MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulexp Structured version   Visualization version   GIF version

Theorem mulexp 13750
Description: Nonnegative integer exponentiation of a product. Proposition 10-4.2(c) of [Gleason] p. 135, restricted to nonnegative integer exponents. (Contributed by NM, 13-Feb-2005.)
Assertion
Ref Expression
mulexp ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐴 · 𝐵)↑𝑁) = ((𝐴𝑁) · (𝐵𝑁)))

Proof of Theorem mulexp
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7263 . . . . . 6 (𝑗 = 0 → ((𝐴 · 𝐵)↑𝑗) = ((𝐴 · 𝐵)↑0))
2 oveq2 7263 . . . . . . 7 (𝑗 = 0 → (𝐴𝑗) = (𝐴↑0))
3 oveq2 7263 . . . . . . 7 (𝑗 = 0 → (𝐵𝑗) = (𝐵↑0))
42, 3oveq12d 7273 . . . . . 6 (𝑗 = 0 → ((𝐴𝑗) · (𝐵𝑗)) = ((𝐴↑0) · (𝐵↑0)))
51, 4eqeq12d 2754 . . . . 5 (𝑗 = 0 → (((𝐴 · 𝐵)↑𝑗) = ((𝐴𝑗) · (𝐵𝑗)) ↔ ((𝐴 · 𝐵)↑0) = ((𝐴↑0) · (𝐵↑0))))
65imbi2d 340 . . . 4 (𝑗 = 0 → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵)↑𝑗) = ((𝐴𝑗) · (𝐵𝑗))) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵)↑0) = ((𝐴↑0) · (𝐵↑0)))))
7 oveq2 7263 . . . . . 6 (𝑗 = 𝑘 → ((𝐴 · 𝐵)↑𝑗) = ((𝐴 · 𝐵)↑𝑘))
8 oveq2 7263 . . . . . . 7 (𝑗 = 𝑘 → (𝐴𝑗) = (𝐴𝑘))
9 oveq2 7263 . . . . . . 7 (𝑗 = 𝑘 → (𝐵𝑗) = (𝐵𝑘))
108, 9oveq12d 7273 . . . . . 6 (𝑗 = 𝑘 → ((𝐴𝑗) · (𝐵𝑗)) = ((𝐴𝑘) · (𝐵𝑘)))
117, 10eqeq12d 2754 . . . . 5 (𝑗 = 𝑘 → (((𝐴 · 𝐵)↑𝑗) = ((𝐴𝑗) · (𝐵𝑗)) ↔ ((𝐴 · 𝐵)↑𝑘) = ((𝐴𝑘) · (𝐵𝑘))))
1211imbi2d 340 . . . 4 (𝑗 = 𝑘 → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵)↑𝑗) = ((𝐴𝑗) · (𝐵𝑗))) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵)↑𝑘) = ((𝐴𝑘) · (𝐵𝑘)))))
13 oveq2 7263 . . . . . 6 (𝑗 = (𝑘 + 1) → ((𝐴 · 𝐵)↑𝑗) = ((𝐴 · 𝐵)↑(𝑘 + 1)))
14 oveq2 7263 . . . . . . 7 (𝑗 = (𝑘 + 1) → (𝐴𝑗) = (𝐴↑(𝑘 + 1)))
15 oveq2 7263 . . . . . . 7 (𝑗 = (𝑘 + 1) → (𝐵𝑗) = (𝐵↑(𝑘 + 1)))
1614, 15oveq12d 7273 . . . . . 6 (𝑗 = (𝑘 + 1) → ((𝐴𝑗) · (𝐵𝑗)) = ((𝐴↑(𝑘 + 1)) · (𝐵↑(𝑘 + 1))))
1713, 16eqeq12d 2754 . . . . 5 (𝑗 = (𝑘 + 1) → (((𝐴 · 𝐵)↑𝑗) = ((𝐴𝑗) · (𝐵𝑗)) ↔ ((𝐴 · 𝐵)↑(𝑘 + 1)) = ((𝐴↑(𝑘 + 1)) · (𝐵↑(𝑘 + 1)))))
1817imbi2d 340 . . . 4 (𝑗 = (𝑘 + 1) → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵)↑𝑗) = ((𝐴𝑗) · (𝐵𝑗))) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵)↑(𝑘 + 1)) = ((𝐴↑(𝑘 + 1)) · (𝐵↑(𝑘 + 1))))))
19 oveq2 7263 . . . . . 6 (𝑗 = 𝑁 → ((𝐴 · 𝐵)↑𝑗) = ((𝐴 · 𝐵)↑𝑁))
20 oveq2 7263 . . . . . . 7 (𝑗 = 𝑁 → (𝐴𝑗) = (𝐴𝑁))
21 oveq2 7263 . . . . . . 7 (𝑗 = 𝑁 → (𝐵𝑗) = (𝐵𝑁))
2220, 21oveq12d 7273 . . . . . 6 (𝑗 = 𝑁 → ((𝐴𝑗) · (𝐵𝑗)) = ((𝐴𝑁) · (𝐵𝑁)))
2319, 22eqeq12d 2754 . . . . 5 (𝑗 = 𝑁 → (((𝐴 · 𝐵)↑𝑗) = ((𝐴𝑗) · (𝐵𝑗)) ↔ ((𝐴 · 𝐵)↑𝑁) = ((𝐴𝑁) · (𝐵𝑁))))
2423imbi2d 340 . . . 4 (𝑗 = 𝑁 → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵)↑𝑗) = ((𝐴𝑗) · (𝐵𝑗))) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵)↑𝑁) = ((𝐴𝑁) · (𝐵𝑁)))))
25 mulcl 10886 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ)
26 exp0 13714 . . . . . 6 ((𝐴 · 𝐵) ∈ ℂ → ((𝐴 · 𝐵)↑0) = 1)
2725, 26syl 17 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵)↑0) = 1)
28 exp0 13714 . . . . . . 7 (𝐴 ∈ ℂ → (𝐴↑0) = 1)
29 exp0 13714 . . . . . . 7 (𝐵 ∈ ℂ → (𝐵↑0) = 1)
3028, 29oveqan12d 7274 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑0) · (𝐵↑0)) = (1 · 1))
31 1t1e1 12065 . . . . . 6 (1 · 1) = 1
3230, 31eqtrdi 2795 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑0) · (𝐵↑0)) = 1)
3327, 32eqtr4d 2781 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵)↑0) = ((𝐴↑0) · (𝐵↑0)))
34 expp1 13717 . . . . . . . . . 10 (((𝐴 · 𝐵) ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐴 · 𝐵)↑(𝑘 + 1)) = (((𝐴 · 𝐵)↑𝑘) · (𝐴 · 𝐵)))
3525, 34sylan 579 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐴 · 𝐵)↑(𝑘 + 1)) = (((𝐴 · 𝐵)↑𝑘) · (𝐴 · 𝐵)))
3635adantr 480 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ ((𝐴 · 𝐵)↑𝑘) = ((𝐴𝑘) · (𝐵𝑘))) → ((𝐴 · 𝐵)↑(𝑘 + 1)) = (((𝐴 · 𝐵)↑𝑘) · (𝐴 · 𝐵)))
37 oveq1 7262 . . . . . . . . 9 (((𝐴 · 𝐵)↑𝑘) = ((𝐴𝑘) · (𝐵𝑘)) → (((𝐴 · 𝐵)↑𝑘) · (𝐴 · 𝐵)) = (((𝐴𝑘) · (𝐵𝑘)) · (𝐴 · 𝐵)))
38 expcl 13728 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
39 expcl 13728 . . . . . . . . . . . . 13 ((𝐵 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐵𝑘) ∈ ℂ)
4038, 39anim12i 612 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) ∧ (𝐵 ∈ ℂ ∧ 𝑘 ∈ ℕ0)) → ((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ))
4140anandirs 675 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ))
42 simpl 482 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ))
43 mul4 11073 . . . . . . . . . . 11 ((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ) ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) → (((𝐴𝑘) · (𝐵𝑘)) · (𝐴 · 𝐵)) = (((𝐴𝑘) · 𝐴) · ((𝐵𝑘) · 𝐵)))
4441, 42, 43syl2anc 583 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (((𝐴𝑘) · (𝐵𝑘)) · (𝐴 · 𝐵)) = (((𝐴𝑘) · 𝐴) · ((𝐵𝑘) · 𝐵)))
45 expp1 13717 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
4645adantlr 711 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
47 expp1 13717 . . . . . . . . . . . 12 ((𝐵 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐵↑(𝑘 + 1)) = ((𝐵𝑘) · 𝐵))
4847adantll 710 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝐵↑(𝑘 + 1)) = ((𝐵𝑘) · 𝐵))
4946, 48oveq12d 7273 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐴↑(𝑘 + 1)) · (𝐵↑(𝑘 + 1))) = (((𝐴𝑘) · 𝐴) · ((𝐵𝑘) · 𝐵)))
5044, 49eqtr4d 2781 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (((𝐴𝑘) · (𝐵𝑘)) · (𝐴 · 𝐵)) = ((𝐴↑(𝑘 + 1)) · (𝐵↑(𝑘 + 1))))
5137, 50sylan9eqr 2801 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ ((𝐴 · 𝐵)↑𝑘) = ((𝐴𝑘) · (𝐵𝑘))) → (((𝐴 · 𝐵)↑𝑘) · (𝐴 · 𝐵)) = ((𝐴↑(𝑘 + 1)) · (𝐵↑(𝑘 + 1))))
5236, 51eqtrd 2778 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ ((𝐴 · 𝐵)↑𝑘) = ((𝐴𝑘) · (𝐵𝑘))) → ((𝐴 · 𝐵)↑(𝑘 + 1)) = ((𝐴↑(𝑘 + 1)) · (𝐵↑(𝑘 + 1))))
5352exp31 419 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝑘 ∈ ℕ0 → (((𝐴 · 𝐵)↑𝑘) = ((𝐴𝑘) · (𝐵𝑘)) → ((𝐴 · 𝐵)↑(𝑘 + 1)) = ((𝐴↑(𝑘 + 1)) · (𝐵↑(𝑘 + 1))))))
5453com12 32 . . . . 5 (𝑘 ∈ ℕ0 → ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 · 𝐵)↑𝑘) = ((𝐴𝑘) · (𝐵𝑘)) → ((𝐴 · 𝐵)↑(𝑘 + 1)) = ((𝐴↑(𝑘 + 1)) · (𝐵↑(𝑘 + 1))))))
5554a2d 29 . . . 4 (𝑘 ∈ ℕ0 → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵)↑𝑘) = ((𝐴𝑘) · (𝐵𝑘))) → ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵)↑(𝑘 + 1)) = ((𝐴↑(𝑘 + 1)) · (𝐵↑(𝑘 + 1))))))
566, 12, 18, 24, 33, 55nn0ind 12345 . . 3 (𝑁 ∈ ℕ0 → ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵)↑𝑁) = ((𝐴𝑁) · (𝐵𝑁))))
5756expdcom 414 . 2 (𝐴 ∈ ℂ → (𝐵 ∈ ℂ → (𝑁 ∈ ℕ0 → ((𝐴 · 𝐵)↑𝑁) = ((𝐴𝑁) · (𝐵𝑁)))))
58573imp 1109 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐴 · 𝐵)↑𝑁) = ((𝐴𝑁) · (𝐵𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  (class class class)co 7255  cc 10800  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  0cn0 12163  cexp 13710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-seq 13650  df-exp 13711
This theorem is referenced by:  mulexpz  13751  expdiv  13762  sqmul  13767  mulexpd  13807  expubnd  13823  efi4p  15774  logtayl2  25722  ipidsq  28973  lcmineqlem1  39965  fprodexp  43025
  Copyright terms: Public domain W3C validator