MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expadd Structured version   Visualization version   GIF version

Theorem expadd 14145
Description: Sum of exponents law for nonnegative integer exponentiation. Proposition 10-4.2(a) of [Gleason] p. 135. (Contributed by NM, 30-Nov-2004.)
Assertion
Ref Expression
expadd ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐴↑(𝑀 + 𝑁)) = ((𝐴𝑀) · (𝐴𝑁)))

Proof of Theorem expadd
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7439 . . . . . . 7 (𝑗 = 0 → (𝑀 + 𝑗) = (𝑀 + 0))
21oveq2d 7447 . . . . . 6 (𝑗 = 0 → (𝐴↑(𝑀 + 𝑗)) = (𝐴↑(𝑀 + 0)))
3 oveq2 7439 . . . . . . 7 (𝑗 = 0 → (𝐴𝑗) = (𝐴↑0))
43oveq2d 7447 . . . . . 6 (𝑗 = 0 → ((𝐴𝑀) · (𝐴𝑗)) = ((𝐴𝑀) · (𝐴↑0)))
52, 4eqeq12d 2753 . . . . 5 (𝑗 = 0 → ((𝐴↑(𝑀 + 𝑗)) = ((𝐴𝑀) · (𝐴𝑗)) ↔ (𝐴↑(𝑀 + 0)) = ((𝐴𝑀) · (𝐴↑0))))
65imbi2d 340 . . . 4 (𝑗 = 0 → (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 + 𝑗)) = ((𝐴𝑀) · (𝐴𝑗))) ↔ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 + 0)) = ((𝐴𝑀) · (𝐴↑0)))))
7 oveq2 7439 . . . . . . 7 (𝑗 = 𝑘 → (𝑀 + 𝑗) = (𝑀 + 𝑘))
87oveq2d 7447 . . . . . 6 (𝑗 = 𝑘 → (𝐴↑(𝑀 + 𝑗)) = (𝐴↑(𝑀 + 𝑘)))
9 oveq2 7439 . . . . . . 7 (𝑗 = 𝑘 → (𝐴𝑗) = (𝐴𝑘))
109oveq2d 7447 . . . . . 6 (𝑗 = 𝑘 → ((𝐴𝑀) · (𝐴𝑗)) = ((𝐴𝑀) · (𝐴𝑘)))
118, 10eqeq12d 2753 . . . . 5 (𝑗 = 𝑘 → ((𝐴↑(𝑀 + 𝑗)) = ((𝐴𝑀) · (𝐴𝑗)) ↔ (𝐴↑(𝑀 + 𝑘)) = ((𝐴𝑀) · (𝐴𝑘))))
1211imbi2d 340 . . . 4 (𝑗 = 𝑘 → (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 + 𝑗)) = ((𝐴𝑀) · (𝐴𝑗))) ↔ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 + 𝑘)) = ((𝐴𝑀) · (𝐴𝑘)))))
13 oveq2 7439 . . . . . . 7 (𝑗 = (𝑘 + 1) → (𝑀 + 𝑗) = (𝑀 + (𝑘 + 1)))
1413oveq2d 7447 . . . . . 6 (𝑗 = (𝑘 + 1) → (𝐴↑(𝑀 + 𝑗)) = (𝐴↑(𝑀 + (𝑘 + 1))))
15 oveq2 7439 . . . . . . 7 (𝑗 = (𝑘 + 1) → (𝐴𝑗) = (𝐴↑(𝑘 + 1)))
1615oveq2d 7447 . . . . . 6 (𝑗 = (𝑘 + 1) → ((𝐴𝑀) · (𝐴𝑗)) = ((𝐴𝑀) · (𝐴↑(𝑘 + 1))))
1714, 16eqeq12d 2753 . . . . 5 (𝑗 = (𝑘 + 1) → ((𝐴↑(𝑀 + 𝑗)) = ((𝐴𝑀) · (𝐴𝑗)) ↔ (𝐴↑(𝑀 + (𝑘 + 1))) = ((𝐴𝑀) · (𝐴↑(𝑘 + 1)))))
1817imbi2d 340 . . . 4 (𝑗 = (𝑘 + 1) → (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 + 𝑗)) = ((𝐴𝑀) · (𝐴𝑗))) ↔ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 + (𝑘 + 1))) = ((𝐴𝑀) · (𝐴↑(𝑘 + 1))))))
19 oveq2 7439 . . . . . . 7 (𝑗 = 𝑁 → (𝑀 + 𝑗) = (𝑀 + 𝑁))
2019oveq2d 7447 . . . . . 6 (𝑗 = 𝑁 → (𝐴↑(𝑀 + 𝑗)) = (𝐴↑(𝑀 + 𝑁)))
21 oveq2 7439 . . . . . . 7 (𝑗 = 𝑁 → (𝐴𝑗) = (𝐴𝑁))
2221oveq2d 7447 . . . . . 6 (𝑗 = 𝑁 → ((𝐴𝑀) · (𝐴𝑗)) = ((𝐴𝑀) · (𝐴𝑁)))
2320, 22eqeq12d 2753 . . . . 5 (𝑗 = 𝑁 → ((𝐴↑(𝑀 + 𝑗)) = ((𝐴𝑀) · (𝐴𝑗)) ↔ (𝐴↑(𝑀 + 𝑁)) = ((𝐴𝑀) · (𝐴𝑁))))
2423imbi2d 340 . . . 4 (𝑗 = 𝑁 → (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 + 𝑗)) = ((𝐴𝑀) · (𝐴𝑗))) ↔ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 + 𝑁)) = ((𝐴𝑀) · (𝐴𝑁)))))
25 nn0cn 12536 . . . . . . . . 9 (𝑀 ∈ ℕ0𝑀 ∈ ℂ)
2625addridd 11461 . . . . . . . 8 (𝑀 ∈ ℕ0 → (𝑀 + 0) = 𝑀)
2726adantl 481 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝑀 + 0) = 𝑀)
2827oveq2d 7447 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 + 0)) = (𝐴𝑀))
29 expcl 14120 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴𝑀) ∈ ℂ)
3029mulridd 11278 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → ((𝐴𝑀) · 1) = (𝐴𝑀))
3128, 30eqtr4d 2780 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 + 0)) = ((𝐴𝑀) · 1))
32 exp0 14106 . . . . . . 7 (𝐴 ∈ ℂ → (𝐴↑0) = 1)
3332adantr 480 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑0) = 1)
3433oveq2d 7447 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → ((𝐴𝑀) · (𝐴↑0)) = ((𝐴𝑀) · 1))
3531, 34eqtr4d 2780 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 + 0)) = ((𝐴𝑀) · (𝐴↑0)))
36 oveq1 7438 . . . . . . 7 ((𝐴↑(𝑀 + 𝑘)) = ((𝐴𝑀) · (𝐴𝑘)) → ((𝐴↑(𝑀 + 𝑘)) · 𝐴) = (((𝐴𝑀) · (𝐴𝑘)) · 𝐴))
37 nn0cn 12536 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
38 ax-1cn 11213 . . . . . . . . . . . . 13 1 ∈ ℂ
39 addass 11242 . . . . . . . . . . . . 13 ((𝑀 ∈ ℂ ∧ 𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑀 + 𝑘) + 1) = (𝑀 + (𝑘 + 1)))
4038, 39mp3an3 1452 . . . . . . . . . . . 12 ((𝑀 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((𝑀 + 𝑘) + 1) = (𝑀 + (𝑘 + 1)))
4125, 37, 40syl2an 596 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → ((𝑀 + 𝑘) + 1) = (𝑀 + (𝑘 + 1)))
4241adantll 714 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝑀 + 𝑘) + 1) = (𝑀 + (𝑘 + 1)))
4342oveq2d 7447 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐴↑((𝑀 + 𝑘) + 1)) = (𝐴↑(𝑀 + (𝑘 + 1))))
44 simpll 767 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ ℂ)
45 nn0addcl 12561 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑀 + 𝑘) ∈ ℕ0)
4645adantll 714 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝑀 + 𝑘) ∈ ℕ0)
47 expp1 14109 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (𝑀 + 𝑘) ∈ ℕ0) → (𝐴↑((𝑀 + 𝑘) + 1)) = ((𝐴↑(𝑀 + 𝑘)) · 𝐴))
4844, 46, 47syl2anc 584 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐴↑((𝑀 + 𝑘) + 1)) = ((𝐴↑(𝑀 + 𝑘)) · 𝐴))
4943, 48eqtr3d 2779 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐴↑(𝑀 + (𝑘 + 1))) = ((𝐴↑(𝑀 + 𝑘)) · 𝐴))
50 expp1 14109 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
5150adantlr 715 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
5251oveq2d 7447 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑀) · (𝐴↑(𝑘 + 1))) = ((𝐴𝑀) · ((𝐴𝑘) · 𝐴)))
5329adantr 480 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐴𝑀) ∈ ℂ)
54 expcl 14120 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
5554adantlr 715 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
5653, 55, 44mulassd 11284 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (((𝐴𝑀) · (𝐴𝑘)) · 𝐴) = ((𝐴𝑀) · ((𝐴𝑘) · 𝐴)))
5752, 56eqtr4d 2780 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑀) · (𝐴↑(𝑘 + 1))) = (((𝐴𝑀) · (𝐴𝑘)) · 𝐴))
5849, 57eqeq12d 2753 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝐴↑(𝑀 + (𝑘 + 1))) = ((𝐴𝑀) · (𝐴↑(𝑘 + 1))) ↔ ((𝐴↑(𝑀 + 𝑘)) · 𝐴) = (((𝐴𝑀) · (𝐴𝑘)) · 𝐴)))
5936, 58imbitrrid 246 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝐴↑(𝑀 + 𝑘)) = ((𝐴𝑀) · (𝐴𝑘)) → (𝐴↑(𝑀 + (𝑘 + 1))) = ((𝐴𝑀) · (𝐴↑(𝑘 + 1)))))
6059expcom 413 . . . . 5 (𝑘 ∈ ℕ0 → ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → ((𝐴↑(𝑀 + 𝑘)) = ((𝐴𝑀) · (𝐴𝑘)) → (𝐴↑(𝑀 + (𝑘 + 1))) = ((𝐴𝑀) · (𝐴↑(𝑘 + 1))))))
6160a2d 29 . . . 4 (𝑘 ∈ ℕ0 → (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 + 𝑘)) = ((𝐴𝑀) · (𝐴𝑘))) → ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 + (𝑘 + 1))) = ((𝐴𝑀) · (𝐴↑(𝑘 + 1))))))
626, 12, 18, 24, 35, 61nn0ind 12713 . . 3 (𝑁 ∈ ℕ0 → ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 + 𝑁)) = ((𝐴𝑀) · (𝐴𝑁))))
6362expdcom 414 . 2 (𝐴 ∈ ℂ → (𝑀 ∈ ℕ0 → (𝑁 ∈ ℕ0 → (𝐴↑(𝑀 + 𝑁)) = ((𝐴𝑀) · (𝐴𝑁)))))
64633imp 1111 1 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐴↑(𝑀 + 𝑁)) = ((𝐴𝑀) · (𝐴𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  (class class class)co 7431  cc 11153  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160  0cn0 12526  cexp 14102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-seq 14043  df-exp 14103
This theorem is referenced by:  expaddzlem  14146  expaddz  14147  expmul  14148  expaddd  14188  i4  14243  faclbnd4lem1  14332  fallrisefac  16061  fsumcube  16096  ef01bndlem  16220  modxai  17106  numexp2x  17116  2exp5  17123  2exp11  17127  expmhm  21454  quart1lem  26898  log2ublem2  26990  bposlem8  27335  3lexlogpow5ineq1  42055  3exp4mod41  47603
  Copyright terms: Public domain W3C validator