MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlkel Structured version   Visualization version   GIF version

Theorem clwwlkel 29279
Description: Obtaining a closed walk (as word) by appending the first symbol to the word representing a walk. (Contributed by AV, 28-Sep-2018.) (Revised by AV, 25-Apr-2021.)
Hypothesis
Ref Expression
clwwlkf1o.d 𝐷 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑤) = (𝑤‘0)}
Assertion
Ref Expression
clwwlkel ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) ∧ (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺))) → (𝑃 ++ ⟨“(𝑃‘0)”⟩) ∈ 𝐷)
Distinct variable groups:   𝑖,𝐺   𝑤,𝐺   𝑖,𝑁   𝑤,𝑁   𝑃,𝑖   𝑤,𝑃
Allowed substitution hints:   𝐷(𝑤,𝑖)

Proof of Theorem clwwlkel
StepHypRef Expression
1 ccatws1n0 14578 . . . . . 6 (𝑃 ∈ Word (Vtx‘𝐺) → (𝑃 ++ ⟨“(𝑃‘0)”⟩) ≠ ∅)
21adantr 482 . . . . 5 ((𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) → (𝑃 ++ ⟨“(𝑃‘0)”⟩) ≠ ∅)
323ad2ant2 1135 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) ∧ (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺))) → (𝑃 ++ ⟨“(𝑃‘0)”⟩) ≠ ∅)
4 simprl 770 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → 𝑃 ∈ Word (Vtx‘𝐺))
5 fstwrdne0 14502 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → (𝑃‘0) ∈ (Vtx‘𝐺))
65s1cld 14549 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → ⟨“(𝑃‘0)”⟩ ∈ Word (Vtx‘𝐺))
7 ccatcl 14520 . . . . . 6 ((𝑃 ∈ Word (Vtx‘𝐺) ∧ ⟨“(𝑃‘0)”⟩ ∈ Word (Vtx‘𝐺)) → (𝑃 ++ ⟨“(𝑃‘0)”⟩) ∈ Word (Vtx‘𝐺))
84, 6, 7syl2anc 585 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → (𝑃 ++ ⟨“(𝑃‘0)”⟩) ∈ Word (Vtx‘𝐺))
983adant3 1133 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) ∧ (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺))) → (𝑃 ++ ⟨“(𝑃‘0)”⟩) ∈ Word (Vtx‘𝐺))
104adantr 482 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → 𝑃 ∈ Word (Vtx‘𝐺))
116adantr 482 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → ⟨“(𝑃‘0)”⟩ ∈ Word (Vtx‘𝐺))
12 elfzonn0 13673 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ (0..^(𝑁 − 1)) → 𝑖 ∈ ℕ0)
1312adantl 483 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → 𝑖 ∈ ℕ0)
14 nnz 12575 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
1514adantr 482 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → 𝑁 ∈ ℤ)
16 elfzo0 13669 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ (0..^(𝑁 − 1)) ↔ (𝑖 ∈ ℕ0 ∧ (𝑁 − 1) ∈ ℕ ∧ 𝑖 < (𝑁 − 1)))
17 nn0re 12477 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑖 ∈ ℕ0𝑖 ∈ ℝ)
1817adantr 482 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑖 ∈ ℕ0𝑁 ∈ ℕ) → 𝑖 ∈ ℝ)
19 nnre 12215 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
20 peano2rem 11523 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ ℝ → (𝑁 − 1) ∈ ℝ)
2119, 20syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℝ)
2221adantl 483 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑖 ∈ ℕ0𝑁 ∈ ℕ) → (𝑁 − 1) ∈ ℝ)
2319adantl 483 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑖 ∈ ℕ0𝑁 ∈ ℕ) → 𝑁 ∈ ℝ)
2418, 22, 233jca 1129 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑖 ∈ ℕ0𝑁 ∈ ℕ) → (𝑖 ∈ ℝ ∧ (𝑁 − 1) ∈ ℝ ∧ 𝑁 ∈ ℝ))
2524adantr 482 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑖 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝑖 < (𝑁 − 1)) → (𝑖 ∈ ℝ ∧ (𝑁 − 1) ∈ ℝ ∧ 𝑁 ∈ ℝ))
2619ltm1d 12142 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℕ → (𝑁 − 1) < 𝑁)
2726adantl 483 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑖 ∈ ℕ0𝑁 ∈ ℕ) → (𝑁 − 1) < 𝑁)
2827anim1ci 617 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑖 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝑖 < (𝑁 − 1)) → (𝑖 < (𝑁 − 1) ∧ (𝑁 − 1) < 𝑁))
29 lttr 11286 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑖 ∈ ℝ ∧ (𝑁 − 1) ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑖 < (𝑁 − 1) ∧ (𝑁 − 1) < 𝑁) → 𝑖 < 𝑁))
3025, 28, 29sylc 65 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑖 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝑖 < (𝑁 − 1)) → 𝑖 < 𝑁)
3130ex 414 . . . . . . . . . . . . . . . . . . . . 21 ((𝑖 ∈ ℕ0𝑁 ∈ ℕ) → (𝑖 < (𝑁 − 1) → 𝑖 < 𝑁))
3231impancom 453 . . . . . . . . . . . . . . . . . . . 20 ((𝑖 ∈ ℕ0𝑖 < (𝑁 − 1)) → (𝑁 ∈ ℕ → 𝑖 < 𝑁))
33323adant2 1132 . . . . . . . . . . . . . . . . . . 19 ((𝑖 ∈ ℕ0 ∧ (𝑁 − 1) ∈ ℕ ∧ 𝑖 < (𝑁 − 1)) → (𝑁 ∈ ℕ → 𝑖 < 𝑁))
3416, 33sylbi 216 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ (0..^(𝑁 − 1)) → (𝑁 ∈ ℕ → 𝑖 < 𝑁))
3534impcom 409 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → 𝑖 < 𝑁)
36 elfzo0z 13670 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ (0..^𝑁) ↔ (𝑖 ∈ ℕ0𝑁 ∈ ℤ ∧ 𝑖 < 𝑁))
3713, 15, 35, 36syl3anbrc 1344 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → 𝑖 ∈ (0..^𝑁))
3837adantlr 714 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → 𝑖 ∈ (0..^𝑁))
39 oveq2 7412 . . . . . . . . . . . . . . . . . 18 ((♯‘𝑃) = 𝑁 → (0..^(♯‘𝑃)) = (0..^𝑁))
4039eleq2d 2820 . . . . . . . . . . . . . . . . 17 ((♯‘𝑃) = 𝑁 → (𝑖 ∈ (0..^(♯‘𝑃)) ↔ 𝑖 ∈ (0..^𝑁)))
4140ad2antll 728 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → (𝑖 ∈ (0..^(♯‘𝑃)) ↔ 𝑖 ∈ (0..^𝑁)))
4241adantr 482 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → (𝑖 ∈ (0..^(♯‘𝑃)) ↔ 𝑖 ∈ (0..^𝑁)))
4338, 42mpbird 257 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → 𝑖 ∈ (0..^(♯‘𝑃)))
44 ccatval1 14523 . . . . . . . . . . . . . 14 ((𝑃 ∈ Word (Vtx‘𝐺) ∧ ⟨“(𝑃‘0)”⟩ ∈ Word (Vtx‘𝐺) ∧ 𝑖 ∈ (0..^(♯‘𝑃))) → ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘𝑖) = (𝑃𝑖))
4510, 11, 43, 44syl3anc 1372 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘𝑖) = (𝑃𝑖))
46 elfzom1p1elfzo 13708 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → (𝑖 + 1) ∈ (0..^𝑁))
4746adantlr 714 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → (𝑖 + 1) ∈ (0..^𝑁))
4839ad2antll 728 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → (0..^(♯‘𝑃)) = (0..^𝑁))
4948adantr 482 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → (0..^(♯‘𝑃)) = (0..^𝑁))
5047, 49eleqtrrd 2837 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → (𝑖 + 1) ∈ (0..^(♯‘𝑃)))
51 ccatval1 14523 . . . . . . . . . . . . . 14 ((𝑃 ∈ Word (Vtx‘𝐺) ∧ ⟨“(𝑃‘0)”⟩ ∈ Word (Vtx‘𝐺) ∧ (𝑖 + 1) ∈ (0..^(♯‘𝑃))) → ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(𝑖 + 1)) = (𝑃‘(𝑖 + 1)))
5210, 11, 50, 51syl3anc 1372 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(𝑖 + 1)) = (𝑃‘(𝑖 + 1)))
5345, 52preq12d 4744 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → {((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘𝑖), ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(𝑖 + 1))} = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})
5453eleq1d 2819 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → ({((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘𝑖), ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
5554ralbidva 3176 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → (∀𝑖 ∈ (0..^(𝑁 − 1)){((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘𝑖), ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
5655biimprcd 249 . . . . . . . . 9 (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → ∀𝑖 ∈ (0..^(𝑁 − 1)){((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘𝑖), ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
5756adantr 482 . . . . . . . 8 ((∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺)) → ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → ∀𝑖 ∈ (0..^(𝑁 − 1)){((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘𝑖), ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
5857expdcom 416 . . . . . . 7 (𝑁 ∈ ℕ → ((𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) → ((∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺)) → ∀𝑖 ∈ (0..^(𝑁 − 1)){((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘𝑖), ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺))))
59583imp 1112 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) ∧ (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺))) → ∀𝑖 ∈ (0..^(𝑁 − 1)){((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘𝑖), ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺))
60 fzo0end 13720 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ (0..^𝑁))
6139eleq2d 2820 . . . . . . . . . . . . . . . . . 18 ((♯‘𝑃) = 𝑁 → ((𝑁 − 1) ∈ (0..^(♯‘𝑃)) ↔ (𝑁 − 1) ∈ (0..^𝑁)))
6261adantl 483 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) → ((𝑁 − 1) ∈ (0..^(♯‘𝑃)) ↔ (𝑁 − 1) ∈ (0..^𝑁)))
6360, 62syl5ibrcom 246 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → ((𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) → (𝑁 − 1) ∈ (0..^(♯‘𝑃))))
6463imp 408 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → (𝑁 − 1) ∈ (0..^(♯‘𝑃)))
65 ccatval1 14523 . . . . . . . . . . . . . . 15 ((𝑃 ∈ Word (Vtx‘𝐺) ∧ ⟨“(𝑃‘0)”⟩ ∈ Word (Vtx‘𝐺) ∧ (𝑁 − 1) ∈ (0..^(♯‘𝑃))) → ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(𝑁 − 1)) = (𝑃‘(𝑁 − 1)))
664, 6, 64, 65syl3anc 1372 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(𝑁 − 1)) = (𝑃‘(𝑁 − 1)))
67 lsw 14510 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ Word (Vtx‘𝐺) → (lastS‘𝑃) = (𝑃‘((♯‘𝑃) − 1)))
6867adantr 482 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) → (lastS‘𝑃) = (𝑃‘((♯‘𝑃) − 1)))
69 fvoveq1 7427 . . . . . . . . . . . . . . . . 17 ((♯‘𝑃) = 𝑁 → (𝑃‘((♯‘𝑃) − 1)) = (𝑃‘(𝑁 − 1)))
7069adantl 483 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) → (𝑃‘((♯‘𝑃) − 1)) = (𝑃‘(𝑁 − 1)))
7168, 70eqtr2d 2774 . . . . . . . . . . . . . . 15 ((𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) → (𝑃‘(𝑁 − 1)) = (lastS‘𝑃))
7271adantl 483 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → (𝑃‘(𝑁 − 1)) = (lastS‘𝑃))
7366, 72eqtr2d 2774 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → (lastS‘𝑃) = ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(𝑁 − 1)))
74 nncn 12216 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
75 1cnd 11205 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ → 1 ∈ ℂ)
7674, 75npcand 11571 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → ((𝑁 − 1) + 1) = 𝑁)
7776fveq2d 6892 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘((𝑁 − 1) + 1)) = ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘𝑁))
7877adantr 482 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘((𝑁 − 1) + 1)) = ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘𝑁))
79 fveq2 6888 . . . . . . . . . . . . . . 15 ((♯‘𝑃) = 𝑁 → ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(♯‘𝑃)) = ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘𝑁))
8079ad2antll 728 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(♯‘𝑃)) = ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘𝑁))
81 ccatws1ls 14579 . . . . . . . . . . . . . . 15 ((𝑃 ∈ Word (Vtx‘𝐺) ∧ (𝑃‘0) ∈ (Vtx‘𝐺)) → ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(♯‘𝑃)) = (𝑃‘0))
824, 5, 81syl2anc 585 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(♯‘𝑃)) = (𝑃‘0))
8378, 80, 823eqtr2rd 2780 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → (𝑃‘0) = ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘((𝑁 − 1) + 1)))
8473, 83preq12d 4744 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → {(lastS‘𝑃), (𝑃‘0)} = {((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(𝑁 − 1)), ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘((𝑁 − 1) + 1))})
8584eleq1d 2819 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → ({(lastS‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺) ↔ {((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(𝑁 − 1)), ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘((𝑁 − 1) + 1))} ∈ (Edg‘𝐺)))
8685biimpcd 248 . . . . . . . . . 10 ({(lastS‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺) → ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → {((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(𝑁 − 1)), ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘((𝑁 − 1) + 1))} ∈ (Edg‘𝐺)))
8786adantl 483 . . . . . . . . 9 ((∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺)) → ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → {((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(𝑁 − 1)), ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘((𝑁 − 1) + 1))} ∈ (Edg‘𝐺)))
8887expdcom 416 . . . . . . . 8 (𝑁 ∈ ℕ → ((𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) → ((∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺)) → {((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(𝑁 − 1)), ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘((𝑁 − 1) + 1))} ∈ (Edg‘𝐺))))
89883imp 1112 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) ∧ (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺))) → {((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(𝑁 − 1)), ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘((𝑁 − 1) + 1))} ∈ (Edg‘𝐺))
90 ovex 7437 . . . . . . . 8 (𝑁 − 1) ∈ V
91 fveq2 6888 . . . . . . . . . 10 (𝑖 = (𝑁 − 1) → ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘𝑖) = ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(𝑁 − 1)))
92 fvoveq1 7427 . . . . . . . . . 10 (𝑖 = (𝑁 − 1) → ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(𝑖 + 1)) = ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘((𝑁 − 1) + 1)))
9391, 92preq12d 4744 . . . . . . . . 9 (𝑖 = (𝑁 − 1) → {((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘𝑖), ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(𝑖 + 1))} = {((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(𝑁 − 1)), ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘((𝑁 − 1) + 1))})
9493eleq1d 2819 . . . . . . . 8 (𝑖 = (𝑁 − 1) → ({((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘𝑖), ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(𝑁 − 1)), ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘((𝑁 − 1) + 1))} ∈ (Edg‘𝐺)))
9590, 94ralsn 4684 . . . . . . 7 (∀𝑖 ∈ {(𝑁 − 1)} {((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘𝑖), ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(𝑁 − 1)), ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘((𝑁 − 1) + 1))} ∈ (Edg‘𝐺))
9689, 95sylibr 233 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) ∧ (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺))) → ∀𝑖 ∈ {(𝑁 − 1)} {((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘𝑖), ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺))
9774, 75, 75addsubd 11588 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((𝑁 + 1) − 1) = ((𝑁 − 1) + 1))
9897oveq2d 7420 . . . . . . . . . 10 (𝑁 ∈ ℕ → (0..^((𝑁 + 1) − 1)) = (0..^((𝑁 − 1) + 1)))
99 nnm1nn0 12509 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
100 elnn0uz 12863 . . . . . . . . . . . 12 ((𝑁 − 1) ∈ ℕ0 ↔ (𝑁 − 1) ∈ (ℤ‘0))
10199, 100sylib 217 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ (ℤ‘0))
102 fzosplitsn 13736 . . . . . . . . . . 11 ((𝑁 − 1) ∈ (ℤ‘0) → (0..^((𝑁 − 1) + 1)) = ((0..^(𝑁 − 1)) ∪ {(𝑁 − 1)}))
103101, 102syl 17 . . . . . . . . . 10 (𝑁 ∈ ℕ → (0..^((𝑁 − 1) + 1)) = ((0..^(𝑁 − 1)) ∪ {(𝑁 − 1)}))
10498, 103eqtrd 2773 . . . . . . . . 9 (𝑁 ∈ ℕ → (0..^((𝑁 + 1) − 1)) = ((0..^(𝑁 − 1)) ∪ {(𝑁 − 1)}))
105104raleqdv 3326 . . . . . . . 8 (𝑁 ∈ ℕ → (∀𝑖 ∈ (0..^((𝑁 + 1) − 1)){((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘𝑖), ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ ((0..^(𝑁 − 1)) ∪ {(𝑁 − 1)}){((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘𝑖), ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
106 ralunb 4190 . . . . . . . 8 (∀𝑖 ∈ ((0..^(𝑁 − 1)) ∪ {(𝑁 − 1)}){((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘𝑖), ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ (∀𝑖 ∈ (0..^(𝑁 − 1)){((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘𝑖), ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ ∀𝑖 ∈ {(𝑁 − 1)} {((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘𝑖), ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
107105, 106bitrdi 287 . . . . . . 7 (𝑁 ∈ ℕ → (∀𝑖 ∈ (0..^((𝑁 + 1) − 1)){((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘𝑖), ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ (∀𝑖 ∈ (0..^(𝑁 − 1)){((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘𝑖), ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ ∀𝑖 ∈ {(𝑁 − 1)} {((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘𝑖), ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺))))
1081073ad2ant1 1134 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) ∧ (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺))) → (∀𝑖 ∈ (0..^((𝑁 + 1) − 1)){((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘𝑖), ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ (∀𝑖 ∈ (0..^(𝑁 − 1)){((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘𝑖), ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ ∀𝑖 ∈ {(𝑁 − 1)} {((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘𝑖), ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺))))
10959, 96, 108mpbir2and 712 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) ∧ (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺))) → ∀𝑖 ∈ (0..^((𝑁 + 1) − 1)){((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘𝑖), ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺))
110 ccatlen 14521 . . . . . . . . . . 11 ((𝑃 ∈ Word (Vtx‘𝐺) ∧ ⟨“(𝑃‘0)”⟩ ∈ Word (Vtx‘𝐺)) → (♯‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) = ((♯‘𝑃) + (♯‘⟨“(𝑃‘0)”⟩)))
1114, 6, 110syl2anc 585 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → (♯‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) = ((♯‘𝑃) + (♯‘⟨“(𝑃‘0)”⟩)))
112 id 22 . . . . . . . . . . . 12 ((♯‘𝑃) = 𝑁 → (♯‘𝑃) = 𝑁)
113 s1len 14552 . . . . . . . . . . . . 13 (♯‘⟨“(𝑃‘0)”⟩) = 1
114113a1i 11 . . . . . . . . . . . 12 ((♯‘𝑃) = 𝑁 → (♯‘⟨“(𝑃‘0)”⟩) = 1)
115112, 114oveq12d 7422 . . . . . . . . . . 11 ((♯‘𝑃) = 𝑁 → ((♯‘𝑃) + (♯‘⟨“(𝑃‘0)”⟩)) = (𝑁 + 1))
116115ad2antll 728 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → ((♯‘𝑃) + (♯‘⟨“(𝑃‘0)”⟩)) = (𝑁 + 1))
117111, 116eqtrd 2773 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → (♯‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) = (𝑁 + 1))
1181173adant3 1133 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) ∧ (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺))) → (♯‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) = (𝑁 + 1))
119118oveq1d 7419 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) ∧ (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺))) → ((♯‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) − 1) = ((𝑁 + 1) − 1))
120119oveq2d 7420 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) ∧ (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺))) → (0..^((♯‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) − 1)) = (0..^((𝑁 + 1) − 1)))
121120raleqdv 3326 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) ∧ (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺))) → (∀𝑖 ∈ (0..^((♯‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) − 1)){((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘𝑖), ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ (0..^((𝑁 + 1) − 1)){((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘𝑖), ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
122109, 121mpbird 257 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) ∧ (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺))) → ∀𝑖 ∈ (0..^((♯‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) − 1)){((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘𝑖), ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺))
1233, 9, 1223jca 1129 . . 3 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) ∧ (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺))) → ((𝑃 ++ ⟨“(𝑃‘0)”⟩) ≠ ∅ ∧ (𝑃 ++ ⟨“(𝑃‘0)”⟩) ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) − 1)){((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘𝑖), ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
124 nnnn0 12475 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
125 iswwlksn 29072 . . . . . 6 (𝑁 ∈ ℕ0 → ((𝑃 ++ ⟨“(𝑃‘0)”⟩) ∈ (𝑁 WWalksN 𝐺) ↔ ((𝑃 ++ ⟨“(𝑃‘0)”⟩) ∈ (WWalks‘𝐺) ∧ (♯‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) = (𝑁 + 1))))
126124, 125syl 17 . . . . 5 (𝑁 ∈ ℕ → ((𝑃 ++ ⟨“(𝑃‘0)”⟩) ∈ (𝑁 WWalksN 𝐺) ↔ ((𝑃 ++ ⟨“(𝑃‘0)”⟩) ∈ (WWalks‘𝐺) ∧ (♯‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) = (𝑁 + 1))))
127 eqid 2733 . . . . . . 7 (Vtx‘𝐺) = (Vtx‘𝐺)
128 eqid 2733 . . . . . . 7 (Edg‘𝐺) = (Edg‘𝐺)
129127, 128iswwlks 29070 . . . . . 6 ((𝑃 ++ ⟨“(𝑃‘0)”⟩) ∈ (WWalks‘𝐺) ↔ ((𝑃 ++ ⟨“(𝑃‘0)”⟩) ≠ ∅ ∧ (𝑃 ++ ⟨“(𝑃‘0)”⟩) ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) − 1)){((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘𝑖), ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
130129anbi1i 625 . . . . 5 (((𝑃 ++ ⟨“(𝑃‘0)”⟩) ∈ (WWalks‘𝐺) ∧ (♯‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) = (𝑁 + 1)) ↔ (((𝑃 ++ ⟨“(𝑃‘0)”⟩) ≠ ∅ ∧ (𝑃 ++ ⟨“(𝑃‘0)”⟩) ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) − 1)){((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘𝑖), ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) = (𝑁 + 1)))
131126, 130bitrdi 287 . . . 4 (𝑁 ∈ ℕ → ((𝑃 ++ ⟨“(𝑃‘0)”⟩) ∈ (𝑁 WWalksN 𝐺) ↔ (((𝑃 ++ ⟨“(𝑃‘0)”⟩) ≠ ∅ ∧ (𝑃 ++ ⟨“(𝑃‘0)”⟩) ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) − 1)){((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘𝑖), ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) = (𝑁 + 1))))
1321313ad2ant1 1134 . . 3 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) ∧ (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺))) → ((𝑃 ++ ⟨“(𝑃‘0)”⟩) ∈ (𝑁 WWalksN 𝐺) ↔ (((𝑃 ++ ⟨“(𝑃‘0)”⟩) ≠ ∅ ∧ (𝑃 ++ ⟨“(𝑃‘0)”⟩) ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) − 1)){((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘𝑖), ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) = (𝑁 + 1))))
133123, 118, 132mpbir2and 712 . 2 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) ∧ (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺))) → (𝑃 ++ ⟨“(𝑃‘0)”⟩) ∈ (𝑁 WWalksN 𝐺))
134 lswccats1 14580 . . . . 5 ((𝑃 ∈ Word (Vtx‘𝐺) ∧ (𝑃‘0) ∈ (Vtx‘𝐺)) → (lastS‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) = (𝑃‘0))
1354, 5, 134syl2anc 585 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → (lastS‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) = (𝑃‘0))
136 lbfzo0 13668 . . . . . . . 8 (0 ∈ (0..^𝑁) ↔ 𝑁 ∈ ℕ)
137136biimpri 227 . . . . . . 7 (𝑁 ∈ ℕ → 0 ∈ (0..^𝑁))
13839eleq2d 2820 . . . . . . . 8 ((♯‘𝑃) = 𝑁 → (0 ∈ (0..^(♯‘𝑃)) ↔ 0 ∈ (0..^𝑁)))
139138adantl 483 . . . . . . 7 ((𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) → (0 ∈ (0..^(♯‘𝑃)) ↔ 0 ∈ (0..^𝑁)))
140137, 139syl5ibrcom 246 . . . . . 6 (𝑁 ∈ ℕ → ((𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) → 0 ∈ (0..^(♯‘𝑃))))
141140imp 408 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → 0 ∈ (0..^(♯‘𝑃)))
142 ccatval1 14523 . . . . 5 ((𝑃 ∈ Word (Vtx‘𝐺) ∧ ⟨“(𝑃‘0)”⟩ ∈ Word (Vtx‘𝐺) ∧ 0 ∈ (0..^(♯‘𝑃))) → ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘0) = (𝑃‘0))
1434, 6, 141, 142syl3anc 1372 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘0) = (𝑃‘0))
144135, 143eqtr4d 2776 . . 3 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → (lastS‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) = ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘0))
1451443adant3 1133 . 2 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) ∧ (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺))) → (lastS‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) = ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘0))
146 fveq2 6888 . . . 4 (𝑤 = (𝑃 ++ ⟨“(𝑃‘0)”⟩) → (lastS‘𝑤) = (lastS‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)))
147 fveq1 6887 . . . 4 (𝑤 = (𝑃 ++ ⟨“(𝑃‘0)”⟩) → (𝑤‘0) = ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘0))
148146, 147eqeq12d 2749 . . 3 (𝑤 = (𝑃 ++ ⟨“(𝑃‘0)”⟩) → ((lastS‘𝑤) = (𝑤‘0) ↔ (lastS‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) = ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘0)))
149 clwwlkf1o.d . . 3 𝐷 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑤) = (𝑤‘0)}
150148, 149elrab2 3685 . 2 ((𝑃 ++ ⟨“(𝑃‘0)”⟩) ∈ 𝐷 ↔ ((𝑃 ++ ⟨“(𝑃‘0)”⟩) ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) = ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘0)))
151133, 145, 150sylanbrc 584 1 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) ∧ (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺))) → (𝑃 ++ ⟨“(𝑃‘0)”⟩) ∈ 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  wne 2941  wral 3062  {crab 3433  cun 3945  c0 4321  {csn 4627  {cpr 4629   class class class wbr 5147  cfv 6540  (class class class)co 7404  cr 11105  0cc0 11106  1c1 11107   + caddc 11109   < clt 11244  cmin 11440  cn 12208  0cn0 12468  cz 12554  cuz 12818  ..^cfzo 13623  chash 14286  Word cword 14460  lastSclsw 14508   ++ cconcat 14516  ⟨“cs1 14541  Vtxcvtx 28236  Edgcedg 28287  WWalkscwwlks 29059   WWalksN cwwlksn 29060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7851  df-1st 7970  df-2nd 7971  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-n0 12469  df-xnn0 12541  df-z 12555  df-uz 12819  df-rp 12971  df-fz 13481  df-fzo 13624  df-hash 14287  df-word 14461  df-lsw 14509  df-concat 14517  df-s1 14542  df-wwlks 29064  df-wwlksn 29065
This theorem is referenced by:  clwwlkfo  29283  clwwlknwwlkncl  29286
  Copyright terms: Public domain W3C validator