HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  5oalem6 Structured version   Visualization version   GIF version

Theorem 5oalem6 29363
Description: Lemma for orthoarguesian law 5OA. (Contributed by NM, 4-May-2000.) (New usage is discouraged.)
Hypotheses
Ref Expression
5oalem5.1 𝐴S
5oalem5.2 𝐵S
5oalem5.3 𝐶S
5oalem5.4 𝐷S
5oalem5.5 𝐹S
5oalem5.6 𝐺S
5oalem5.7 𝑅S
5oalem5.8 𝑆S
Assertion
Ref Expression
5oalem6 (((((𝑥𝐴𝑦𝐵) ∧ = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝐷) ∧ = (𝑧 + 𝑤))) ∧ (((𝑓𝐹𝑔𝐺) ∧ = (𝑓 + 𝑔)) ∧ ((𝑣𝑅𝑢𝑆) ∧ = (𝑣 + 𝑢)))) → ∈ (𝐵 + (𝐴 ∩ (𝐶 + ((((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ∩ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))))))))))

Proof of Theorem 5oalem6
StepHypRef Expression
1 an4 652 . . . 4 ((((𝑥𝐴𝑦𝐵) ∧ = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝐷) ∧ = (𝑧 + 𝑤))) ↔ (((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ ( = (𝑥 + 𝑦) ∧ = (𝑧 + 𝑤))))
2 an4 652 . . . 4 ((((𝑓𝐹𝑔𝐺) ∧ = (𝑓 + 𝑔)) ∧ ((𝑣𝑅𝑢𝑆) ∧ = (𝑣 + 𝑢))) ↔ (((𝑓𝐹𝑔𝐺) ∧ (𝑣𝑅𝑢𝑆)) ∧ ( = (𝑓 + 𝑔) ∧ = (𝑣 + 𝑢))))
3 eqeq1 2822 . . . . . . . . . . 11 ( = (𝑥 + 𝑦) → ( = (𝑣 + 𝑢) ↔ (𝑥 + 𝑦) = (𝑣 + 𝑢)))
43biimpcd 250 . . . . . . . . . 10 ( = (𝑣 + 𝑢) → ( = (𝑥 + 𝑦) → (𝑥 + 𝑦) = (𝑣 + 𝑢)))
5 eqeq1 2822 . . . . . . . . . . 11 ( = (𝑧 + 𝑤) → ( = (𝑣 + 𝑢) ↔ (𝑧 + 𝑤) = (𝑣 + 𝑢)))
65biimpcd 250 . . . . . . . . . 10 ( = (𝑣 + 𝑢) → ( = (𝑧 + 𝑤) → (𝑧 + 𝑤) = (𝑣 + 𝑢)))
74, 6anim12d 608 . . . . . . . . 9 ( = (𝑣 + 𝑢) → (( = (𝑥 + 𝑦) ∧ = (𝑧 + 𝑤)) → ((𝑥 + 𝑦) = (𝑣 + 𝑢) ∧ (𝑧 + 𝑤) = (𝑣 + 𝑢))))
8 eqeq1 2822 . . . . . . . . . 10 ( = (𝑓 + 𝑔) → ( = (𝑣 + 𝑢) ↔ (𝑓 + 𝑔) = (𝑣 + 𝑢)))
98biimpcd 250 . . . . . . . . 9 ( = (𝑣 + 𝑢) → ( = (𝑓 + 𝑔) → (𝑓 + 𝑔) = (𝑣 + 𝑢)))
107, 9anim12d 608 . . . . . . . 8 ( = (𝑣 + 𝑢) → ((( = (𝑥 + 𝑦) ∧ = (𝑧 + 𝑤)) ∧ = (𝑓 + 𝑔)) → (((𝑥 + 𝑦) = (𝑣 + 𝑢) ∧ (𝑧 + 𝑤) = (𝑣 + 𝑢)) ∧ (𝑓 + 𝑔) = (𝑣 + 𝑢))))
1110expdcom 415 . . . . . . 7 (( = (𝑥 + 𝑦) ∧ = (𝑧 + 𝑤)) → ( = (𝑓 + 𝑔) → ( = (𝑣 + 𝑢) → (((𝑥 + 𝑦) = (𝑣 + 𝑢) ∧ (𝑧 + 𝑤) = (𝑣 + 𝑢)) ∧ (𝑓 + 𝑔) = (𝑣 + 𝑢)))))
1211imp32 419 . . . . . 6 ((( = (𝑥 + 𝑦) ∧ = (𝑧 + 𝑤)) ∧ ( = (𝑓 + 𝑔) ∧ = (𝑣 + 𝑢))) → (((𝑥 + 𝑦) = (𝑣 + 𝑢) ∧ (𝑧 + 𝑤) = (𝑣 + 𝑢)) ∧ (𝑓 + 𝑔) = (𝑣 + 𝑢)))
1312anim2i 616 . . . . 5 (((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ ((𝑓𝐹𝑔𝐺) ∧ (𝑣𝑅𝑢𝑆))) ∧ (( = (𝑥 + 𝑦) ∧ = (𝑧 + 𝑤)) ∧ ( = (𝑓 + 𝑔) ∧ = (𝑣 + 𝑢)))) → ((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ ((𝑓𝐹𝑔𝐺) ∧ (𝑣𝑅𝑢𝑆))) ∧ (((𝑥 + 𝑦) = (𝑣 + 𝑢) ∧ (𝑧 + 𝑤) = (𝑣 + 𝑢)) ∧ (𝑓 + 𝑔) = (𝑣 + 𝑢))))
1413an4s 656 . . . 4 (((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ ( = (𝑥 + 𝑦) ∧ = (𝑧 + 𝑤))) ∧ (((𝑓𝐹𝑔𝐺) ∧ (𝑣𝑅𝑢𝑆)) ∧ ( = (𝑓 + 𝑔) ∧ = (𝑣 + 𝑢)))) → ((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ ((𝑓𝐹𝑔𝐺) ∧ (𝑣𝑅𝑢𝑆))) ∧ (((𝑥 + 𝑦) = (𝑣 + 𝑢) ∧ (𝑧 + 𝑤) = (𝑣 + 𝑢)) ∧ (𝑓 + 𝑔) = (𝑣 + 𝑢))))
151, 2, 14syl2anb 597 . . 3 (((((𝑥𝐴𝑦𝐵) ∧ = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝐷) ∧ = (𝑧 + 𝑤))) ∧ (((𝑓𝐹𝑔𝐺) ∧ = (𝑓 + 𝑔)) ∧ ((𝑣𝑅𝑢𝑆) ∧ = (𝑣 + 𝑢)))) → ((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ ((𝑓𝐹𝑔𝐺) ∧ (𝑣𝑅𝑢𝑆))) ∧ (((𝑥 + 𝑦) = (𝑣 + 𝑢) ∧ (𝑧 + 𝑤) = (𝑣 + 𝑢)) ∧ (𝑓 + 𝑔) = (𝑣 + 𝑢))))
16 5oalem5.1 . . . 4 𝐴S
17 5oalem5.2 . . . 4 𝐵S
18 5oalem5.3 . . . 4 𝐶S
19 5oalem5.4 . . . 4 𝐷S
20 5oalem5.5 . . . 4 𝐹S
21 5oalem5.6 . . . 4 𝐺S
22 5oalem5.7 . . . 4 𝑅S
23 5oalem5.8 . . . 4 𝑆S
2416, 17, 18, 19, 20, 21, 22, 235oalem5 29362 . . 3 (((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ ((𝑓𝐹𝑔𝐺) ∧ (𝑣𝑅𝑢𝑆))) ∧ (((𝑥 + 𝑦) = (𝑣 + 𝑢) ∧ (𝑧 + 𝑤) = (𝑣 + 𝑢)) ∧ (𝑓 + 𝑔) = (𝑣 + 𝑢))) → (𝑥 𝑧) ∈ ((((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ∩ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))))))
2515, 24syl 17 . 2 (((((𝑥𝐴𝑦𝐵) ∧ = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝐷) ∧ = (𝑧 + 𝑤))) ∧ (((𝑓𝐹𝑔𝐺) ∧ = (𝑓 + 𝑔)) ∧ ((𝑣𝑅𝑢𝑆) ∧ = (𝑣 + 𝑢)))) → (𝑥 𝑧) ∈ ((((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ∩ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))))))
2616, 18shscli 29021 . . . . . . . . . 10 (𝐴 + 𝐶) ∈ S
2717, 19shscli 29021 . . . . . . . . . 10 (𝐵 + 𝐷) ∈ S
2826, 27shincli 29066 . . . . . . . . 9 ((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∈ S
2916, 22shscli 29021 . . . . . . . . . . 11 (𝐴 + 𝑅) ∈ S
3017, 23shscli 29021 . . . . . . . . . . 11 (𝐵 + 𝑆) ∈ S
3129, 30shincli 29066 . . . . . . . . . 10 ((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) ∈ S
3218, 22shscli 29021 . . . . . . . . . . 11 (𝐶 + 𝑅) ∈ S
3319, 23shscli 29021 . . . . . . . . . . 11 (𝐷 + 𝑆) ∈ S
3432, 33shincli 29066 . . . . . . . . . 10 ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) ∈ S
3531, 34shscli 29021 . . . . . . . . 9 (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆))) ∈ S
3628, 35shincli 29066 . . . . . . . 8 (((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ∈ S
3716, 20shscli 29021 . . . . . . . . . . 11 (𝐴 + 𝐹) ∈ S
3817, 21shscli 29021 . . . . . . . . . . 11 (𝐵 + 𝐺) ∈ S
3937, 38shincli 29066 . . . . . . . . . 10 ((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∈ S
4020, 22shscli 29021 . . . . . . . . . . . 12 (𝐹 + 𝑅) ∈ S
4121, 23shscli 29021 . . . . . . . . . . . 12 (𝐺 + 𝑆) ∈ S
4240, 41shincli 29066 . . . . . . . . . . 11 ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)) ∈ S
4331, 42shscli 29021 . . . . . . . . . 10 (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))) ∈ S
4439, 43shincli 29066 . . . . . . . . 9 (((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) ∈ S
4518, 20shscli 29021 . . . . . . . . . . 11 (𝐶 + 𝐹) ∈ S
4619, 21shscli 29021 . . . . . . . . . . 11 (𝐷 + 𝐺) ∈ S
4745, 46shincli 29066 . . . . . . . . . 10 ((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∈ S
4834, 42shscli 29021 . . . . . . . . . 10 (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))) ∈ S
4947, 48shincli 29066 . . . . . . . . 9 (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) ∈ S
5044, 49shscli 29021 . . . . . . . 8 ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))))) ∈ S
5136, 50shincli 29066 . . . . . . 7 ((((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ∩ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))))) ∈ S
5216, 17, 18, 515oalem1 29358 . . . . . 6 ((((𝑥𝐴𝑦𝐵) ∧ = (𝑥 + 𝑦)) ∧ (𝑧𝐶 ∧ (𝑥 𝑧) ∈ ((((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ∩ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))))))) → ∈ (𝐵 + (𝐴 ∩ (𝐶 + ((((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ∩ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))))))))))
5352expr 457 . . . . 5 ((((𝑥𝐴𝑦𝐵) ∧ = (𝑥 + 𝑦)) ∧ 𝑧𝐶) → ((𝑥 𝑧) ∈ ((((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ∩ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))))) → ∈ (𝐵 + (𝐴 ∩ (𝐶 + ((((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ∩ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))))))))))
5453adantrr 713 . . . 4 ((((𝑥𝐴𝑦𝐵) ∧ = (𝑥 + 𝑦)) ∧ (𝑧𝐶𝑤𝐷)) → ((𝑥 𝑧) ∈ ((((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ∩ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))))) → ∈ (𝐵 + (𝐴 ∩ (𝐶 + ((((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ∩ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))))))))))
5554adantrr 713 . . 3 ((((𝑥𝐴𝑦𝐵) ∧ = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝐷) ∧ = (𝑧 + 𝑤))) → ((𝑥 𝑧) ∈ ((((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ∩ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))))) → ∈ (𝐵 + (𝐴 ∩ (𝐶 + ((((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ∩ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))))))))))
5655adantr 481 . 2 (((((𝑥𝐴𝑦𝐵) ∧ = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝐷) ∧ = (𝑧 + 𝑤))) ∧ (((𝑓𝐹𝑔𝐺) ∧ = (𝑓 + 𝑔)) ∧ ((𝑣𝑅𝑢𝑆) ∧ = (𝑣 + 𝑢)))) → ((𝑥 𝑧) ∈ ((((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ∩ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))))) → ∈ (𝐵 + (𝐴 ∩ (𝐶 + ((((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ∩ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))))))))))
5725, 56mpd 15 1 (((((𝑥𝐴𝑦𝐵) ∧ = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝐷) ∧ = (𝑧 + 𝑤))) ∧ (((𝑓𝐹𝑔𝐺) ∧ = (𝑓 + 𝑔)) ∧ ((𝑣𝑅𝑢𝑆) ∧ = (𝑣 + 𝑢)))) → ∈ (𝐵 + (𝐴 ∩ (𝐶 + ((((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ∩ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))))))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1528  wcel 2105  cin 3932  (class class class)co 7145   + cva 28624   cmv 28629   S csh 28632   + cph 28635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-hilex 28703  ax-hfvadd 28704  ax-hvcom 28705  ax-hvass 28706  ax-hv0cl 28707  ax-hvaddid 28708  ax-hfvmul 28709  ax-hvmulid 28710  ax-hvmulass 28711  ax-hvdistr1 28712  ax-hvdistr2 28713  ax-hvmul0 28714
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-map 8397  df-en 8498  df-dom 8499  df-sdom 8500  df-pnf 10665  df-mnf 10666  df-ltxr 10668  df-sub 10860  df-neg 10861  df-nn 11627  df-grpo 28197  df-ablo 28249  df-hvsub 28675  df-hlim 28676  df-sh 28911  df-ch 28925  df-shs 29012
This theorem is referenced by:  5oalem7  29364
  Copyright terms: Public domain W3C validator