(𝐼𝑀, 𝐼, 𝑀))
19183adant3 1130 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) → if(𝐼 ≤ (1st ‘⟨𝑀, 𝑁⟩), 𝐼, (1st ‘⟨𝑀, 𝑁⟩)) = if(𝐼𝑀, 𝐼, 𝑀))
2019adantr 479 . . . . . . . . . . . 12 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) ∧ (𝐸𝑉𝐼 ∈ (ℤ𝑀))) → if(𝐼 ≤ (1st ‘⟨𝑀, 𝑁⟩), 𝐼, (1st ‘⟨𝑀, 𝑁⟩)) = if(𝐼𝑀, 𝐼, 𝑀))
21 eluz2 12832 . . . . . . . . . . . . . . . 16 (𝐼 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝑀𝐼))
22 zre 12566 . . . . . . . . . . . . . . . . . . . 20 (𝐼 ∈ ℤ → 𝐼 ∈ ℝ)
2322rexrd 11268 . . . . . . . . . . . . . . . . . . 19 (𝐼 ∈ ℤ → 𝐼 ∈ ℝ*)
24233ad2ant2 1132 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝑀𝐼) → 𝐼 ∈ ℝ*)
25 zre 12566 . . . . . . . . . . . . . . . . . . . 20 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
2625rexrd 11268 . . . . . . . . . . . . . . . . . . 19 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ*)
27263ad2ant1 1131 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝑀𝐼) → 𝑀 ∈ ℝ*)
28 simp3 1136 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝑀𝐼) → 𝑀𝐼)
2924, 27, 283jca 1126 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝑀𝐼) → (𝐼 ∈ ℝ*𝑀 ∈ ℝ*𝑀𝐼))
3029a1d 25 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝑀𝐼) → ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) → (𝐼 ∈ ℝ*𝑀 ∈ ℝ*𝑀𝐼)))
3121, 30sylbi 216 . . . . . . . . . . . . . . 15 (𝐼 ∈ (ℤ𝑀) → ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) → (𝐼 ∈ ℝ*𝑀 ∈ ℝ*𝑀𝐼)))
3231adantl 480 . . . . . . . . . . . . . 14 ((𝐸𝑉𝐼 ∈ (ℤ𝑀)) → ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) → (𝐼 ∈ ℝ*𝑀 ∈ ℝ*𝑀𝐼)))
3332impcom 406 . . . . . . . . . . . . 13 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) ∧ (𝐸𝑉𝐼 ∈ (ℤ𝑀))) → (𝐼 ∈ ℝ*𝑀 ∈ ℝ*𝑀𝐼))
34 xrmineq 13163 . . . . . . . . . . . . 13 ((𝐼 ∈ ℝ*𝑀 ∈ ℝ*𝑀𝐼) → if(𝐼𝑀, 𝐼, 𝑀) = 𝑀)
3533, 34syl 17 . . . . . . . . . . . 12 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) ∧ (𝐸𝑉𝐼 ∈ (ℤ𝑀))) → if(𝐼𝑀, 𝐼, 𝑀) = 𝑀)
3620, 35eqtr2d 2771 . . . . . . . . . . 11 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) ∧ (𝐸𝑉𝐼 ∈ (ℤ𝑀))) → 𝑀 = if(𝐼 ≤ (1st ‘⟨𝑀, 𝑁⟩), 𝐼, (1st ‘⟨𝑀, 𝑁⟩)))
37363adant2 1129 . . . . . . . . . 10 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) ∧ 𝐺 Struct ⟨𝑀, 𝑁⟩ ∧ (𝐸𝑉𝐼 ∈ (ℤ𝑀))) → 𝑀 = if(𝐼 ≤ (1st ‘⟨𝑀, 𝑁⟩), 𝐼, (1st ‘⟨𝑀, 𝑁⟩)))
38 op2ndg 7990 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (2nd ‘⟨𝑀, 𝑁⟩) = 𝑁)
3938eqcomd 2736 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑁 = (2nd ‘⟨𝑀, 𝑁⟩))
4039breq2d 5159 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐼𝑁𝐼 ≤ (2nd ‘⟨𝑀, 𝑁⟩)))
4140, 39, 17ifbieq12d 4555 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → if(𝐼𝑁, 𝑁, 𝐼) = if(𝐼 ≤ (2nd ‘⟨𝑀, 𝑁⟩), (2nd ‘⟨𝑀, 𝑁⟩), 𝐼))
42413adant3 1130 . . . . . . . . . . 11 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) → if(𝐼𝑁, 𝑁, 𝐼) = if(𝐼 ≤ (2nd ‘⟨𝑀, 𝑁⟩), (2nd ‘⟨𝑀, 𝑁⟩), 𝐼))
43423ad2ant1 1131 . . . . . . . . . 10 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) ∧ 𝐺 Struct ⟨𝑀, 𝑁⟩ ∧ (𝐸𝑉𝐼 ∈ (ℤ𝑀))) → if(𝐼𝑁, 𝑁, 𝐼) = if(𝐼 ≤ (2nd ‘⟨𝑀, 𝑁⟩), (2nd ‘⟨𝑀, 𝑁⟩), 𝐼))
4437, 43opeq12d 4880 . . . . . . . . 9 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) ∧ 𝐺 Struct ⟨𝑀, 𝑁⟩ ∧ (𝐸𝑉𝐼 ∈ (ℤ𝑀))) → ⟨𝑀, if(𝐼𝑁, 𝑁, 𝐼)⟩ = ⟨if(𝐼 ≤ (1st ‘⟨𝑀, 𝑁⟩), 𝐼, (1st ‘⟨𝑀, 𝑁⟩)), if(𝐼 ≤ (2nd ‘⟨𝑀, 𝑁⟩), (2nd ‘⟨𝑀, 𝑁⟩), 𝐼)⟩)
4514, 44jca 510 . . . . . . . 8 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) ∧ 𝐺 Struct ⟨𝑀, 𝑁⟩ ∧ (𝐸𝑉𝐼 ∈ (ℤ𝑀))) → ((𝐺 Struct ⟨𝑀, 𝑁⟩ ∧ 𝐸𝑉𝐼 ∈ ℕ) ∧ ⟨𝑀, if(𝐼𝑁, 𝑁, 𝐼)⟩ = ⟨if(𝐼 ≤ (1st ‘⟨𝑀, 𝑁⟩), 𝐼, (1st ‘⟨𝑀, 𝑁⟩)), if(𝐼 ≤ (2nd ‘⟨𝑀, 𝑁⟩), (2nd ‘⟨𝑀, 𝑁⟩), 𝐼)⟩))
46453exp 1117 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) → (𝐺 Struct ⟨𝑀, 𝑁⟩ → ((𝐸𝑉𝐼 ∈ (ℤ𝑀)) → ((𝐺 Struct ⟨𝑀, 𝑁⟩ ∧ 𝐸𝑉𝐼 ∈ ℕ) ∧ ⟨𝑀, if(𝐼𝑁, 𝑁, 𝐼)⟩ = ⟨if(𝐼 ≤ (1st ‘⟨𝑀, 𝑁⟩), 𝐼, (1st ‘⟨𝑀, 𝑁⟩)), if(𝐼 ≤ (2nd ‘⟨𝑀, 𝑁⟩), (2nd ‘⟨𝑀, 𝑁⟩), 𝐼)⟩))))
47463ad2ant1 1131 . . . . . 6 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) ∧ Fun (𝐺 ∖ {∅}) ∧ dom 𝐺 ⊆ (𝑀...𝑁)) → (𝐺 Struct ⟨𝑀, 𝑁⟩ → ((𝐸𝑉𝐼 ∈ (ℤ𝑀)) → ((𝐺 Struct ⟨𝑀, 𝑁⟩ ∧ 𝐸𝑉𝐼 ∈ ℕ) ∧ ⟨𝑀, if(𝐼𝑁, 𝑁, 𝐼)⟩ = ⟨if(𝐼 ≤ (1st ‘⟨𝑀, 𝑁⟩), 𝐼, (1st ‘⟨𝑀, 𝑁⟩)), if(𝐼 ≤ (2nd ‘⟨𝑀, 𝑁⟩), (2nd ‘⟨𝑀, 𝑁⟩), 𝐼)⟩))))
481, 47sylbi 216 . . . . 5 (𝐺 Struct ⟨𝑀, 𝑁⟩ → (𝐺 Struct ⟨𝑀, 𝑁⟩ → ((𝐸𝑉𝐼 ∈ (ℤ𝑀)) → ((𝐺 Struct ⟨𝑀, 𝑁⟩ ∧ 𝐸𝑉𝐼 ∈ ℕ) ∧ ⟨𝑀, if(𝐼𝑁, 𝑁, 𝐼)⟩ = ⟨if(𝐼 ≤ (1st ‘⟨𝑀, 𝑁⟩), 𝐼, (1st ‘⟨𝑀, 𝑁⟩)), if(𝐼 ≤ (2nd ‘⟨𝑀, 𝑁⟩), (2nd ‘⟨𝑀, 𝑁⟩), 𝐼)⟩))))
4948pm2.43i 52 . . . 4 (𝐺 Struct ⟨𝑀, 𝑁⟩ → ((𝐸𝑉𝐼 ∈ (ℤ𝑀)) → ((𝐺 Struct ⟨𝑀, 𝑁⟩ ∧ 𝐸𝑉𝐼 ∈ ℕ) ∧ ⟨𝑀, if(𝐼𝑁, 𝑁, 𝐼)⟩ = ⟨if(𝐼 ≤ (1st ‘⟨𝑀, 𝑁⟩), 𝐼, (1st ‘⟨𝑀, 𝑁⟩)), if(𝐼 ≤ (2nd ‘⟨𝑀, 𝑁⟩), (2nd ‘⟨𝑀, 𝑁⟩), 𝐼)⟩)))
5049expdcom 413 . . 3 (𝐸𝑉 → (𝐼 ∈ (ℤ𝑀) → (𝐺 Struct ⟨𝑀, 𝑁⟩ → ((𝐺 Struct ⟨𝑀, 𝑁⟩ ∧ 𝐸𝑉𝐼 ∈ ℕ) ∧ ⟨𝑀, if(𝐼𝑁, 𝑁, 𝐼)⟩ = ⟨if(𝐼 ≤ (1st ‘⟨𝑀, 𝑁⟩), 𝐼, (1st ‘⟨𝑀, 𝑁⟩)), if(𝐼 ≤ (2nd ‘⟨𝑀, 𝑁⟩), (2nd ‘⟨𝑀, 𝑁⟩), 𝐼)⟩))))
51503imp 1109 . 2 ((𝐸𝑉𝐼 ∈ (ℤ𝑀) ∧ 𝐺 Struct ⟨𝑀, 𝑁⟩) → ((𝐺 Struct ⟨𝑀, 𝑁⟩ ∧ 𝐸𝑉𝐼 ∈ ℕ) ∧ ⟨𝑀, if(𝐼𝑁, 𝑁, 𝐼)⟩ = ⟨if(𝐼 ≤ (1st ‘⟨𝑀, 𝑁⟩), 𝐼, (1st ‘⟨𝑀, 𝑁⟩)), if(𝐼 ≤ (2nd ‘⟨𝑀, 𝑁⟩), (2nd ‘⟨𝑀, 𝑁⟩), 𝐼)⟩))
52 setsstruct2 17111 . 2 (((𝐺 Struct ⟨𝑀, 𝑁⟩ ∧ 𝐸𝑉𝐼 ∈ ℕ) ∧ ⟨𝑀, if(𝐼𝑁, 𝑁, 𝐼)⟩ = ⟨if(𝐼 ≤ (1st ‘⟨𝑀, 𝑁⟩), 𝐼, (1st ‘⟨𝑀, 𝑁⟩)), if(𝐼 ≤ (2nd ‘⟨𝑀, 𝑁⟩), (2nd ‘⟨𝑀, 𝑁⟩), 𝐼)⟩) → (𝐺 sSet ⟨𝐼, 𝐸⟩) Struct ⟨𝑀, if(𝐼𝑁, 𝑁, 𝐼)⟩)
5351, 52syl 17 1 ((𝐸𝑉𝐼 ∈ (ℤ𝑀) ∧ 𝐺 Struct ⟨𝑀, 𝑁⟩) → (𝐺 sSet ⟨𝐼, 𝐸⟩) Struct ⟨𝑀, if(𝐼𝑁, 𝑁, 𝐼)⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1085   = wceq 1539  wcel 2104  cdif 3944  wss 3947  c0 4321  ifcif 4527  {csn 4627  cop 4633   class class class wbr 5147  dom cdm 5675  Fun wfun 6536  cfv 6542  (class class class)co 7411  1st c1st 7975  2nd c2nd 7976  1c1 11113  *cxr 11251  cle 11253  cn 12216  cz 12562  cuz 12826  ...cfz 13488   Struct cstr 17083   sSet csts 17100
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-n0 12477  df-z 12563  df-uz 12827  df-fz 13489  df-struct 17084  df-sets 17101
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator