MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  setsstruct Structured version   Visualization version   GIF version

Theorem setsstruct 17122
Description: An extensible structure with a replaced slot is an extensible structure. (Contributed by AV, 9-Jun-2021.) (Revised by AV, 14-Nov-2021.)
Assertion
Ref Expression
setsstruct ((𝐸𝑉𝐼 ∈ (ℤ𝑀) ∧ 𝐺 Struct ⟨𝑀, 𝑁⟩) → (𝐺 sSet ⟨𝐼, 𝐸⟩) Struct ⟨𝑀, if(𝐼𝑁, 𝑁, 𝐼)⟩)

Proof of Theorem setsstruct
StepHypRef Expression
1 isstruct 17098 . . . . . 6 (𝐺 Struct ⟨𝑀, 𝑁⟩ ↔ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) ∧ Fun (𝐺 ∖ {∅}) ∧ dom 𝐺 ⊆ (𝑀...𝑁)))
2 simp2 1137 . . . . . . . . . 10 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) ∧ 𝐺 Struct ⟨𝑀, 𝑁⟩ ∧ (𝐸𝑉𝐼 ∈ (ℤ𝑀))) → 𝐺 Struct ⟨𝑀, 𝑁⟩)
3 simp3l 1202 . . . . . . . . . 10 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) ∧ 𝐺 Struct ⟨𝑀, 𝑁⟩ ∧ (𝐸𝑉𝐼 ∈ (ℤ𝑀))) → 𝐸𝑉)
4 1z 12539 . . . . . . . . . . . . . . . 16 1 ∈ ℤ
5 nnge1 12190 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ → 1 ≤ 𝑀)
6 eluzuzle 12778 . . . . . . . . . . . . . . . 16 ((1 ∈ ℤ ∧ 1 ≤ 𝑀) → (𝐼 ∈ (ℤ𝑀) → 𝐼 ∈ (ℤ‘1)))
74, 5, 6sylancr 587 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℕ → (𝐼 ∈ (ℤ𝑀) → 𝐼 ∈ (ℤ‘1)))
8 elnnuz 12813 . . . . . . . . . . . . . . 15 (𝐼 ∈ ℕ ↔ 𝐼 ∈ (ℤ‘1))
97, 8imbitrrdi 252 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ → (𝐼 ∈ (ℤ𝑀) → 𝐼 ∈ ℕ))
109adantld 490 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → ((𝐸𝑉𝐼 ∈ (ℤ𝑀)) → 𝐼 ∈ ℕ))
11103ad2ant1 1133 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) → ((𝐸𝑉𝐼 ∈ (ℤ𝑀)) → 𝐼 ∈ ℕ))
1211a1d 25 . . . . . . . . . . 11 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) → (𝐺 Struct ⟨𝑀, 𝑁⟩ → ((𝐸𝑉𝐼 ∈ (ℤ𝑀)) → 𝐼 ∈ ℕ)))
13123imp 1110 . . . . . . . . . 10 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) ∧ 𝐺 Struct ⟨𝑀, 𝑁⟩ ∧ (𝐸𝑉𝐼 ∈ (ℤ𝑀))) → 𝐼 ∈ ℕ)
142, 3, 133jca 1128 . . . . . . . . 9 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) ∧ 𝐺 Struct ⟨𝑀, 𝑁⟩ ∧ (𝐸𝑉𝐼 ∈ (ℤ𝑀))) → (𝐺 Struct ⟨𝑀, 𝑁⟩ ∧ 𝐸𝑉𝐼 ∈ ℕ))
15 op1stg 7959 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (1st ‘⟨𝑀, 𝑁⟩) = 𝑀)
1615breq2d 5114 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐼 ≤ (1st ‘⟨𝑀, 𝑁⟩) ↔ 𝐼𝑀))
17 eqidd 2730 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝐼 = 𝐼)
1816, 17, 15ifbieq12d 4513 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → if(𝐼 ≤ (1st ‘⟨𝑀, 𝑁⟩), 𝐼, (1st ‘⟨𝑀, 𝑁⟩)) = if(𝐼𝑀, 𝐼, 𝑀))
19183adant3 1132 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) → if(𝐼 ≤ (1st ‘⟨𝑀, 𝑁⟩), 𝐼, (1st ‘⟨𝑀, 𝑁⟩)) = if(𝐼𝑀, 𝐼, 𝑀))
2019adantr 480 . . . . . . . . . . . 12 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) ∧ (𝐸𝑉𝐼 ∈ (ℤ𝑀))) → if(𝐼 ≤ (1st ‘⟨𝑀, 𝑁⟩), 𝐼, (1st ‘⟨𝑀, 𝑁⟩)) = if(𝐼𝑀, 𝐼, 𝑀))
21 eluz2 12775 . . . . . . . . . . . . . . . 16 (𝐼 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝑀𝐼))
22 zre 12509 . . . . . . . . . . . . . . . . . . . 20 (𝐼 ∈ ℤ → 𝐼 ∈ ℝ)
2322rexrd 11200 . . . . . . . . . . . . . . . . . . 19 (𝐼 ∈ ℤ → 𝐼 ∈ ℝ*)
24233ad2ant2 1134 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝑀𝐼) → 𝐼 ∈ ℝ*)
25 zre 12509 . . . . . . . . . . . . . . . . . . . 20 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
2625rexrd 11200 . . . . . . . . . . . . . . . . . . 19 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ*)
27263ad2ant1 1133 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝑀𝐼) → 𝑀 ∈ ℝ*)
28 simp3 1138 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝑀𝐼) → 𝑀𝐼)
2924, 27, 283jca 1128 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝑀𝐼) → (𝐼 ∈ ℝ*𝑀 ∈ ℝ*𝑀𝐼))
3029a1d 25 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝑀𝐼) → ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) → (𝐼 ∈ ℝ*𝑀 ∈ ℝ*𝑀𝐼)))
3121, 30sylbi 217 . . . . . . . . . . . . . . 15 (𝐼 ∈ (ℤ𝑀) → ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) → (𝐼 ∈ ℝ*𝑀 ∈ ℝ*𝑀𝐼)))
3231adantl 481 . . . . . . . . . . . . . 14 ((𝐸𝑉𝐼 ∈ (ℤ𝑀)) → ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) → (𝐼 ∈ ℝ*𝑀 ∈ ℝ*𝑀𝐼)))
3332impcom 407 . . . . . . . . . . . . 13 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) ∧ (𝐸𝑉𝐼 ∈ (ℤ𝑀))) → (𝐼 ∈ ℝ*𝑀 ∈ ℝ*𝑀𝐼))
34 xrmineq 13116 . . . . . . . . . . . . 13 ((𝐼 ∈ ℝ*𝑀 ∈ ℝ*𝑀𝐼) → if(𝐼𝑀, 𝐼, 𝑀) = 𝑀)
3533, 34syl 17 . . . . . . . . . . . 12 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) ∧ (𝐸𝑉𝐼 ∈ (ℤ𝑀))) → if(𝐼𝑀, 𝐼, 𝑀) = 𝑀)
3620, 35eqtr2d 2765 . . . . . . . . . . 11 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) ∧ (𝐸𝑉𝐼 ∈ (ℤ𝑀))) → 𝑀 = if(𝐼 ≤ (1st ‘⟨𝑀, 𝑁⟩), 𝐼, (1st ‘⟨𝑀, 𝑁⟩)))
37363adant2 1131 . . . . . . . . . 10 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) ∧ 𝐺 Struct ⟨𝑀, 𝑁⟩ ∧ (𝐸𝑉𝐼 ∈ (ℤ𝑀))) → 𝑀 = if(𝐼 ≤ (1st ‘⟨𝑀, 𝑁⟩), 𝐼, (1st ‘⟨𝑀, 𝑁⟩)))
38 op2ndg 7960 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (2nd ‘⟨𝑀, 𝑁⟩) = 𝑁)
3938eqcomd 2735 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑁 = (2nd ‘⟨𝑀, 𝑁⟩))
4039breq2d 5114 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐼𝑁𝐼 ≤ (2nd ‘⟨𝑀, 𝑁⟩)))
4140, 39, 17ifbieq12d 4513 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → if(𝐼𝑁, 𝑁, 𝐼) = if(𝐼 ≤ (2nd ‘⟨𝑀, 𝑁⟩), (2nd ‘⟨𝑀, 𝑁⟩), 𝐼))
42413adant3 1132 . . . . . . . . . . 11 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) → if(𝐼𝑁, 𝑁, 𝐼) = if(𝐼 ≤ (2nd ‘⟨𝑀, 𝑁⟩), (2nd ‘⟨𝑀, 𝑁⟩), 𝐼))
43423ad2ant1 1133 . . . . . . . . . 10 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) ∧ 𝐺 Struct ⟨𝑀, 𝑁⟩ ∧ (𝐸𝑉𝐼 ∈ (ℤ𝑀))) → if(𝐼𝑁, 𝑁, 𝐼) = if(𝐼 ≤ (2nd ‘⟨𝑀, 𝑁⟩), (2nd ‘⟨𝑀, 𝑁⟩), 𝐼))
4437, 43opeq12d 4841 . . . . . . . . 9 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) ∧ 𝐺 Struct ⟨𝑀, 𝑁⟩ ∧ (𝐸𝑉𝐼 ∈ (ℤ𝑀))) → ⟨𝑀, if(𝐼𝑁, 𝑁, 𝐼)⟩ = ⟨if(𝐼 ≤ (1st ‘⟨𝑀, 𝑁⟩), 𝐼, (1st ‘⟨𝑀, 𝑁⟩)), if(𝐼 ≤ (2nd ‘⟨𝑀, 𝑁⟩), (2nd ‘⟨𝑀, 𝑁⟩), 𝐼)⟩)
4514, 44jca 511 . . . . . . . 8 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) ∧ 𝐺 Struct ⟨𝑀, 𝑁⟩ ∧ (𝐸𝑉𝐼 ∈ (ℤ𝑀))) → ((𝐺 Struct ⟨𝑀, 𝑁⟩ ∧ 𝐸𝑉𝐼 ∈ ℕ) ∧ ⟨𝑀, if(𝐼𝑁, 𝑁, 𝐼)⟩ = ⟨if(𝐼 ≤ (1st ‘⟨𝑀, 𝑁⟩), 𝐼, (1st ‘⟨𝑀, 𝑁⟩)), if(𝐼 ≤ (2nd ‘⟨𝑀, 𝑁⟩), (2nd ‘⟨𝑀, 𝑁⟩), 𝐼)⟩))
46453exp 1119 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) → (𝐺 Struct ⟨𝑀, 𝑁⟩ → ((𝐸𝑉𝐼 ∈ (ℤ𝑀)) → ((𝐺 Struct ⟨𝑀, 𝑁⟩ ∧ 𝐸𝑉𝐼 ∈ ℕ) ∧ ⟨𝑀, if(𝐼𝑁, 𝑁, 𝐼)⟩ = ⟨if(𝐼 ≤ (1st ‘⟨𝑀, 𝑁⟩), 𝐼, (1st ‘⟨𝑀, 𝑁⟩)), if(𝐼 ≤ (2nd ‘⟨𝑀, 𝑁⟩), (2nd ‘⟨𝑀, 𝑁⟩), 𝐼)⟩))))
47463ad2ant1 1133 . . . . . 6 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) ∧ Fun (𝐺 ∖ {∅}) ∧ dom 𝐺 ⊆ (𝑀...𝑁)) → (𝐺 Struct ⟨𝑀, 𝑁⟩ → ((𝐸𝑉𝐼 ∈ (ℤ𝑀)) → ((𝐺 Struct ⟨𝑀, 𝑁⟩ ∧ 𝐸𝑉𝐼 ∈ ℕ) ∧ ⟨𝑀, if(𝐼𝑁, 𝑁, 𝐼)⟩ = ⟨if(𝐼 ≤ (1st ‘⟨𝑀, 𝑁⟩), 𝐼, (1st ‘⟨𝑀, 𝑁⟩)), if(𝐼 ≤ (2nd ‘⟨𝑀, 𝑁⟩), (2nd ‘⟨𝑀, 𝑁⟩), 𝐼)⟩))))
481, 47sylbi 217 . . . . 5 (𝐺 Struct ⟨𝑀, 𝑁⟩ → (𝐺 Struct ⟨𝑀, 𝑁⟩ → ((𝐸𝑉𝐼 ∈ (ℤ𝑀)) → ((𝐺 Struct ⟨𝑀, 𝑁⟩ ∧ 𝐸𝑉𝐼 ∈ ℕ) ∧ ⟨𝑀, if(𝐼𝑁, 𝑁, 𝐼)⟩ = ⟨if(𝐼 ≤ (1st ‘⟨𝑀, 𝑁⟩), 𝐼, (1st ‘⟨𝑀, 𝑁⟩)), if(𝐼 ≤ (2nd ‘⟨𝑀, 𝑁⟩), (2nd ‘⟨𝑀, 𝑁⟩), 𝐼)⟩))))
4948pm2.43i 52 . . . 4 (𝐺 Struct ⟨𝑀, 𝑁⟩ → ((𝐸𝑉𝐼 ∈ (ℤ𝑀)) → ((𝐺 Struct ⟨𝑀, 𝑁⟩ ∧ 𝐸𝑉𝐼 ∈ ℕ) ∧ ⟨𝑀, if(𝐼𝑁, 𝑁, 𝐼)⟩ = ⟨if(𝐼 ≤ (1st ‘⟨𝑀, 𝑁⟩), 𝐼, (1st ‘⟨𝑀, 𝑁⟩)), if(𝐼 ≤ (2nd ‘⟨𝑀, 𝑁⟩), (2nd ‘⟨𝑀, 𝑁⟩), 𝐼)⟩)))
5049expdcom 414 . . 3 (𝐸𝑉 → (𝐼 ∈ (ℤ𝑀) → (𝐺 Struct ⟨𝑀, 𝑁⟩ → ((𝐺 Struct ⟨𝑀, 𝑁⟩ ∧ 𝐸𝑉𝐼 ∈ ℕ) ∧ ⟨𝑀, if(𝐼𝑁, 𝑁, 𝐼)⟩ = ⟨if(𝐼 ≤ (1st ‘⟨𝑀, 𝑁⟩), 𝐼, (1st ‘⟨𝑀, 𝑁⟩)), if(𝐼 ≤ (2nd ‘⟨𝑀, 𝑁⟩), (2nd ‘⟨𝑀, 𝑁⟩), 𝐼)⟩))))
51503imp 1110 . 2 ((𝐸𝑉𝐼 ∈ (ℤ𝑀) ∧ 𝐺 Struct ⟨𝑀, 𝑁⟩) → ((𝐺 Struct ⟨𝑀, 𝑁⟩ ∧ 𝐸𝑉𝐼 ∈ ℕ) ∧ ⟨𝑀, if(𝐼𝑁, 𝑁, 𝐼)⟩ = ⟨if(𝐼 ≤ (1st ‘⟨𝑀, 𝑁⟩), 𝐼, (1st ‘⟨𝑀, 𝑁⟩)), if(𝐼 ≤ (2nd ‘⟨𝑀, 𝑁⟩), (2nd ‘⟨𝑀, 𝑁⟩), 𝐼)⟩))
52 setsstruct2 17120 . 2 (((𝐺 Struct ⟨𝑀, 𝑁⟩ ∧ 𝐸𝑉𝐼 ∈ ℕ) ∧ ⟨𝑀, if(𝐼𝑁, 𝑁, 𝐼)⟩ = ⟨if(𝐼 ≤ (1st ‘⟨𝑀, 𝑁⟩), 𝐼, (1st ‘⟨𝑀, 𝑁⟩)), if(𝐼 ≤ (2nd ‘⟨𝑀, 𝑁⟩), (2nd ‘⟨𝑀, 𝑁⟩), 𝐼)⟩) → (𝐺 sSet ⟨𝐼, 𝐸⟩) Struct ⟨𝑀, if(𝐼𝑁, 𝑁, 𝐼)⟩)
5351, 52syl 17 1 ((𝐸𝑉𝐼 ∈ (ℤ𝑀) ∧ 𝐺 Struct ⟨𝑀, 𝑁⟩) → (𝐺 sSet ⟨𝐼, 𝐸⟩) Struct ⟨𝑀, if(𝐼𝑁, 𝑁, 𝐼)⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cdif 3908  wss 3911  c0 4292  ifcif 4484  {csn 4585  cop 4591   class class class wbr 5102  dom cdm 5631  Fun wfun 6493  cfv 6499  (class class class)co 7369  1st c1st 7945  2nd c2nd 7946  1c1 11045  *cxr 11183  cle 11185  cn 12162  cz 12505  cuz 12769  ...cfz 13444   Struct cstr 17092   sSet csts 17109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445  df-struct 17093  df-sets 17110
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator