Proof of Theorem clwwlkel
| Step | Hyp | Ref
| Expression |
| 1 | | ccatws1n0 14655 |
. . . . . 6
⊢ (𝑃 ∈ Word (Vtx‘𝐺) → (𝑃 ++ 〈“(𝑃‘0)”〉) ≠
∅) |
| 2 | 1 | adantr 480 |
. . . . 5
⊢ ((𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) → (𝑃 ++ 〈“(𝑃‘0)”〉) ≠
∅) |
| 3 | 2 | 3ad2ant2 1134 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) ∧ (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺))) → (𝑃 ++ 〈“(𝑃‘0)”〉) ≠
∅) |
| 4 | | simprl 770 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → 𝑃 ∈ Word (Vtx‘𝐺)) |
| 5 | | fstwrdne0 14579 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → (𝑃‘0) ∈ (Vtx‘𝐺)) |
| 6 | 5 | s1cld 14626 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → 〈“(𝑃‘0)”〉 ∈ Word
(Vtx‘𝐺)) |
| 7 | | ccatcl 14597 |
. . . . . 6
⊢ ((𝑃 ∈ Word (Vtx‘𝐺) ∧ 〈“(𝑃‘0)”〉 ∈
Word (Vtx‘𝐺)) →
(𝑃 ++ 〈“(𝑃‘0)”〉) ∈
Word (Vtx‘𝐺)) |
| 8 | 4, 6, 7 | syl2anc 584 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → (𝑃 ++ 〈“(𝑃‘0)”〉) ∈ Word
(Vtx‘𝐺)) |
| 9 | 8 | 3adant3 1132 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) ∧ (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺))) → (𝑃 ++ 〈“(𝑃‘0)”〉) ∈ Word
(Vtx‘𝐺)) |
| 10 | 4 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → 𝑃 ∈ Word (Vtx‘𝐺)) |
| 11 | 6 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → 〈“(𝑃‘0)”〉 ∈
Word (Vtx‘𝐺)) |
| 12 | | elfzonn0 13729 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 ∈ (0..^(𝑁 − 1)) → 𝑖 ∈ ℕ0) |
| 13 | 12 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈ ℕ ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → 𝑖 ∈ ℕ0) |
| 14 | | nnz 12614 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℤ) |
| 15 | 14 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈ ℕ ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → 𝑁 ∈ ℤ) |
| 16 | | elfzo0 13722 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 ∈ (0..^(𝑁 − 1)) ↔ (𝑖 ∈ ℕ0 ∧ (𝑁 − 1) ∈ ℕ ∧
𝑖 < (𝑁 − 1))) |
| 17 | | nn0re 12515 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑖 ∈ ℕ0
→ 𝑖 ∈
ℝ) |
| 18 | 17 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑖 ∈ ℕ0
∧ 𝑁 ∈ ℕ)
→ 𝑖 ∈
ℝ) |
| 19 | | nnre 12252 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℝ) |
| 20 | | peano2rem 11555 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑁 ∈ ℝ → (𝑁 − 1) ∈
ℝ) |
| 21 | 19, 20 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈
ℝ) |
| 22 | 21 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑖 ∈ ℕ0
∧ 𝑁 ∈ ℕ)
→ (𝑁 − 1) ∈
ℝ) |
| 23 | 19 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑖 ∈ ℕ0
∧ 𝑁 ∈ ℕ)
→ 𝑁 ∈
ℝ) |
| 24 | 18, 22, 23 | 3jca 1128 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑖 ∈ ℕ0
∧ 𝑁 ∈ ℕ)
→ (𝑖 ∈ ℝ
∧ (𝑁 − 1) ∈
ℝ ∧ 𝑁 ∈
ℝ)) |
| 25 | 24 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑖 ∈ ℕ0
∧ 𝑁 ∈ ℕ)
∧ 𝑖 < (𝑁 − 1)) → (𝑖 ∈ ℝ ∧ (𝑁 − 1) ∈ ℝ ∧
𝑁 ∈
ℝ)) |
| 26 | 19 | ltm1d 12179 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑁 ∈ ℕ → (𝑁 − 1) < 𝑁) |
| 27 | 26 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑖 ∈ ℕ0
∧ 𝑁 ∈ ℕ)
→ (𝑁 − 1) <
𝑁) |
| 28 | 27 | anim1ci 616 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑖 ∈ ℕ0
∧ 𝑁 ∈ ℕ)
∧ 𝑖 < (𝑁 − 1)) → (𝑖 < (𝑁 − 1) ∧ (𝑁 − 1) < 𝑁)) |
| 29 | | lttr 11316 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑖 ∈ ℝ ∧ (𝑁 − 1) ∈ ℝ ∧
𝑁 ∈ ℝ) →
((𝑖 < (𝑁 − 1) ∧ (𝑁 − 1) < 𝑁) → 𝑖 < 𝑁)) |
| 30 | 25, 28, 29 | sylc 65 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑖 ∈ ℕ0
∧ 𝑁 ∈ ℕ)
∧ 𝑖 < (𝑁 − 1)) → 𝑖 < 𝑁) |
| 31 | 30 | ex 412 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑖 ∈ ℕ0
∧ 𝑁 ∈ ℕ)
→ (𝑖 < (𝑁 − 1) → 𝑖 < 𝑁)) |
| 32 | 31 | impancom 451 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 ∈ ℕ0
∧ 𝑖 < (𝑁 − 1)) → (𝑁 ∈ ℕ → 𝑖 < 𝑁)) |
| 33 | 32 | 3adant2 1131 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑖 ∈ ℕ0
∧ (𝑁 − 1) ∈
ℕ ∧ 𝑖 < (𝑁 − 1)) → (𝑁 ∈ ℕ → 𝑖 < 𝑁)) |
| 34 | 16, 33 | sylbi 217 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 ∈ (0..^(𝑁 − 1)) → (𝑁 ∈ ℕ → 𝑖 < 𝑁)) |
| 35 | 34 | impcom 407 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈ ℕ ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → 𝑖 < 𝑁) |
| 36 | | elfzo0z 13723 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 ∈ (0..^𝑁) ↔ (𝑖 ∈ ℕ0 ∧ 𝑁 ∈ ℤ ∧ 𝑖 < 𝑁)) |
| 37 | 13, 15, 35, 36 | syl3anbrc 1344 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ ℕ ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → 𝑖 ∈ (0..^𝑁)) |
| 38 | 37 | adantlr 715 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → 𝑖 ∈ (0..^𝑁)) |
| 39 | | oveq2 7418 |
. . . . . . . . . . . . . . . . . 18
⊢
((♯‘𝑃) =
𝑁 →
(0..^(♯‘𝑃)) =
(0..^𝑁)) |
| 40 | 39 | eleq2d 2821 |
. . . . . . . . . . . . . . . . 17
⊢
((♯‘𝑃) =
𝑁 → (𝑖 ∈
(0..^(♯‘𝑃))
↔ 𝑖 ∈ (0..^𝑁))) |
| 41 | 40 | ad2antll 729 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → (𝑖 ∈ (0..^(♯‘𝑃)) ↔ 𝑖 ∈ (0..^𝑁))) |
| 42 | 41 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → (𝑖 ∈ (0..^(♯‘𝑃)) ↔ 𝑖 ∈ (0..^𝑁))) |
| 43 | 38, 42 | mpbird 257 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → 𝑖 ∈ (0..^(♯‘𝑃))) |
| 44 | | ccatval1 14600 |
. . . . . . . . . . . . . 14
⊢ ((𝑃 ∈ Word (Vtx‘𝐺) ∧ 〈“(𝑃‘0)”〉 ∈
Word (Vtx‘𝐺) ∧
𝑖 ∈
(0..^(♯‘𝑃)))
→ ((𝑃 ++
〈“(𝑃‘0)”〉)‘𝑖) = (𝑃‘𝑖)) |
| 45 | 10, 11, 43, 44 | syl3anc 1373 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → ((𝑃 ++ 〈“(𝑃‘0)”〉)‘𝑖) = (𝑃‘𝑖)) |
| 46 | | elfzom1p1elfzo 13766 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ ℕ ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → (𝑖 + 1) ∈ (0..^𝑁)) |
| 47 | 46 | adantlr 715 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → (𝑖 + 1) ∈ (0..^𝑁)) |
| 48 | 39 | ad2antll 729 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → (0..^(♯‘𝑃)) = (0..^𝑁)) |
| 49 | 48 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) ∧ 𝑖 ∈ (0..^(𝑁 − 1))) →
(0..^(♯‘𝑃)) =
(0..^𝑁)) |
| 50 | 47, 49 | eleqtrrd 2838 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → (𝑖 + 1) ∈ (0..^(♯‘𝑃))) |
| 51 | | ccatval1 14600 |
. . . . . . . . . . . . . 14
⊢ ((𝑃 ∈ Word (Vtx‘𝐺) ∧ 〈“(𝑃‘0)”〉 ∈
Word (Vtx‘𝐺) ∧
(𝑖 + 1) ∈
(0..^(♯‘𝑃)))
→ ((𝑃 ++
〈“(𝑃‘0)”〉)‘(𝑖 + 1)) = (𝑃‘(𝑖 + 1))) |
| 52 | 10, 11, 50, 51 | syl3anc 1373 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → ((𝑃 ++ 〈“(𝑃‘0)”〉)‘(𝑖 + 1)) = (𝑃‘(𝑖 + 1))) |
| 53 | 45, 52 | preq12d 4722 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → {((𝑃 ++ 〈“(𝑃‘0)”〉)‘𝑖), ((𝑃 ++ 〈“(𝑃‘0)”〉)‘(𝑖 + 1))} = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) |
| 54 | 53 | eleq1d 2820 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → ({((𝑃 ++ 〈“(𝑃‘0)”〉)‘𝑖), ((𝑃 ++ 〈“(𝑃‘0)”〉)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) |
| 55 | 54 | ralbidva 3162 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → (∀𝑖 ∈ (0..^(𝑁 − 1)){((𝑃 ++ 〈“(𝑃‘0)”〉)‘𝑖), ((𝑃 ++ 〈“(𝑃‘0)”〉)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) |
| 56 | 55 | biimprcd 250 |
. . . . . . . . 9
⊢
(∀𝑖 ∈
(0..^(𝑁 − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → ∀𝑖 ∈ (0..^(𝑁 − 1)){((𝑃 ++ 〈“(𝑃‘0)”〉)‘𝑖), ((𝑃 ++ 〈“(𝑃‘0)”〉)‘(𝑖 + 1))} ∈ (Edg‘𝐺))) |
| 57 | 56 | adantr 480 |
. . . . . . . 8
⊢
((∀𝑖 ∈
(0..^(𝑁 − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺)) → ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → ∀𝑖 ∈ (0..^(𝑁 − 1)){((𝑃 ++ 〈“(𝑃‘0)”〉)‘𝑖), ((𝑃 ++ 〈“(𝑃‘0)”〉)‘(𝑖 + 1))} ∈ (Edg‘𝐺))) |
| 58 | 57 | expdcom 414 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ → ((𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) → ((∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺)) → ∀𝑖 ∈ (0..^(𝑁 − 1)){((𝑃 ++ 〈“(𝑃‘0)”〉)‘𝑖), ((𝑃 ++ 〈“(𝑃‘0)”〉)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))) |
| 59 | 58 | 3imp 1110 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) ∧ (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺))) → ∀𝑖 ∈ (0..^(𝑁 − 1)){((𝑃 ++ 〈“(𝑃‘0)”〉)‘𝑖), ((𝑃 ++ 〈“(𝑃‘0)”〉)‘(𝑖 + 1))} ∈ (Edg‘𝐺)) |
| 60 | | fzo0end 13779 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈ (0..^𝑁)) |
| 61 | 39 | eleq2d 2821 |
. . . . . . . . . . . . . . . . . 18
⊢
((♯‘𝑃) =
𝑁 → ((𝑁 − 1) ∈
(0..^(♯‘𝑃))
↔ (𝑁 − 1) ∈
(0..^𝑁))) |
| 62 | 61 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) → ((𝑁 − 1) ∈ (0..^(♯‘𝑃)) ↔ (𝑁 − 1) ∈ (0..^𝑁))) |
| 63 | 60, 62 | syl5ibrcom 247 |
. . . . . . . . . . . . . . . 16
⊢ (𝑁 ∈ ℕ → ((𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) → (𝑁 − 1) ∈ (0..^(♯‘𝑃)))) |
| 64 | 63 | imp 406 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → (𝑁 − 1) ∈ (0..^(♯‘𝑃))) |
| 65 | | ccatval1 14600 |
. . . . . . . . . . . . . . 15
⊢ ((𝑃 ∈ Word (Vtx‘𝐺) ∧ 〈“(𝑃‘0)”〉 ∈
Word (Vtx‘𝐺) ∧
(𝑁 − 1) ∈
(0..^(♯‘𝑃)))
→ ((𝑃 ++
〈“(𝑃‘0)”〉)‘(𝑁 − 1)) = (𝑃‘(𝑁 − 1))) |
| 66 | 4, 6, 64, 65 | syl3anc 1373 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → ((𝑃 ++ 〈“(𝑃‘0)”〉)‘(𝑁 − 1)) = (𝑃‘(𝑁 − 1))) |
| 67 | | lsw 14587 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑃 ∈ Word (Vtx‘𝐺) → (lastS‘𝑃) = (𝑃‘((♯‘𝑃) − 1))) |
| 68 | 67 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) → (lastS‘𝑃) = (𝑃‘((♯‘𝑃) − 1))) |
| 69 | | fvoveq1 7433 |
. . . . . . . . . . . . . . . . 17
⊢
((♯‘𝑃) =
𝑁 → (𝑃‘((♯‘𝑃) − 1)) = (𝑃‘(𝑁 − 1))) |
| 70 | 69 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) → (𝑃‘((♯‘𝑃) − 1)) = (𝑃‘(𝑁 − 1))) |
| 71 | 68, 70 | eqtr2d 2772 |
. . . . . . . . . . . . . . 15
⊢ ((𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) → (𝑃‘(𝑁 − 1)) = (lastS‘𝑃)) |
| 72 | 71 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → (𝑃‘(𝑁 − 1)) = (lastS‘𝑃)) |
| 73 | 66, 72 | eqtr2d 2772 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → (lastS‘𝑃) = ((𝑃 ++ 〈“(𝑃‘0)”〉)‘(𝑁 − 1))) |
| 74 | | nncn 12253 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℂ) |
| 75 | | 1cnd 11235 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑁 ∈ ℕ → 1 ∈
ℂ) |
| 76 | 74, 75 | npcand 11603 |
. . . . . . . . . . . . . . . 16
⊢ (𝑁 ∈ ℕ → ((𝑁 − 1) + 1) = 𝑁) |
| 77 | 76 | fveq2d 6885 |
. . . . . . . . . . . . . . 15
⊢ (𝑁 ∈ ℕ → ((𝑃 ++ 〈“(𝑃‘0)”〉)‘((𝑁 − 1) + 1)) = ((𝑃 ++ 〈“(𝑃‘0)”〉)‘𝑁)) |
| 78 | 77 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → ((𝑃 ++ 〈“(𝑃‘0)”〉)‘((𝑁 − 1) + 1)) = ((𝑃 ++ 〈“(𝑃‘0)”〉)‘𝑁)) |
| 79 | | fveq2 6881 |
. . . . . . . . . . . . . . 15
⊢
((♯‘𝑃) =
𝑁 → ((𝑃 ++ 〈“(𝑃‘0)”〉)‘(♯‘𝑃)) = ((𝑃 ++ 〈“(𝑃‘0)”〉)‘𝑁)) |
| 80 | 79 | ad2antll 729 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → ((𝑃 ++ 〈“(𝑃‘0)”〉)‘(♯‘𝑃)) = ((𝑃 ++ 〈“(𝑃‘0)”〉)‘𝑁)) |
| 81 | | ccatws1ls 14656 |
. . . . . . . . . . . . . . 15
⊢ ((𝑃 ∈ Word (Vtx‘𝐺) ∧ (𝑃‘0) ∈ (Vtx‘𝐺)) → ((𝑃 ++ 〈“(𝑃‘0)”〉)‘(♯‘𝑃)) = (𝑃‘0)) |
| 82 | 4, 5, 81 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → ((𝑃 ++ 〈“(𝑃‘0)”〉)‘(♯‘𝑃)) = (𝑃‘0)) |
| 83 | 78, 80, 82 | 3eqtr2rd 2778 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → (𝑃‘0) = ((𝑃 ++ 〈“(𝑃‘0)”〉)‘((𝑁 − 1) +
1))) |
| 84 | 73, 83 | preq12d 4722 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → {(lastS‘𝑃), (𝑃‘0)} = {((𝑃 ++ 〈“(𝑃‘0)”〉)‘(𝑁 − 1)), ((𝑃 ++ 〈“(𝑃‘0)”〉)‘((𝑁 − 1) +
1))}) |
| 85 | 84 | eleq1d 2820 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → ({(lastS‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺) ↔ {((𝑃 ++ 〈“(𝑃‘0)”〉)‘(𝑁 − 1)), ((𝑃 ++ 〈“(𝑃‘0)”〉)‘((𝑁 − 1) + 1))} ∈
(Edg‘𝐺))) |
| 86 | 85 | biimpcd 249 |
. . . . . . . . . 10
⊢
({(lastS‘𝑃),
(𝑃‘0)} ∈
(Edg‘𝐺) →
((𝑁 ∈ ℕ ∧
(𝑃 ∈ Word
(Vtx‘𝐺) ∧
(♯‘𝑃) = 𝑁)) → {((𝑃 ++ 〈“(𝑃‘0)”〉)‘(𝑁 − 1)), ((𝑃 ++ 〈“(𝑃‘0)”〉)‘((𝑁 − 1) + 1))} ∈
(Edg‘𝐺))) |
| 87 | 86 | adantl 481 |
. . . . . . . . 9
⊢
((∀𝑖 ∈
(0..^(𝑁 − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺)) → ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → {((𝑃 ++ 〈“(𝑃‘0)”〉)‘(𝑁 − 1)), ((𝑃 ++ 〈“(𝑃‘0)”〉)‘((𝑁 − 1) + 1))} ∈
(Edg‘𝐺))) |
| 88 | 87 | expdcom 414 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ → ((𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) → ((∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺)) → {((𝑃 ++ 〈“(𝑃‘0)”〉)‘(𝑁 − 1)), ((𝑃 ++ 〈“(𝑃‘0)”〉)‘((𝑁 − 1) + 1))} ∈
(Edg‘𝐺)))) |
| 89 | 88 | 3imp 1110 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) ∧ (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺))) → {((𝑃 ++ 〈“(𝑃‘0)”〉)‘(𝑁 − 1)), ((𝑃 ++ 〈“(𝑃‘0)”〉)‘((𝑁 − 1) + 1))} ∈
(Edg‘𝐺)) |
| 90 | | ovex 7443 |
. . . . . . . 8
⊢ (𝑁 − 1) ∈
V |
| 91 | | fveq2 6881 |
. . . . . . . . . 10
⊢ (𝑖 = (𝑁 − 1) → ((𝑃 ++ 〈“(𝑃‘0)”〉)‘𝑖) = ((𝑃 ++ 〈“(𝑃‘0)”〉)‘(𝑁 − 1))) |
| 92 | | fvoveq1 7433 |
. . . . . . . . . 10
⊢ (𝑖 = (𝑁 − 1) → ((𝑃 ++ 〈“(𝑃‘0)”〉)‘(𝑖 + 1)) = ((𝑃 ++ 〈“(𝑃‘0)”〉)‘((𝑁 − 1) +
1))) |
| 93 | 91, 92 | preq12d 4722 |
. . . . . . . . 9
⊢ (𝑖 = (𝑁 − 1) → {((𝑃 ++ 〈“(𝑃‘0)”〉)‘𝑖), ((𝑃 ++ 〈“(𝑃‘0)”〉)‘(𝑖 + 1))} = {((𝑃 ++ 〈“(𝑃‘0)”〉)‘(𝑁 − 1)), ((𝑃 ++ 〈“(𝑃‘0)”〉)‘((𝑁 − 1) +
1))}) |
| 94 | 93 | eleq1d 2820 |
. . . . . . . 8
⊢ (𝑖 = (𝑁 − 1) → ({((𝑃 ++ 〈“(𝑃‘0)”〉)‘𝑖), ((𝑃 ++ 〈“(𝑃‘0)”〉)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {((𝑃 ++ 〈“(𝑃‘0)”〉)‘(𝑁 − 1)), ((𝑃 ++ 〈“(𝑃‘0)”〉)‘((𝑁 − 1) + 1))} ∈
(Edg‘𝐺))) |
| 95 | 90, 94 | ralsn 4662 |
. . . . . . 7
⊢
(∀𝑖 ∈
{(𝑁 − 1)} {((𝑃 ++ 〈“(𝑃‘0)”〉)‘𝑖), ((𝑃 ++ 〈“(𝑃‘0)”〉)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {((𝑃 ++ 〈“(𝑃‘0)”〉)‘(𝑁 − 1)), ((𝑃 ++ 〈“(𝑃‘0)”〉)‘((𝑁 − 1) + 1))} ∈
(Edg‘𝐺)) |
| 96 | 89, 95 | sylibr 234 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) ∧ (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺))) → ∀𝑖 ∈ {(𝑁 − 1)} {((𝑃 ++ 〈“(𝑃‘0)”〉)‘𝑖), ((𝑃 ++ 〈“(𝑃‘0)”〉)‘(𝑖 + 1))} ∈ (Edg‘𝐺)) |
| 97 | 74, 75, 75 | addsubd 11620 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ → ((𝑁 + 1) − 1) = ((𝑁 − 1) +
1)) |
| 98 | 97 | oveq2d 7426 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ →
(0..^((𝑁 + 1) − 1)) =
(0..^((𝑁 − 1) +
1))) |
| 99 | | nnm1nn0 12547 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈
ℕ0) |
| 100 | | elnn0uz 12902 |
. . . . . . . . . . . 12
⊢ ((𝑁 − 1) ∈
ℕ0 ↔ (𝑁 − 1) ∈
(ℤ≥‘0)) |
| 101 | 99, 100 | sylib 218 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈
(ℤ≥‘0)) |
| 102 | | fzosplitsn 13796 |
. . . . . . . . . . 11
⊢ ((𝑁 − 1) ∈
(ℤ≥‘0) → (0..^((𝑁 − 1) + 1)) = ((0..^(𝑁 − 1)) ∪ {(𝑁 − 1)})) |
| 103 | 101, 102 | syl 17 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ →
(0..^((𝑁 − 1) + 1)) =
((0..^(𝑁 − 1)) ∪
{(𝑁 −
1)})) |
| 104 | 98, 103 | eqtrd 2771 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ →
(0..^((𝑁 + 1) − 1)) =
((0..^(𝑁 − 1)) ∪
{(𝑁 −
1)})) |
| 105 | 104 | raleqdv 3309 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ →
(∀𝑖 ∈
(0..^((𝑁 + 1) −
1)){((𝑃 ++
〈“(𝑃‘0)”〉)‘𝑖), ((𝑃 ++ 〈“(𝑃‘0)”〉)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ ((0..^(𝑁 − 1)) ∪ {(𝑁 − 1)}){((𝑃 ++ 〈“(𝑃‘0)”〉)‘𝑖), ((𝑃 ++ 〈“(𝑃‘0)”〉)‘(𝑖 + 1))} ∈ (Edg‘𝐺))) |
| 106 | | ralunb 4177 |
. . . . . . . 8
⊢
(∀𝑖 ∈
((0..^(𝑁 − 1)) ∪
{(𝑁 − 1)}){((𝑃 ++ 〈“(𝑃‘0)”〉)‘𝑖), ((𝑃 ++ 〈“(𝑃‘0)”〉)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ (∀𝑖 ∈ (0..^(𝑁 − 1)){((𝑃 ++ 〈“(𝑃‘0)”〉)‘𝑖), ((𝑃 ++ 〈“(𝑃‘0)”〉)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ ∀𝑖 ∈ {(𝑁 − 1)} {((𝑃 ++ 〈“(𝑃‘0)”〉)‘𝑖), ((𝑃 ++ 〈“(𝑃‘0)”〉)‘(𝑖 + 1))} ∈ (Edg‘𝐺))) |
| 107 | 105, 106 | bitrdi 287 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ →
(∀𝑖 ∈
(0..^((𝑁 + 1) −
1)){((𝑃 ++
〈“(𝑃‘0)”〉)‘𝑖), ((𝑃 ++ 〈“(𝑃‘0)”〉)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ (∀𝑖 ∈ (0..^(𝑁 − 1)){((𝑃 ++ 〈“(𝑃‘0)”〉)‘𝑖), ((𝑃 ++ 〈“(𝑃‘0)”〉)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ ∀𝑖 ∈ {(𝑁 − 1)} {((𝑃 ++ 〈“(𝑃‘0)”〉)‘𝑖), ((𝑃 ++ 〈“(𝑃‘0)”〉)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))) |
| 108 | 107 | 3ad2ant1 1133 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) ∧ (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺))) → (∀𝑖 ∈ (0..^((𝑁 + 1) − 1)){((𝑃 ++ 〈“(𝑃‘0)”〉)‘𝑖), ((𝑃 ++ 〈“(𝑃‘0)”〉)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ (∀𝑖 ∈ (0..^(𝑁 − 1)){((𝑃 ++ 〈“(𝑃‘0)”〉)‘𝑖), ((𝑃 ++ 〈“(𝑃‘0)”〉)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ ∀𝑖 ∈ {(𝑁 − 1)} {((𝑃 ++ 〈“(𝑃‘0)”〉)‘𝑖), ((𝑃 ++ 〈“(𝑃‘0)”〉)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))) |
| 109 | 59, 96, 108 | mpbir2and 713 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) ∧ (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺))) → ∀𝑖 ∈ (0..^((𝑁 + 1) − 1)){((𝑃 ++ 〈“(𝑃‘0)”〉)‘𝑖), ((𝑃 ++ 〈“(𝑃‘0)”〉)‘(𝑖 + 1))} ∈ (Edg‘𝐺)) |
| 110 | | ccatlen 14598 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈ Word (Vtx‘𝐺) ∧ 〈“(𝑃‘0)”〉 ∈
Word (Vtx‘𝐺)) →
(♯‘(𝑃 ++
〈“(𝑃‘0)”〉)) =
((♯‘𝑃) +
(♯‘〈“(𝑃‘0)”〉))) |
| 111 | 4, 6, 110 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → (♯‘(𝑃 ++ 〈“(𝑃‘0)”〉)) =
((♯‘𝑃) +
(♯‘〈“(𝑃‘0)”〉))) |
| 112 | | id 22 |
. . . . . . . . . . . 12
⊢
((♯‘𝑃) =
𝑁 →
(♯‘𝑃) = 𝑁) |
| 113 | | s1len 14629 |
. . . . . . . . . . . . 13
⊢
(♯‘〈“(𝑃‘0)”〉) = 1 |
| 114 | 113 | a1i 11 |
. . . . . . . . . . . 12
⊢
((♯‘𝑃) =
𝑁 →
(♯‘〈“(𝑃‘0)”〉) =
1) |
| 115 | 112, 114 | oveq12d 7428 |
. . . . . . . . . . 11
⊢
((♯‘𝑃) =
𝑁 →
((♯‘𝑃) +
(♯‘〈“(𝑃‘0)”〉)) = (𝑁 + 1)) |
| 116 | 115 | ad2antll 729 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → ((♯‘𝑃) + (♯‘〈“(𝑃‘0)”〉)) =
(𝑁 + 1)) |
| 117 | 111, 116 | eqtrd 2771 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → (♯‘(𝑃 ++ 〈“(𝑃‘0)”〉)) = (𝑁 + 1)) |
| 118 | 117 | 3adant3 1132 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) ∧ (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺))) → (♯‘(𝑃 ++ 〈“(𝑃‘0)”〉)) =
(𝑁 + 1)) |
| 119 | 118 | oveq1d 7425 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) ∧ (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺))) →
((♯‘(𝑃 ++
〈“(𝑃‘0)”〉)) − 1) =
((𝑁 + 1) −
1)) |
| 120 | 119 | oveq2d 7426 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) ∧ (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺))) →
(0..^((♯‘(𝑃 ++
〈“(𝑃‘0)”〉)) − 1)) =
(0..^((𝑁 + 1) −
1))) |
| 121 | 120 | raleqdv 3309 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) ∧ (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺))) → (∀𝑖 ∈
(0..^((♯‘(𝑃 ++
〈“(𝑃‘0)”〉)) − 1)){((𝑃 ++ 〈“(𝑃‘0)”〉)‘𝑖), ((𝑃 ++ 〈“(𝑃‘0)”〉)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ (0..^((𝑁 + 1) − 1)){((𝑃 ++ 〈“(𝑃‘0)”〉)‘𝑖), ((𝑃 ++ 〈“(𝑃‘0)”〉)‘(𝑖 + 1))} ∈ (Edg‘𝐺))) |
| 122 | 109, 121 | mpbird 257 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) ∧ (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺))) → ∀𝑖 ∈
(0..^((♯‘(𝑃 ++
〈“(𝑃‘0)”〉)) − 1)){((𝑃 ++ 〈“(𝑃‘0)”〉)‘𝑖), ((𝑃 ++ 〈“(𝑃‘0)”〉)‘(𝑖 + 1))} ∈ (Edg‘𝐺)) |
| 123 | 3, 9, 122 | 3jca 1128 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) ∧ (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺))) → ((𝑃 ++ 〈“(𝑃‘0)”〉) ≠ ∅ ∧
(𝑃 ++ 〈“(𝑃‘0)”〉) ∈
Word (Vtx‘𝐺) ∧
∀𝑖 ∈
(0..^((♯‘(𝑃 ++
〈“(𝑃‘0)”〉)) − 1)){((𝑃 ++ 〈“(𝑃‘0)”〉)‘𝑖), ((𝑃 ++ 〈“(𝑃‘0)”〉)‘(𝑖 + 1))} ∈ (Edg‘𝐺))) |
| 124 | | nnnn0 12513 |
. . . . . 6
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℕ0) |
| 125 | | iswwlksn 29825 |
. . . . . 6
⊢ (𝑁 ∈ ℕ0
→ ((𝑃 ++
〈“(𝑃‘0)”〉) ∈ (𝑁 WWalksN 𝐺) ↔ ((𝑃 ++ 〈“(𝑃‘0)”〉) ∈
(WWalks‘𝐺) ∧
(♯‘(𝑃 ++
〈“(𝑃‘0)”〉)) = (𝑁 + 1)))) |
| 126 | 124, 125 | syl 17 |
. . . . 5
⊢ (𝑁 ∈ ℕ → ((𝑃 ++ 〈“(𝑃‘0)”〉) ∈
(𝑁 WWalksN 𝐺) ↔ ((𝑃 ++ 〈“(𝑃‘0)”〉) ∈
(WWalks‘𝐺) ∧
(♯‘(𝑃 ++
〈“(𝑃‘0)”〉)) = (𝑁 + 1)))) |
| 127 | | eqid 2736 |
. . . . . . 7
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) |
| 128 | | eqid 2736 |
. . . . . . 7
⊢
(Edg‘𝐺) =
(Edg‘𝐺) |
| 129 | 127, 128 | iswwlks 29823 |
. . . . . 6
⊢ ((𝑃 ++ 〈“(𝑃‘0)”〉) ∈
(WWalks‘𝐺) ↔
((𝑃 ++ 〈“(𝑃‘0)”〉) ≠
∅ ∧ (𝑃 ++
〈“(𝑃‘0)”〉) ∈ Word
(Vtx‘𝐺) ∧
∀𝑖 ∈
(0..^((♯‘(𝑃 ++
〈“(𝑃‘0)”〉)) − 1)){((𝑃 ++ 〈“(𝑃‘0)”〉)‘𝑖), ((𝑃 ++ 〈“(𝑃‘0)”〉)‘(𝑖 + 1))} ∈ (Edg‘𝐺))) |
| 130 | 129 | anbi1i 624 |
. . . . 5
⊢ (((𝑃 ++ 〈“(𝑃‘0)”〉) ∈
(WWalks‘𝐺) ∧
(♯‘(𝑃 ++
〈“(𝑃‘0)”〉)) = (𝑁 + 1)) ↔ (((𝑃 ++ 〈“(𝑃‘0)”〉) ≠
∅ ∧ (𝑃 ++
〈“(𝑃‘0)”〉) ∈ Word
(Vtx‘𝐺) ∧
∀𝑖 ∈
(0..^((♯‘(𝑃 ++
〈“(𝑃‘0)”〉)) − 1)){((𝑃 ++ 〈“(𝑃‘0)”〉)‘𝑖), ((𝑃 ++ 〈“(𝑃‘0)”〉)‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘(𝑃 ++ 〈“(𝑃‘0)”〉)) =
(𝑁 + 1))) |
| 131 | 126, 130 | bitrdi 287 |
. . . 4
⊢ (𝑁 ∈ ℕ → ((𝑃 ++ 〈“(𝑃‘0)”〉) ∈
(𝑁 WWalksN 𝐺) ↔ (((𝑃 ++ 〈“(𝑃‘0)”〉) ≠ ∅ ∧
(𝑃 ++ 〈“(𝑃‘0)”〉) ∈
Word (Vtx‘𝐺) ∧
∀𝑖 ∈
(0..^((♯‘(𝑃 ++
〈“(𝑃‘0)”〉)) − 1)){((𝑃 ++ 〈“(𝑃‘0)”〉)‘𝑖), ((𝑃 ++ 〈“(𝑃‘0)”〉)‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘(𝑃 ++ 〈“(𝑃‘0)”〉)) =
(𝑁 + 1)))) |
| 132 | 131 | 3ad2ant1 1133 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) ∧ (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺))) → ((𝑃 ++ 〈“(𝑃‘0)”〉) ∈ (𝑁 WWalksN 𝐺) ↔ (((𝑃 ++ 〈“(𝑃‘0)”〉) ≠ ∅ ∧
(𝑃 ++ 〈“(𝑃‘0)”〉) ∈
Word (Vtx‘𝐺) ∧
∀𝑖 ∈
(0..^((♯‘(𝑃 ++
〈“(𝑃‘0)”〉)) − 1)){((𝑃 ++ 〈“(𝑃‘0)”〉)‘𝑖), ((𝑃 ++ 〈“(𝑃‘0)”〉)‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘(𝑃 ++ 〈“(𝑃‘0)”〉)) =
(𝑁 + 1)))) |
| 133 | 123, 118,
132 | mpbir2and 713 |
. 2
⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) ∧ (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺))) → (𝑃 ++ 〈“(𝑃‘0)”〉) ∈ (𝑁 WWalksN 𝐺)) |
| 134 | | lswccats1 14657 |
. . . . 5
⊢ ((𝑃 ∈ Word (Vtx‘𝐺) ∧ (𝑃‘0) ∈ (Vtx‘𝐺)) → (lastS‘(𝑃 ++ 〈“(𝑃‘0)”〉)) =
(𝑃‘0)) |
| 135 | 4, 5, 134 | syl2anc 584 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → (lastS‘(𝑃 ++ 〈“(𝑃‘0)”〉)) = (𝑃‘0)) |
| 136 | | lbfzo0 13721 |
. . . . . . . 8
⊢ (0 ∈
(0..^𝑁) ↔ 𝑁 ∈
ℕ) |
| 137 | 136 | biimpri 228 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ → 0 ∈
(0..^𝑁)) |
| 138 | 39 | eleq2d 2821 |
. . . . . . . 8
⊢
((♯‘𝑃) =
𝑁 → (0 ∈
(0..^(♯‘𝑃))
↔ 0 ∈ (0..^𝑁))) |
| 139 | 138 | adantl 481 |
. . . . . . 7
⊢ ((𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) → (0 ∈ (0..^(♯‘𝑃)) ↔ 0 ∈ (0..^𝑁))) |
| 140 | 137, 139 | syl5ibrcom 247 |
. . . . . 6
⊢ (𝑁 ∈ ℕ → ((𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) → 0 ∈ (0..^(♯‘𝑃)))) |
| 141 | 140 | imp 406 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → 0 ∈ (0..^(♯‘𝑃))) |
| 142 | | ccatval1 14600 |
. . . . 5
⊢ ((𝑃 ∈ Word (Vtx‘𝐺) ∧ 〈“(𝑃‘0)”〉 ∈
Word (Vtx‘𝐺) ∧ 0
∈ (0..^(♯‘𝑃))) → ((𝑃 ++ 〈“(𝑃‘0)”〉)‘0) = (𝑃‘0)) |
| 143 | 4, 6, 141, 142 | syl3anc 1373 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → ((𝑃 ++ 〈“(𝑃‘0)”〉)‘0) = (𝑃‘0)) |
| 144 | 135, 143 | eqtr4d 2774 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → (lastS‘(𝑃 ++ 〈“(𝑃‘0)”〉)) = ((𝑃 ++ 〈“(𝑃‘0)”〉)‘0)) |
| 145 | 144 | 3adant3 1132 |
. 2
⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) ∧ (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺))) → (lastS‘(𝑃 ++ 〈“(𝑃‘0)”〉)) =
((𝑃 ++ 〈“(𝑃‘0)”〉)‘0)) |
| 146 | | fveq2 6881 |
. . . 4
⊢ (𝑤 = (𝑃 ++ 〈“(𝑃‘0)”〉) →
(lastS‘𝑤) =
(lastS‘(𝑃 ++
〈“(𝑃‘0)”〉))) |
| 147 | | fveq1 6880 |
. . . 4
⊢ (𝑤 = (𝑃 ++ 〈“(𝑃‘0)”〉) → (𝑤‘0) = ((𝑃 ++ 〈“(𝑃‘0)”〉)‘0)) |
| 148 | 146, 147 | eqeq12d 2752 |
. . 3
⊢ (𝑤 = (𝑃 ++ 〈“(𝑃‘0)”〉) →
((lastS‘𝑤) = (𝑤‘0) ↔
(lastS‘(𝑃 ++
〈“(𝑃‘0)”〉)) = ((𝑃 ++ 〈“(𝑃‘0)”〉)‘0))) |
| 149 | | clwwlkf1o.d |
. . 3
⊢ 𝐷 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑤) = (𝑤‘0)} |
| 150 | 148, 149 | elrab2 3679 |
. 2
⊢ ((𝑃 ++ 〈“(𝑃‘0)”〉) ∈
𝐷 ↔ ((𝑃 ++ 〈“(𝑃‘0)”〉) ∈
(𝑁 WWalksN 𝐺) ∧ (lastS‘(𝑃 ++ 〈“(𝑃‘0)”〉)) =
((𝑃 ++ 〈“(𝑃‘0)”〉)‘0))) |
| 151 | 133, 145,
150 | sylanbrc 583 |
1
⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) ∧ (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺))) → (𝑃 ++ 〈“(𝑃‘0)”〉) ∈ 𝐷) |