Proof of Theorem clwwlkel
Step | Hyp | Ref
| Expression |
1 | | ccatws1n0 14351 |
. . . . . 6
⊢ (𝑃 ∈ Word (Vtx‘𝐺) → (𝑃 ++ 〈“(𝑃‘0)”〉) ≠
∅) |
2 | 1 | adantr 481 |
. . . . 5
⊢ ((𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) → (𝑃 ++ 〈“(𝑃‘0)”〉) ≠
∅) |
3 | 2 | 3ad2ant2 1133 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) ∧ (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺))) → (𝑃 ++ 〈“(𝑃‘0)”〉) ≠
∅) |
4 | | simprl 768 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → 𝑃 ∈ Word (Vtx‘𝐺)) |
5 | | fstwrdne0 14268 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → (𝑃‘0) ∈ (Vtx‘𝐺)) |
6 | 5 | s1cld 14317 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → 〈“(𝑃‘0)”〉 ∈ Word
(Vtx‘𝐺)) |
7 | | ccatcl 14286 |
. . . . . 6
⊢ ((𝑃 ∈ Word (Vtx‘𝐺) ∧ 〈“(𝑃‘0)”〉 ∈
Word (Vtx‘𝐺)) →
(𝑃 ++ 〈“(𝑃‘0)”〉) ∈
Word (Vtx‘𝐺)) |
8 | 4, 6, 7 | syl2anc 584 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → (𝑃 ++ 〈“(𝑃‘0)”〉) ∈ Word
(Vtx‘𝐺)) |
9 | 8 | 3adant3 1131 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) ∧ (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺))) → (𝑃 ++ 〈“(𝑃‘0)”〉) ∈ Word
(Vtx‘𝐺)) |
10 | 4 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → 𝑃 ∈ Word (Vtx‘𝐺)) |
11 | 6 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → 〈“(𝑃‘0)”〉 ∈
Word (Vtx‘𝐺)) |
12 | | elfzonn0 13441 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 ∈ (0..^(𝑁 − 1)) → 𝑖 ∈ ℕ0) |
13 | 12 | adantl 482 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈ ℕ ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → 𝑖 ∈ ℕ0) |
14 | | nnz 12351 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℤ) |
15 | 14 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈ ℕ ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → 𝑁 ∈ ℤ) |
16 | | elfzo0 13437 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 ∈ (0..^(𝑁 − 1)) ↔ (𝑖 ∈ ℕ0 ∧ (𝑁 − 1) ∈ ℕ ∧
𝑖 < (𝑁 − 1))) |
17 | | nn0re 12251 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑖 ∈ ℕ0
→ 𝑖 ∈
ℝ) |
18 | 17 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑖 ∈ ℕ0
∧ 𝑁 ∈ ℕ)
→ 𝑖 ∈
ℝ) |
19 | | nnre 11989 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℝ) |
20 | | peano2rem 11297 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑁 ∈ ℝ → (𝑁 − 1) ∈
ℝ) |
21 | 19, 20 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈
ℝ) |
22 | 21 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑖 ∈ ℕ0
∧ 𝑁 ∈ ℕ)
→ (𝑁 − 1) ∈
ℝ) |
23 | 19 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑖 ∈ ℕ0
∧ 𝑁 ∈ ℕ)
→ 𝑁 ∈
ℝ) |
24 | 18, 22, 23 | 3jca 1127 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑖 ∈ ℕ0
∧ 𝑁 ∈ ℕ)
→ (𝑖 ∈ ℝ
∧ (𝑁 − 1) ∈
ℝ ∧ 𝑁 ∈
ℝ)) |
25 | 24 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑖 ∈ ℕ0
∧ 𝑁 ∈ ℕ)
∧ 𝑖 < (𝑁 − 1)) → (𝑖 ∈ ℝ ∧ (𝑁 − 1) ∈ ℝ ∧
𝑁 ∈
ℝ)) |
26 | 19 | ltm1d 11916 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑁 ∈ ℕ → (𝑁 − 1) < 𝑁) |
27 | 26 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑖 ∈ ℕ0
∧ 𝑁 ∈ ℕ)
→ (𝑁 − 1) <
𝑁) |
28 | 27 | anim1ci 616 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑖 ∈ ℕ0
∧ 𝑁 ∈ ℕ)
∧ 𝑖 < (𝑁 − 1)) → (𝑖 < (𝑁 − 1) ∧ (𝑁 − 1) < 𝑁)) |
29 | | lttr 11060 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑖 ∈ ℝ ∧ (𝑁 − 1) ∈ ℝ ∧
𝑁 ∈ ℝ) →
((𝑖 < (𝑁 − 1) ∧ (𝑁 − 1) < 𝑁) → 𝑖 < 𝑁)) |
30 | 25, 28, 29 | sylc 65 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑖 ∈ ℕ0
∧ 𝑁 ∈ ℕ)
∧ 𝑖 < (𝑁 − 1)) → 𝑖 < 𝑁) |
31 | 30 | ex 413 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑖 ∈ ℕ0
∧ 𝑁 ∈ ℕ)
→ (𝑖 < (𝑁 − 1) → 𝑖 < 𝑁)) |
32 | 31 | impancom 452 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 ∈ ℕ0
∧ 𝑖 < (𝑁 − 1)) → (𝑁 ∈ ℕ → 𝑖 < 𝑁)) |
33 | 32 | 3adant2 1130 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑖 ∈ ℕ0
∧ (𝑁 − 1) ∈
ℕ ∧ 𝑖 < (𝑁 − 1)) → (𝑁 ∈ ℕ → 𝑖 < 𝑁)) |
34 | 16, 33 | sylbi 216 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 ∈ (0..^(𝑁 − 1)) → (𝑁 ∈ ℕ → 𝑖 < 𝑁)) |
35 | 34 | impcom 408 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈ ℕ ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → 𝑖 < 𝑁) |
36 | | elfzo0z 13438 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 ∈ (0..^𝑁) ↔ (𝑖 ∈ ℕ0 ∧ 𝑁 ∈ ℤ ∧ 𝑖 < 𝑁)) |
37 | 13, 15, 35, 36 | syl3anbrc 1342 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ ℕ ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → 𝑖 ∈ (0..^𝑁)) |
38 | 37 | adantlr 712 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → 𝑖 ∈ (0..^𝑁)) |
39 | | oveq2 7292 |
. . . . . . . . . . . . . . . . . 18
⊢
((♯‘𝑃) =
𝑁 →
(0..^(♯‘𝑃)) =
(0..^𝑁)) |
40 | 39 | eleq2d 2825 |
. . . . . . . . . . . . . . . . 17
⊢
((♯‘𝑃) =
𝑁 → (𝑖 ∈
(0..^(♯‘𝑃))
↔ 𝑖 ∈ (0..^𝑁))) |
41 | 40 | ad2antll 726 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → (𝑖 ∈ (0..^(♯‘𝑃)) ↔ 𝑖 ∈ (0..^𝑁))) |
42 | 41 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → (𝑖 ∈ (0..^(♯‘𝑃)) ↔ 𝑖 ∈ (0..^𝑁))) |
43 | 38, 42 | mpbird 256 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → 𝑖 ∈ (0..^(♯‘𝑃))) |
44 | | ccatval1 14290 |
. . . . . . . . . . . . . 14
⊢ ((𝑃 ∈ Word (Vtx‘𝐺) ∧ 〈“(𝑃‘0)”〉 ∈
Word (Vtx‘𝐺) ∧
𝑖 ∈
(0..^(♯‘𝑃)))
→ ((𝑃 ++
〈“(𝑃‘0)”〉)‘𝑖) = (𝑃‘𝑖)) |
45 | 10, 11, 43, 44 | syl3anc 1370 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → ((𝑃 ++ 〈“(𝑃‘0)”〉)‘𝑖) = (𝑃‘𝑖)) |
46 | | elfzom1p1elfzo 13476 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ ℕ ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → (𝑖 + 1) ∈ (0..^𝑁)) |
47 | 46 | adantlr 712 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → (𝑖 + 1) ∈ (0..^𝑁)) |
48 | 39 | ad2antll 726 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → (0..^(♯‘𝑃)) = (0..^𝑁)) |
49 | 48 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) ∧ 𝑖 ∈ (0..^(𝑁 − 1))) →
(0..^(♯‘𝑃)) =
(0..^𝑁)) |
50 | 47, 49 | eleqtrrd 2843 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → (𝑖 + 1) ∈ (0..^(♯‘𝑃))) |
51 | | ccatval1 14290 |
. . . . . . . . . . . . . 14
⊢ ((𝑃 ∈ Word (Vtx‘𝐺) ∧ 〈“(𝑃‘0)”〉 ∈
Word (Vtx‘𝐺) ∧
(𝑖 + 1) ∈
(0..^(♯‘𝑃)))
→ ((𝑃 ++
〈“(𝑃‘0)”〉)‘(𝑖 + 1)) = (𝑃‘(𝑖 + 1))) |
52 | 10, 11, 50, 51 | syl3anc 1370 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → ((𝑃 ++ 〈“(𝑃‘0)”〉)‘(𝑖 + 1)) = (𝑃‘(𝑖 + 1))) |
53 | 45, 52 | preq12d 4678 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → {((𝑃 ++ 〈“(𝑃‘0)”〉)‘𝑖), ((𝑃 ++ 〈“(𝑃‘0)”〉)‘(𝑖 + 1))} = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) |
54 | 53 | eleq1d 2824 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → ({((𝑃 ++ 〈“(𝑃‘0)”〉)‘𝑖), ((𝑃 ++ 〈“(𝑃‘0)”〉)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) |
55 | 54 | ralbidva 3112 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → (∀𝑖 ∈ (0..^(𝑁 − 1)){((𝑃 ++ 〈“(𝑃‘0)”〉)‘𝑖), ((𝑃 ++ 〈“(𝑃‘0)”〉)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) |
56 | 55 | biimprcd 249 |
. . . . . . . . 9
⊢
(∀𝑖 ∈
(0..^(𝑁 − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → ∀𝑖 ∈ (0..^(𝑁 − 1)){((𝑃 ++ 〈“(𝑃‘0)”〉)‘𝑖), ((𝑃 ++ 〈“(𝑃‘0)”〉)‘(𝑖 + 1))} ∈ (Edg‘𝐺))) |
57 | 56 | adantr 481 |
. . . . . . . 8
⊢
((∀𝑖 ∈
(0..^(𝑁 − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺)) → ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → ∀𝑖 ∈ (0..^(𝑁 − 1)){((𝑃 ++ 〈“(𝑃‘0)”〉)‘𝑖), ((𝑃 ++ 〈“(𝑃‘0)”〉)‘(𝑖 + 1))} ∈ (Edg‘𝐺))) |
58 | 57 | expdcom 415 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ → ((𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) → ((∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺)) → ∀𝑖 ∈ (0..^(𝑁 − 1)){((𝑃 ++ 〈“(𝑃‘0)”〉)‘𝑖), ((𝑃 ++ 〈“(𝑃‘0)”〉)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))) |
59 | 58 | 3imp 1110 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) ∧ (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺))) → ∀𝑖 ∈ (0..^(𝑁 − 1)){((𝑃 ++ 〈“(𝑃‘0)”〉)‘𝑖), ((𝑃 ++ 〈“(𝑃‘0)”〉)‘(𝑖 + 1))} ∈ (Edg‘𝐺)) |
60 | | fzo0end 13488 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈ (0..^𝑁)) |
61 | 39 | eleq2d 2825 |
. . . . . . . . . . . . . . . . . 18
⊢
((♯‘𝑃) =
𝑁 → ((𝑁 − 1) ∈
(0..^(♯‘𝑃))
↔ (𝑁 − 1) ∈
(0..^𝑁))) |
62 | 61 | adantl 482 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) → ((𝑁 − 1) ∈ (0..^(♯‘𝑃)) ↔ (𝑁 − 1) ∈ (0..^𝑁))) |
63 | 60, 62 | syl5ibrcom 246 |
. . . . . . . . . . . . . . . 16
⊢ (𝑁 ∈ ℕ → ((𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) → (𝑁 − 1) ∈ (0..^(♯‘𝑃)))) |
64 | 63 | imp 407 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → (𝑁 − 1) ∈ (0..^(♯‘𝑃))) |
65 | | ccatval1 14290 |
. . . . . . . . . . . . . . 15
⊢ ((𝑃 ∈ Word (Vtx‘𝐺) ∧ 〈“(𝑃‘0)”〉 ∈
Word (Vtx‘𝐺) ∧
(𝑁 − 1) ∈
(0..^(♯‘𝑃)))
→ ((𝑃 ++
〈“(𝑃‘0)”〉)‘(𝑁 − 1)) = (𝑃‘(𝑁 − 1))) |
66 | 4, 6, 64, 65 | syl3anc 1370 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → ((𝑃 ++ 〈“(𝑃‘0)”〉)‘(𝑁 − 1)) = (𝑃‘(𝑁 − 1))) |
67 | | lsw 14276 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑃 ∈ Word (Vtx‘𝐺) → (lastS‘𝑃) = (𝑃‘((♯‘𝑃) − 1))) |
68 | 67 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) → (lastS‘𝑃) = (𝑃‘((♯‘𝑃) − 1))) |
69 | | fvoveq1 7307 |
. . . . . . . . . . . . . . . . 17
⊢
((♯‘𝑃) =
𝑁 → (𝑃‘((♯‘𝑃) − 1)) = (𝑃‘(𝑁 − 1))) |
70 | 69 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) → (𝑃‘((♯‘𝑃) − 1)) = (𝑃‘(𝑁 − 1))) |
71 | 68, 70 | eqtr2d 2780 |
. . . . . . . . . . . . . . 15
⊢ ((𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) → (𝑃‘(𝑁 − 1)) = (lastS‘𝑃)) |
72 | 71 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → (𝑃‘(𝑁 − 1)) = (lastS‘𝑃)) |
73 | 66, 72 | eqtr2d 2780 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → (lastS‘𝑃) = ((𝑃 ++ 〈“(𝑃‘0)”〉)‘(𝑁 − 1))) |
74 | | nncn 11990 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℂ) |
75 | | 1cnd 10979 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑁 ∈ ℕ → 1 ∈
ℂ) |
76 | 74, 75 | npcand 11345 |
. . . . . . . . . . . . . . . 16
⊢ (𝑁 ∈ ℕ → ((𝑁 − 1) + 1) = 𝑁) |
77 | 76 | fveq2d 6787 |
. . . . . . . . . . . . . . 15
⊢ (𝑁 ∈ ℕ → ((𝑃 ++ 〈“(𝑃‘0)”〉)‘((𝑁 − 1) + 1)) = ((𝑃 ++ 〈“(𝑃‘0)”〉)‘𝑁)) |
78 | 77 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → ((𝑃 ++ 〈“(𝑃‘0)”〉)‘((𝑁 − 1) + 1)) = ((𝑃 ++ 〈“(𝑃‘0)”〉)‘𝑁)) |
79 | | fveq2 6783 |
. . . . . . . . . . . . . . 15
⊢
((♯‘𝑃) =
𝑁 → ((𝑃 ++ 〈“(𝑃‘0)”〉)‘(♯‘𝑃)) = ((𝑃 ++ 〈“(𝑃‘0)”〉)‘𝑁)) |
80 | 79 | ad2antll 726 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → ((𝑃 ++ 〈“(𝑃‘0)”〉)‘(♯‘𝑃)) = ((𝑃 ++ 〈“(𝑃‘0)”〉)‘𝑁)) |
81 | | ccatws1ls 14352 |
. . . . . . . . . . . . . . 15
⊢ ((𝑃 ∈ Word (Vtx‘𝐺) ∧ (𝑃‘0) ∈ (Vtx‘𝐺)) → ((𝑃 ++ 〈“(𝑃‘0)”〉)‘(♯‘𝑃)) = (𝑃‘0)) |
82 | 4, 5, 81 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → ((𝑃 ++ 〈“(𝑃‘0)”〉)‘(♯‘𝑃)) = (𝑃‘0)) |
83 | 78, 80, 82 | 3eqtr2rd 2786 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → (𝑃‘0) = ((𝑃 ++ 〈“(𝑃‘0)”〉)‘((𝑁 − 1) +
1))) |
84 | 73, 83 | preq12d 4678 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → {(lastS‘𝑃), (𝑃‘0)} = {((𝑃 ++ 〈“(𝑃‘0)”〉)‘(𝑁 − 1)), ((𝑃 ++ 〈“(𝑃‘0)”〉)‘((𝑁 − 1) +
1))}) |
85 | 84 | eleq1d 2824 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → ({(lastS‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺) ↔ {((𝑃 ++ 〈“(𝑃‘0)”〉)‘(𝑁 − 1)), ((𝑃 ++ 〈“(𝑃‘0)”〉)‘((𝑁 − 1) + 1))} ∈
(Edg‘𝐺))) |
86 | 85 | biimpcd 248 |
. . . . . . . . . 10
⊢
({(lastS‘𝑃),
(𝑃‘0)} ∈
(Edg‘𝐺) →
((𝑁 ∈ ℕ ∧
(𝑃 ∈ Word
(Vtx‘𝐺) ∧
(♯‘𝑃) = 𝑁)) → {((𝑃 ++ 〈“(𝑃‘0)”〉)‘(𝑁 − 1)), ((𝑃 ++ 〈“(𝑃‘0)”〉)‘((𝑁 − 1) + 1))} ∈
(Edg‘𝐺))) |
87 | 86 | adantl 482 |
. . . . . . . . 9
⊢
((∀𝑖 ∈
(0..^(𝑁 − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺)) → ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → {((𝑃 ++ 〈“(𝑃‘0)”〉)‘(𝑁 − 1)), ((𝑃 ++ 〈“(𝑃‘0)”〉)‘((𝑁 − 1) + 1))} ∈
(Edg‘𝐺))) |
88 | 87 | expdcom 415 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ → ((𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) → ((∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺)) → {((𝑃 ++ 〈“(𝑃‘0)”〉)‘(𝑁 − 1)), ((𝑃 ++ 〈“(𝑃‘0)”〉)‘((𝑁 − 1) + 1))} ∈
(Edg‘𝐺)))) |
89 | 88 | 3imp 1110 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) ∧ (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺))) → {((𝑃 ++ 〈“(𝑃‘0)”〉)‘(𝑁 − 1)), ((𝑃 ++ 〈“(𝑃‘0)”〉)‘((𝑁 − 1) + 1))} ∈
(Edg‘𝐺)) |
90 | | ovex 7317 |
. . . . . . . 8
⊢ (𝑁 − 1) ∈
V |
91 | | fveq2 6783 |
. . . . . . . . . 10
⊢ (𝑖 = (𝑁 − 1) → ((𝑃 ++ 〈“(𝑃‘0)”〉)‘𝑖) = ((𝑃 ++ 〈“(𝑃‘0)”〉)‘(𝑁 − 1))) |
92 | | fvoveq1 7307 |
. . . . . . . . . 10
⊢ (𝑖 = (𝑁 − 1) → ((𝑃 ++ 〈“(𝑃‘0)”〉)‘(𝑖 + 1)) = ((𝑃 ++ 〈“(𝑃‘0)”〉)‘((𝑁 − 1) +
1))) |
93 | 91, 92 | preq12d 4678 |
. . . . . . . . 9
⊢ (𝑖 = (𝑁 − 1) → {((𝑃 ++ 〈“(𝑃‘0)”〉)‘𝑖), ((𝑃 ++ 〈“(𝑃‘0)”〉)‘(𝑖 + 1))} = {((𝑃 ++ 〈“(𝑃‘0)”〉)‘(𝑁 − 1)), ((𝑃 ++ 〈“(𝑃‘0)”〉)‘((𝑁 − 1) +
1))}) |
94 | 93 | eleq1d 2824 |
. . . . . . . 8
⊢ (𝑖 = (𝑁 − 1) → ({((𝑃 ++ 〈“(𝑃‘0)”〉)‘𝑖), ((𝑃 ++ 〈“(𝑃‘0)”〉)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {((𝑃 ++ 〈“(𝑃‘0)”〉)‘(𝑁 − 1)), ((𝑃 ++ 〈“(𝑃‘0)”〉)‘((𝑁 − 1) + 1))} ∈
(Edg‘𝐺))) |
95 | 90, 94 | ralsn 4618 |
. . . . . . 7
⊢
(∀𝑖 ∈
{(𝑁 − 1)} {((𝑃 ++ 〈“(𝑃‘0)”〉)‘𝑖), ((𝑃 ++ 〈“(𝑃‘0)”〉)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {((𝑃 ++ 〈“(𝑃‘0)”〉)‘(𝑁 − 1)), ((𝑃 ++ 〈“(𝑃‘0)”〉)‘((𝑁 − 1) + 1))} ∈
(Edg‘𝐺)) |
96 | 89, 95 | sylibr 233 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) ∧ (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺))) → ∀𝑖 ∈ {(𝑁 − 1)} {((𝑃 ++ 〈“(𝑃‘0)”〉)‘𝑖), ((𝑃 ++ 〈“(𝑃‘0)”〉)‘(𝑖 + 1))} ∈ (Edg‘𝐺)) |
97 | 74, 75, 75 | addsubd 11362 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ → ((𝑁 + 1) − 1) = ((𝑁 − 1) +
1)) |
98 | 97 | oveq2d 7300 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ →
(0..^((𝑁 + 1) − 1)) =
(0..^((𝑁 − 1) +
1))) |
99 | | nnm1nn0 12283 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈
ℕ0) |
100 | | elnn0uz 12632 |
. . . . . . . . . . . 12
⊢ ((𝑁 − 1) ∈
ℕ0 ↔ (𝑁 − 1) ∈
(ℤ≥‘0)) |
101 | 99, 100 | sylib 217 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈
(ℤ≥‘0)) |
102 | | fzosplitsn 13504 |
. . . . . . . . . . 11
⊢ ((𝑁 − 1) ∈
(ℤ≥‘0) → (0..^((𝑁 − 1) + 1)) = ((0..^(𝑁 − 1)) ∪ {(𝑁 − 1)})) |
103 | 101, 102 | syl 17 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ →
(0..^((𝑁 − 1) + 1)) =
((0..^(𝑁 − 1)) ∪
{(𝑁 −
1)})) |
104 | 98, 103 | eqtrd 2779 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ →
(0..^((𝑁 + 1) − 1)) =
((0..^(𝑁 − 1)) ∪
{(𝑁 −
1)})) |
105 | 104 | raleqdv 3349 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ →
(∀𝑖 ∈
(0..^((𝑁 + 1) −
1)){((𝑃 ++
〈“(𝑃‘0)”〉)‘𝑖), ((𝑃 ++ 〈“(𝑃‘0)”〉)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ ((0..^(𝑁 − 1)) ∪ {(𝑁 − 1)}){((𝑃 ++ 〈“(𝑃‘0)”〉)‘𝑖), ((𝑃 ++ 〈“(𝑃‘0)”〉)‘(𝑖 + 1))} ∈ (Edg‘𝐺))) |
106 | | ralunb 4126 |
. . . . . . . 8
⊢
(∀𝑖 ∈
((0..^(𝑁 − 1)) ∪
{(𝑁 − 1)}){((𝑃 ++ 〈“(𝑃‘0)”〉)‘𝑖), ((𝑃 ++ 〈“(𝑃‘0)”〉)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ (∀𝑖 ∈ (0..^(𝑁 − 1)){((𝑃 ++ 〈“(𝑃‘0)”〉)‘𝑖), ((𝑃 ++ 〈“(𝑃‘0)”〉)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ ∀𝑖 ∈ {(𝑁 − 1)} {((𝑃 ++ 〈“(𝑃‘0)”〉)‘𝑖), ((𝑃 ++ 〈“(𝑃‘0)”〉)‘(𝑖 + 1))} ∈ (Edg‘𝐺))) |
107 | 105, 106 | bitrdi 287 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ →
(∀𝑖 ∈
(0..^((𝑁 + 1) −
1)){((𝑃 ++
〈“(𝑃‘0)”〉)‘𝑖), ((𝑃 ++ 〈“(𝑃‘0)”〉)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ (∀𝑖 ∈ (0..^(𝑁 − 1)){((𝑃 ++ 〈“(𝑃‘0)”〉)‘𝑖), ((𝑃 ++ 〈“(𝑃‘0)”〉)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ ∀𝑖 ∈ {(𝑁 − 1)} {((𝑃 ++ 〈“(𝑃‘0)”〉)‘𝑖), ((𝑃 ++ 〈“(𝑃‘0)”〉)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))) |
108 | 107 | 3ad2ant1 1132 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) ∧ (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺))) → (∀𝑖 ∈ (0..^((𝑁 + 1) − 1)){((𝑃 ++ 〈“(𝑃‘0)”〉)‘𝑖), ((𝑃 ++ 〈“(𝑃‘0)”〉)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ (∀𝑖 ∈ (0..^(𝑁 − 1)){((𝑃 ++ 〈“(𝑃‘0)”〉)‘𝑖), ((𝑃 ++ 〈“(𝑃‘0)”〉)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ ∀𝑖 ∈ {(𝑁 − 1)} {((𝑃 ++ 〈“(𝑃‘0)”〉)‘𝑖), ((𝑃 ++ 〈“(𝑃‘0)”〉)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))) |
109 | 59, 96, 108 | mpbir2and 710 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) ∧ (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺))) → ∀𝑖 ∈ (0..^((𝑁 + 1) − 1)){((𝑃 ++ 〈“(𝑃‘0)”〉)‘𝑖), ((𝑃 ++ 〈“(𝑃‘0)”〉)‘(𝑖 + 1))} ∈ (Edg‘𝐺)) |
110 | | ccatlen 14287 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈ Word (Vtx‘𝐺) ∧ 〈“(𝑃‘0)”〉 ∈
Word (Vtx‘𝐺)) →
(♯‘(𝑃 ++
〈“(𝑃‘0)”〉)) =
((♯‘𝑃) +
(♯‘〈“(𝑃‘0)”〉))) |
111 | 4, 6, 110 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → (♯‘(𝑃 ++ 〈“(𝑃‘0)”〉)) =
((♯‘𝑃) +
(♯‘〈“(𝑃‘0)”〉))) |
112 | | id 22 |
. . . . . . . . . . . 12
⊢
((♯‘𝑃) =
𝑁 →
(♯‘𝑃) = 𝑁) |
113 | | s1len 14320 |
. . . . . . . . . . . . 13
⊢
(♯‘〈“(𝑃‘0)”〉) = 1 |
114 | 113 | a1i 11 |
. . . . . . . . . . . 12
⊢
((♯‘𝑃) =
𝑁 →
(♯‘〈“(𝑃‘0)”〉) =
1) |
115 | 112, 114 | oveq12d 7302 |
. . . . . . . . . . 11
⊢
((♯‘𝑃) =
𝑁 →
((♯‘𝑃) +
(♯‘〈“(𝑃‘0)”〉)) = (𝑁 + 1)) |
116 | 115 | ad2antll 726 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → ((♯‘𝑃) + (♯‘〈“(𝑃‘0)”〉)) =
(𝑁 + 1)) |
117 | 111, 116 | eqtrd 2779 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → (♯‘(𝑃 ++ 〈“(𝑃‘0)”〉)) = (𝑁 + 1)) |
118 | 117 | 3adant3 1131 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) ∧ (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺))) → (♯‘(𝑃 ++ 〈“(𝑃‘0)”〉)) =
(𝑁 + 1)) |
119 | 118 | oveq1d 7299 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) ∧ (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺))) →
((♯‘(𝑃 ++
〈“(𝑃‘0)”〉)) − 1) =
((𝑁 + 1) −
1)) |
120 | 119 | oveq2d 7300 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) ∧ (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺))) →
(0..^((♯‘(𝑃 ++
〈“(𝑃‘0)”〉)) − 1)) =
(0..^((𝑁 + 1) −
1))) |
121 | 120 | raleqdv 3349 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) ∧ (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺))) → (∀𝑖 ∈
(0..^((♯‘(𝑃 ++
〈“(𝑃‘0)”〉)) − 1)){((𝑃 ++ 〈“(𝑃‘0)”〉)‘𝑖), ((𝑃 ++ 〈“(𝑃‘0)”〉)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ (0..^((𝑁 + 1) − 1)){((𝑃 ++ 〈“(𝑃‘0)”〉)‘𝑖), ((𝑃 ++ 〈“(𝑃‘0)”〉)‘(𝑖 + 1))} ∈ (Edg‘𝐺))) |
122 | 109, 121 | mpbird 256 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) ∧ (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺))) → ∀𝑖 ∈
(0..^((♯‘(𝑃 ++
〈“(𝑃‘0)”〉)) − 1)){((𝑃 ++ 〈“(𝑃‘0)”〉)‘𝑖), ((𝑃 ++ 〈“(𝑃‘0)”〉)‘(𝑖 + 1))} ∈ (Edg‘𝐺)) |
123 | 3, 9, 122 | 3jca 1127 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) ∧ (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺))) → ((𝑃 ++ 〈“(𝑃‘0)”〉) ≠ ∅ ∧
(𝑃 ++ 〈“(𝑃‘0)”〉) ∈
Word (Vtx‘𝐺) ∧
∀𝑖 ∈
(0..^((♯‘(𝑃 ++
〈“(𝑃‘0)”〉)) − 1)){((𝑃 ++ 〈“(𝑃‘0)”〉)‘𝑖), ((𝑃 ++ 〈“(𝑃‘0)”〉)‘(𝑖 + 1))} ∈ (Edg‘𝐺))) |
124 | | nnnn0 12249 |
. . . . . 6
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℕ0) |
125 | | iswwlksn 28212 |
. . . . . 6
⊢ (𝑁 ∈ ℕ0
→ ((𝑃 ++
〈“(𝑃‘0)”〉) ∈ (𝑁 WWalksN 𝐺) ↔ ((𝑃 ++ 〈“(𝑃‘0)”〉) ∈
(WWalks‘𝐺) ∧
(♯‘(𝑃 ++
〈“(𝑃‘0)”〉)) = (𝑁 + 1)))) |
126 | 124, 125 | syl 17 |
. . . . 5
⊢ (𝑁 ∈ ℕ → ((𝑃 ++ 〈“(𝑃‘0)”〉) ∈
(𝑁 WWalksN 𝐺) ↔ ((𝑃 ++ 〈“(𝑃‘0)”〉) ∈
(WWalks‘𝐺) ∧
(♯‘(𝑃 ++
〈“(𝑃‘0)”〉)) = (𝑁 + 1)))) |
127 | | eqid 2739 |
. . . . . . 7
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) |
128 | | eqid 2739 |
. . . . . . 7
⊢
(Edg‘𝐺) =
(Edg‘𝐺) |
129 | 127, 128 | iswwlks 28210 |
. . . . . 6
⊢ ((𝑃 ++ 〈“(𝑃‘0)”〉) ∈
(WWalks‘𝐺) ↔
((𝑃 ++ 〈“(𝑃‘0)”〉) ≠
∅ ∧ (𝑃 ++
〈“(𝑃‘0)”〉) ∈ Word
(Vtx‘𝐺) ∧
∀𝑖 ∈
(0..^((♯‘(𝑃 ++
〈“(𝑃‘0)”〉)) − 1)){((𝑃 ++ 〈“(𝑃‘0)”〉)‘𝑖), ((𝑃 ++ 〈“(𝑃‘0)”〉)‘(𝑖 + 1))} ∈ (Edg‘𝐺))) |
130 | 129 | anbi1i 624 |
. . . . 5
⊢ (((𝑃 ++ 〈“(𝑃‘0)”〉) ∈
(WWalks‘𝐺) ∧
(♯‘(𝑃 ++
〈“(𝑃‘0)”〉)) = (𝑁 + 1)) ↔ (((𝑃 ++ 〈“(𝑃‘0)”〉) ≠
∅ ∧ (𝑃 ++
〈“(𝑃‘0)”〉) ∈ Word
(Vtx‘𝐺) ∧
∀𝑖 ∈
(0..^((♯‘(𝑃 ++
〈“(𝑃‘0)”〉)) − 1)){((𝑃 ++ 〈“(𝑃‘0)”〉)‘𝑖), ((𝑃 ++ 〈“(𝑃‘0)”〉)‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘(𝑃 ++ 〈“(𝑃‘0)”〉)) =
(𝑁 + 1))) |
131 | 126, 130 | bitrdi 287 |
. . . 4
⊢ (𝑁 ∈ ℕ → ((𝑃 ++ 〈“(𝑃‘0)”〉) ∈
(𝑁 WWalksN 𝐺) ↔ (((𝑃 ++ 〈“(𝑃‘0)”〉) ≠ ∅ ∧
(𝑃 ++ 〈“(𝑃‘0)”〉) ∈
Word (Vtx‘𝐺) ∧
∀𝑖 ∈
(0..^((♯‘(𝑃 ++
〈“(𝑃‘0)”〉)) − 1)){((𝑃 ++ 〈“(𝑃‘0)”〉)‘𝑖), ((𝑃 ++ 〈“(𝑃‘0)”〉)‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘(𝑃 ++ 〈“(𝑃‘0)”〉)) =
(𝑁 + 1)))) |
132 | 131 | 3ad2ant1 1132 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) ∧ (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺))) → ((𝑃 ++ 〈“(𝑃‘0)”〉) ∈ (𝑁 WWalksN 𝐺) ↔ (((𝑃 ++ 〈“(𝑃‘0)”〉) ≠ ∅ ∧
(𝑃 ++ 〈“(𝑃‘0)”〉) ∈
Word (Vtx‘𝐺) ∧
∀𝑖 ∈
(0..^((♯‘(𝑃 ++
〈“(𝑃‘0)”〉)) − 1)){((𝑃 ++ 〈“(𝑃‘0)”〉)‘𝑖), ((𝑃 ++ 〈“(𝑃‘0)”〉)‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘(𝑃 ++ 〈“(𝑃‘0)”〉)) =
(𝑁 + 1)))) |
133 | 123, 118,
132 | mpbir2and 710 |
. 2
⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) ∧ (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺))) → (𝑃 ++ 〈“(𝑃‘0)”〉) ∈ (𝑁 WWalksN 𝐺)) |
134 | | lswccats1 14353 |
. . . . 5
⊢ ((𝑃 ∈ Word (Vtx‘𝐺) ∧ (𝑃‘0) ∈ (Vtx‘𝐺)) → (lastS‘(𝑃 ++ 〈“(𝑃‘0)”〉)) =
(𝑃‘0)) |
135 | 4, 5, 134 | syl2anc 584 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → (lastS‘(𝑃 ++ 〈“(𝑃‘0)”〉)) = (𝑃‘0)) |
136 | | lbfzo0 13436 |
. . . . . . . 8
⊢ (0 ∈
(0..^𝑁) ↔ 𝑁 ∈
ℕ) |
137 | 136 | biimpri 227 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ → 0 ∈
(0..^𝑁)) |
138 | 39 | eleq2d 2825 |
. . . . . . . 8
⊢
((♯‘𝑃) =
𝑁 → (0 ∈
(0..^(♯‘𝑃))
↔ 0 ∈ (0..^𝑁))) |
139 | 138 | adantl 482 |
. . . . . . 7
⊢ ((𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) → (0 ∈ (0..^(♯‘𝑃)) ↔ 0 ∈ (0..^𝑁))) |
140 | 137, 139 | syl5ibrcom 246 |
. . . . . 6
⊢ (𝑁 ∈ ℕ → ((𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) → 0 ∈ (0..^(♯‘𝑃)))) |
141 | 140 | imp 407 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → 0 ∈ (0..^(♯‘𝑃))) |
142 | | ccatval1 14290 |
. . . . 5
⊢ ((𝑃 ∈ Word (Vtx‘𝐺) ∧ 〈“(𝑃‘0)”〉 ∈
Word (Vtx‘𝐺) ∧ 0
∈ (0..^(♯‘𝑃))) → ((𝑃 ++ 〈“(𝑃‘0)”〉)‘0) = (𝑃‘0)) |
143 | 4, 6, 141, 142 | syl3anc 1370 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → ((𝑃 ++ 〈“(𝑃‘0)”〉)‘0) = (𝑃‘0)) |
144 | 135, 143 | eqtr4d 2782 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → (lastS‘(𝑃 ++ 〈“(𝑃‘0)”〉)) = ((𝑃 ++ 〈“(𝑃‘0)”〉)‘0)) |
145 | 144 | 3adant3 1131 |
. 2
⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) ∧ (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺))) → (lastS‘(𝑃 ++ 〈“(𝑃‘0)”〉)) =
((𝑃 ++ 〈“(𝑃‘0)”〉)‘0)) |
146 | | fveq2 6783 |
. . . 4
⊢ (𝑤 = (𝑃 ++ 〈“(𝑃‘0)”〉) →
(lastS‘𝑤) =
(lastS‘(𝑃 ++
〈“(𝑃‘0)”〉))) |
147 | | fveq1 6782 |
. . . 4
⊢ (𝑤 = (𝑃 ++ 〈“(𝑃‘0)”〉) → (𝑤‘0) = ((𝑃 ++ 〈“(𝑃‘0)”〉)‘0)) |
148 | 146, 147 | eqeq12d 2755 |
. . 3
⊢ (𝑤 = (𝑃 ++ 〈“(𝑃‘0)”〉) →
((lastS‘𝑤) = (𝑤‘0) ↔
(lastS‘(𝑃 ++
〈“(𝑃‘0)”〉)) = ((𝑃 ++ 〈“(𝑃‘0)”〉)‘0))) |
149 | | clwwlkf1o.d |
. . 3
⊢ 𝐷 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑤) = (𝑤‘0)} |
150 | 148, 149 | elrab2 3628 |
. 2
⊢ ((𝑃 ++ 〈“(𝑃‘0)”〉) ∈
𝐷 ↔ ((𝑃 ++ 〈“(𝑃‘0)”〉) ∈
(𝑁 WWalksN 𝐺) ∧ (lastS‘(𝑃 ++ 〈“(𝑃‘0)”〉)) =
((𝑃 ++ 〈“(𝑃‘0)”〉)‘0))) |
151 | 133, 145,
150 | sylanbrc 583 |
1
⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) ∧ (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺))) → (𝑃 ++ 〈“(𝑃‘0)”〉) ∈ 𝐷) |