MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expadd Structured version   Visualization version   GIF version

Theorem expadd 14069
Description: Sum of exponents law for nonnegative integer exponentiation. Proposition 10-4.2(a) of [Gleason] p. 135. (Contributed by NM, 30-Nov-2004.)
Assertion
Ref Expression
expadd ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐴↑(𝑀 + 𝑁)) = ((𝐴𝑀) · (𝐴𝑁)))

Proof of Theorem expadd
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7395 . . . . . . 7 (𝑗 = 0 → (𝑀 + 𝑗) = (𝑀 + 0))
21oveq2d 7403 . . . . . 6 (𝑗 = 0 → (𝐴↑(𝑀 + 𝑗)) = (𝐴↑(𝑀 + 0)))
3 oveq2 7395 . . . . . . 7 (𝑗 = 0 → (𝐴𝑗) = (𝐴↑0))
43oveq2d 7403 . . . . . 6 (𝑗 = 0 → ((𝐴𝑀) · (𝐴𝑗)) = ((𝐴𝑀) · (𝐴↑0)))
52, 4eqeq12d 2745 . . . . 5 (𝑗 = 0 → ((𝐴↑(𝑀 + 𝑗)) = ((𝐴𝑀) · (𝐴𝑗)) ↔ (𝐴↑(𝑀 + 0)) = ((𝐴𝑀) · (𝐴↑0))))
65imbi2d 340 . . . 4 (𝑗 = 0 → (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 + 𝑗)) = ((𝐴𝑀) · (𝐴𝑗))) ↔ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 + 0)) = ((𝐴𝑀) · (𝐴↑0)))))
7 oveq2 7395 . . . . . . 7 (𝑗 = 𝑘 → (𝑀 + 𝑗) = (𝑀 + 𝑘))
87oveq2d 7403 . . . . . 6 (𝑗 = 𝑘 → (𝐴↑(𝑀 + 𝑗)) = (𝐴↑(𝑀 + 𝑘)))
9 oveq2 7395 . . . . . . 7 (𝑗 = 𝑘 → (𝐴𝑗) = (𝐴𝑘))
109oveq2d 7403 . . . . . 6 (𝑗 = 𝑘 → ((𝐴𝑀) · (𝐴𝑗)) = ((𝐴𝑀) · (𝐴𝑘)))
118, 10eqeq12d 2745 . . . . 5 (𝑗 = 𝑘 → ((𝐴↑(𝑀 + 𝑗)) = ((𝐴𝑀) · (𝐴𝑗)) ↔ (𝐴↑(𝑀 + 𝑘)) = ((𝐴𝑀) · (𝐴𝑘))))
1211imbi2d 340 . . . 4 (𝑗 = 𝑘 → (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 + 𝑗)) = ((𝐴𝑀) · (𝐴𝑗))) ↔ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 + 𝑘)) = ((𝐴𝑀) · (𝐴𝑘)))))
13 oveq2 7395 . . . . . . 7 (𝑗 = (𝑘 + 1) → (𝑀 + 𝑗) = (𝑀 + (𝑘 + 1)))
1413oveq2d 7403 . . . . . 6 (𝑗 = (𝑘 + 1) → (𝐴↑(𝑀 + 𝑗)) = (𝐴↑(𝑀 + (𝑘 + 1))))
15 oveq2 7395 . . . . . . 7 (𝑗 = (𝑘 + 1) → (𝐴𝑗) = (𝐴↑(𝑘 + 1)))
1615oveq2d 7403 . . . . . 6 (𝑗 = (𝑘 + 1) → ((𝐴𝑀) · (𝐴𝑗)) = ((𝐴𝑀) · (𝐴↑(𝑘 + 1))))
1714, 16eqeq12d 2745 . . . . 5 (𝑗 = (𝑘 + 1) → ((𝐴↑(𝑀 + 𝑗)) = ((𝐴𝑀) · (𝐴𝑗)) ↔ (𝐴↑(𝑀 + (𝑘 + 1))) = ((𝐴𝑀) · (𝐴↑(𝑘 + 1)))))
1817imbi2d 340 . . . 4 (𝑗 = (𝑘 + 1) → (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 + 𝑗)) = ((𝐴𝑀) · (𝐴𝑗))) ↔ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 + (𝑘 + 1))) = ((𝐴𝑀) · (𝐴↑(𝑘 + 1))))))
19 oveq2 7395 . . . . . . 7 (𝑗 = 𝑁 → (𝑀 + 𝑗) = (𝑀 + 𝑁))
2019oveq2d 7403 . . . . . 6 (𝑗 = 𝑁 → (𝐴↑(𝑀 + 𝑗)) = (𝐴↑(𝑀 + 𝑁)))
21 oveq2 7395 . . . . . . 7 (𝑗 = 𝑁 → (𝐴𝑗) = (𝐴𝑁))
2221oveq2d 7403 . . . . . 6 (𝑗 = 𝑁 → ((𝐴𝑀) · (𝐴𝑗)) = ((𝐴𝑀) · (𝐴𝑁)))
2320, 22eqeq12d 2745 . . . . 5 (𝑗 = 𝑁 → ((𝐴↑(𝑀 + 𝑗)) = ((𝐴𝑀) · (𝐴𝑗)) ↔ (𝐴↑(𝑀 + 𝑁)) = ((𝐴𝑀) · (𝐴𝑁))))
2423imbi2d 340 . . . 4 (𝑗 = 𝑁 → (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 + 𝑗)) = ((𝐴𝑀) · (𝐴𝑗))) ↔ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 + 𝑁)) = ((𝐴𝑀) · (𝐴𝑁)))))
25 nn0cn 12452 . . . . . . . . 9 (𝑀 ∈ ℕ0𝑀 ∈ ℂ)
2625addridd 11374 . . . . . . . 8 (𝑀 ∈ ℕ0 → (𝑀 + 0) = 𝑀)
2726adantl 481 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝑀 + 0) = 𝑀)
2827oveq2d 7403 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 + 0)) = (𝐴𝑀))
29 expcl 14044 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴𝑀) ∈ ℂ)
3029mulridd 11191 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → ((𝐴𝑀) · 1) = (𝐴𝑀))
3128, 30eqtr4d 2767 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 + 0)) = ((𝐴𝑀) · 1))
32 exp0 14030 . . . . . . 7 (𝐴 ∈ ℂ → (𝐴↑0) = 1)
3332adantr 480 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑0) = 1)
3433oveq2d 7403 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → ((𝐴𝑀) · (𝐴↑0)) = ((𝐴𝑀) · 1))
3531, 34eqtr4d 2767 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 + 0)) = ((𝐴𝑀) · (𝐴↑0)))
36 oveq1 7394 . . . . . . 7 ((𝐴↑(𝑀 + 𝑘)) = ((𝐴𝑀) · (𝐴𝑘)) → ((𝐴↑(𝑀 + 𝑘)) · 𝐴) = (((𝐴𝑀) · (𝐴𝑘)) · 𝐴))
37 nn0cn 12452 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
38 ax-1cn 11126 . . . . . . . . . . . . 13 1 ∈ ℂ
39 addass 11155 . . . . . . . . . . . . 13 ((𝑀 ∈ ℂ ∧ 𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑀 + 𝑘) + 1) = (𝑀 + (𝑘 + 1)))
4038, 39mp3an3 1452 . . . . . . . . . . . 12 ((𝑀 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((𝑀 + 𝑘) + 1) = (𝑀 + (𝑘 + 1)))
4125, 37, 40syl2an 596 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → ((𝑀 + 𝑘) + 1) = (𝑀 + (𝑘 + 1)))
4241adantll 714 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝑀 + 𝑘) + 1) = (𝑀 + (𝑘 + 1)))
4342oveq2d 7403 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐴↑((𝑀 + 𝑘) + 1)) = (𝐴↑(𝑀 + (𝑘 + 1))))
44 simpll 766 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ ℂ)
45 nn0addcl 12477 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑀 + 𝑘) ∈ ℕ0)
4645adantll 714 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝑀 + 𝑘) ∈ ℕ0)
47 expp1 14033 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (𝑀 + 𝑘) ∈ ℕ0) → (𝐴↑((𝑀 + 𝑘) + 1)) = ((𝐴↑(𝑀 + 𝑘)) · 𝐴))
4844, 46, 47syl2anc 584 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐴↑((𝑀 + 𝑘) + 1)) = ((𝐴↑(𝑀 + 𝑘)) · 𝐴))
4943, 48eqtr3d 2766 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐴↑(𝑀 + (𝑘 + 1))) = ((𝐴↑(𝑀 + 𝑘)) · 𝐴))
50 expp1 14033 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
5150adantlr 715 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
5251oveq2d 7403 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑀) · (𝐴↑(𝑘 + 1))) = ((𝐴𝑀) · ((𝐴𝑘) · 𝐴)))
5329adantr 480 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐴𝑀) ∈ ℂ)
54 expcl 14044 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
5554adantlr 715 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
5653, 55, 44mulassd 11197 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (((𝐴𝑀) · (𝐴𝑘)) · 𝐴) = ((𝐴𝑀) · ((𝐴𝑘) · 𝐴)))
5752, 56eqtr4d 2767 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑀) · (𝐴↑(𝑘 + 1))) = (((𝐴𝑀) · (𝐴𝑘)) · 𝐴))
5849, 57eqeq12d 2745 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝐴↑(𝑀 + (𝑘 + 1))) = ((𝐴𝑀) · (𝐴↑(𝑘 + 1))) ↔ ((𝐴↑(𝑀 + 𝑘)) · 𝐴) = (((𝐴𝑀) · (𝐴𝑘)) · 𝐴)))
5936, 58imbitrrid 246 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝐴↑(𝑀 + 𝑘)) = ((𝐴𝑀) · (𝐴𝑘)) → (𝐴↑(𝑀 + (𝑘 + 1))) = ((𝐴𝑀) · (𝐴↑(𝑘 + 1)))))
6059expcom 413 . . . . 5 (𝑘 ∈ ℕ0 → ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → ((𝐴↑(𝑀 + 𝑘)) = ((𝐴𝑀) · (𝐴𝑘)) → (𝐴↑(𝑀 + (𝑘 + 1))) = ((𝐴𝑀) · (𝐴↑(𝑘 + 1))))))
6160a2d 29 . . . 4 (𝑘 ∈ ℕ0 → (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 + 𝑘)) = ((𝐴𝑀) · (𝐴𝑘))) → ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 + (𝑘 + 1))) = ((𝐴𝑀) · (𝐴↑(𝑘 + 1))))))
626, 12, 18, 24, 35, 61nn0ind 12629 . . 3 (𝑁 ∈ ℕ0 → ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 + 𝑁)) = ((𝐴𝑀) · (𝐴𝑁))))
6362expdcom 414 . 2 (𝐴 ∈ ℂ → (𝑀 ∈ ℕ0 → (𝑁 ∈ ℕ0 → (𝐴↑(𝑀 + 𝑁)) = ((𝐴𝑀) · (𝐴𝑁)))))
64633imp 1110 1 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐴↑(𝑀 + 𝑁)) = ((𝐴𝑀) · (𝐴𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  (class class class)co 7387  cc 11066  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073  0cn0 12442  cexp 14026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-seq 13967  df-exp 14027
This theorem is referenced by:  expaddzlem  14070  expaddz  14071  expmul  14072  expaddd  14113  i4  14169  faclbnd4lem1  14258  fallrisefac  15991  fsumcube  16026  ef01bndlem  16152  modxai  17039  numexp2x  17049  2exp5  17056  2exp11  17060  expmhm  21353  quart1lem  26765  log2ublem2  26857  bposlem8  27202  3lexlogpow5ineq1  42042  3exp4mod41  47617
  Copyright terms: Public domain W3C validator