MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulexp Structured version   Visualization version   GIF version

Theorem mulexp 13464
Description: Positive integer exponentiation of a product. Proposition 10-4.2(c) of [Gleason] p. 135, restricted to nonnegative integer exponents. (Contributed by NM, 13-Feb-2005.)
Assertion
Ref Expression
mulexp ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐴 · 𝐵)↑𝑁) = ((𝐴𝑁) · (𝐵𝑁)))

Proof of Theorem mulexp
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7148 . . . . . 6 (𝑗 = 0 → ((𝐴 · 𝐵)↑𝑗) = ((𝐴 · 𝐵)↑0))
2 oveq2 7148 . . . . . . 7 (𝑗 = 0 → (𝐴𝑗) = (𝐴↑0))
3 oveq2 7148 . . . . . . 7 (𝑗 = 0 → (𝐵𝑗) = (𝐵↑0))
42, 3oveq12d 7158 . . . . . 6 (𝑗 = 0 → ((𝐴𝑗) · (𝐵𝑗)) = ((𝐴↑0) · (𝐵↑0)))
51, 4eqeq12d 2838 . . . . 5 (𝑗 = 0 → (((𝐴 · 𝐵)↑𝑗) = ((𝐴𝑗) · (𝐵𝑗)) ↔ ((𝐴 · 𝐵)↑0) = ((𝐴↑0) · (𝐵↑0))))
65imbi2d 344 . . . 4 (𝑗 = 0 → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵)↑𝑗) = ((𝐴𝑗) · (𝐵𝑗))) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵)↑0) = ((𝐴↑0) · (𝐵↑0)))))
7 oveq2 7148 . . . . . 6 (𝑗 = 𝑘 → ((𝐴 · 𝐵)↑𝑗) = ((𝐴 · 𝐵)↑𝑘))
8 oveq2 7148 . . . . . . 7 (𝑗 = 𝑘 → (𝐴𝑗) = (𝐴𝑘))
9 oveq2 7148 . . . . . . 7 (𝑗 = 𝑘 → (𝐵𝑗) = (𝐵𝑘))
108, 9oveq12d 7158 . . . . . 6 (𝑗 = 𝑘 → ((𝐴𝑗) · (𝐵𝑗)) = ((𝐴𝑘) · (𝐵𝑘)))
117, 10eqeq12d 2838 . . . . 5 (𝑗 = 𝑘 → (((𝐴 · 𝐵)↑𝑗) = ((𝐴𝑗) · (𝐵𝑗)) ↔ ((𝐴 · 𝐵)↑𝑘) = ((𝐴𝑘) · (𝐵𝑘))))
1211imbi2d 344 . . . 4 (𝑗 = 𝑘 → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵)↑𝑗) = ((𝐴𝑗) · (𝐵𝑗))) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵)↑𝑘) = ((𝐴𝑘) · (𝐵𝑘)))))
13 oveq2 7148 . . . . . 6 (𝑗 = (𝑘 + 1) → ((𝐴 · 𝐵)↑𝑗) = ((𝐴 · 𝐵)↑(𝑘 + 1)))
14 oveq2 7148 . . . . . . 7 (𝑗 = (𝑘 + 1) → (𝐴𝑗) = (𝐴↑(𝑘 + 1)))
15 oveq2 7148 . . . . . . 7 (𝑗 = (𝑘 + 1) → (𝐵𝑗) = (𝐵↑(𝑘 + 1)))
1614, 15oveq12d 7158 . . . . . 6 (𝑗 = (𝑘 + 1) → ((𝐴𝑗) · (𝐵𝑗)) = ((𝐴↑(𝑘 + 1)) · (𝐵↑(𝑘 + 1))))
1713, 16eqeq12d 2838 . . . . 5 (𝑗 = (𝑘 + 1) → (((𝐴 · 𝐵)↑𝑗) = ((𝐴𝑗) · (𝐵𝑗)) ↔ ((𝐴 · 𝐵)↑(𝑘 + 1)) = ((𝐴↑(𝑘 + 1)) · (𝐵↑(𝑘 + 1)))))
1817imbi2d 344 . . . 4 (𝑗 = (𝑘 + 1) → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵)↑𝑗) = ((𝐴𝑗) · (𝐵𝑗))) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵)↑(𝑘 + 1)) = ((𝐴↑(𝑘 + 1)) · (𝐵↑(𝑘 + 1))))))
19 oveq2 7148 . . . . . 6 (𝑗 = 𝑁 → ((𝐴 · 𝐵)↑𝑗) = ((𝐴 · 𝐵)↑𝑁))
20 oveq2 7148 . . . . . . 7 (𝑗 = 𝑁 → (𝐴𝑗) = (𝐴𝑁))
21 oveq2 7148 . . . . . . 7 (𝑗 = 𝑁 → (𝐵𝑗) = (𝐵𝑁))
2220, 21oveq12d 7158 . . . . . 6 (𝑗 = 𝑁 → ((𝐴𝑗) · (𝐵𝑗)) = ((𝐴𝑁) · (𝐵𝑁)))
2319, 22eqeq12d 2838 . . . . 5 (𝑗 = 𝑁 → (((𝐴 · 𝐵)↑𝑗) = ((𝐴𝑗) · (𝐵𝑗)) ↔ ((𝐴 · 𝐵)↑𝑁) = ((𝐴𝑁) · (𝐵𝑁))))
2423imbi2d 344 . . . 4 (𝑗 = 𝑁 → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵)↑𝑗) = ((𝐴𝑗) · (𝐵𝑗))) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵)↑𝑁) = ((𝐴𝑁) · (𝐵𝑁)))))
25 mulcl 10610 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ)
26 exp0 13429 . . . . . 6 ((𝐴 · 𝐵) ∈ ℂ → ((𝐴 · 𝐵)↑0) = 1)
2725, 26syl 17 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵)↑0) = 1)
28 exp0 13429 . . . . . . 7 (𝐴 ∈ ℂ → (𝐴↑0) = 1)
29 exp0 13429 . . . . . . 7 (𝐵 ∈ ℂ → (𝐵↑0) = 1)
3028, 29oveqan12d 7159 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑0) · (𝐵↑0)) = (1 · 1))
31 1t1e1 11787 . . . . . 6 (1 · 1) = 1
3230, 31syl6eq 2873 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑0) · (𝐵↑0)) = 1)
3327, 32eqtr4d 2860 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵)↑0) = ((𝐴↑0) · (𝐵↑0)))
34 expp1 13432 . . . . . . . . . 10 (((𝐴 · 𝐵) ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐴 · 𝐵)↑(𝑘 + 1)) = (((𝐴 · 𝐵)↑𝑘) · (𝐴 · 𝐵)))
3525, 34sylan 583 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐴 · 𝐵)↑(𝑘 + 1)) = (((𝐴 · 𝐵)↑𝑘) · (𝐴 · 𝐵)))
3635adantr 484 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ ((𝐴 · 𝐵)↑𝑘) = ((𝐴𝑘) · (𝐵𝑘))) → ((𝐴 · 𝐵)↑(𝑘 + 1)) = (((𝐴 · 𝐵)↑𝑘) · (𝐴 · 𝐵)))
37 oveq1 7147 . . . . . . . . 9 (((𝐴 · 𝐵)↑𝑘) = ((𝐴𝑘) · (𝐵𝑘)) → (((𝐴 · 𝐵)↑𝑘) · (𝐴 · 𝐵)) = (((𝐴𝑘) · (𝐵𝑘)) · (𝐴 · 𝐵)))
38 expcl 13443 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
39 expcl 13443 . . . . . . . . . . . . 13 ((𝐵 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐵𝑘) ∈ ℂ)
4038, 39anim12i 615 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) ∧ (𝐵 ∈ ℂ ∧ 𝑘 ∈ ℕ0)) → ((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ))
4140anandirs 678 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ))
42 simpl 486 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ))
43 mul4 10797 . . . . . . . . . . 11 ((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ) ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) → (((𝐴𝑘) · (𝐵𝑘)) · (𝐴 · 𝐵)) = (((𝐴𝑘) · 𝐴) · ((𝐵𝑘) · 𝐵)))
4441, 42, 43syl2anc 587 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (((𝐴𝑘) · (𝐵𝑘)) · (𝐴 · 𝐵)) = (((𝐴𝑘) · 𝐴) · ((𝐵𝑘) · 𝐵)))
45 expp1 13432 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
4645adantlr 714 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
47 expp1 13432 . . . . . . . . . . . 12 ((𝐵 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐵↑(𝑘 + 1)) = ((𝐵𝑘) · 𝐵))
4847adantll 713 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝐵↑(𝑘 + 1)) = ((𝐵𝑘) · 𝐵))
4946, 48oveq12d 7158 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐴↑(𝑘 + 1)) · (𝐵↑(𝑘 + 1))) = (((𝐴𝑘) · 𝐴) · ((𝐵𝑘) · 𝐵)))
5044, 49eqtr4d 2860 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (((𝐴𝑘) · (𝐵𝑘)) · (𝐴 · 𝐵)) = ((𝐴↑(𝑘 + 1)) · (𝐵↑(𝑘 + 1))))
5137, 50sylan9eqr 2879 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ ((𝐴 · 𝐵)↑𝑘) = ((𝐴𝑘) · (𝐵𝑘))) → (((𝐴 · 𝐵)↑𝑘) · (𝐴 · 𝐵)) = ((𝐴↑(𝑘 + 1)) · (𝐵↑(𝑘 + 1))))
5236, 51eqtrd 2857 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ ((𝐴 · 𝐵)↑𝑘) = ((𝐴𝑘) · (𝐵𝑘))) → ((𝐴 · 𝐵)↑(𝑘 + 1)) = ((𝐴↑(𝑘 + 1)) · (𝐵↑(𝑘 + 1))))
5352exp31 423 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝑘 ∈ ℕ0 → (((𝐴 · 𝐵)↑𝑘) = ((𝐴𝑘) · (𝐵𝑘)) → ((𝐴 · 𝐵)↑(𝑘 + 1)) = ((𝐴↑(𝑘 + 1)) · (𝐵↑(𝑘 + 1))))))
5453com12 32 . . . . 5 (𝑘 ∈ ℕ0 → ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 · 𝐵)↑𝑘) = ((𝐴𝑘) · (𝐵𝑘)) → ((𝐴 · 𝐵)↑(𝑘 + 1)) = ((𝐴↑(𝑘 + 1)) · (𝐵↑(𝑘 + 1))))))
5554a2d 29 . . . 4 (𝑘 ∈ ℕ0 → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵)↑𝑘) = ((𝐴𝑘) · (𝐵𝑘))) → ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵)↑(𝑘 + 1)) = ((𝐴↑(𝑘 + 1)) · (𝐵↑(𝑘 + 1))))))
566, 12, 18, 24, 33, 55nn0ind 12065 . . 3 (𝑁 ∈ ℕ0 → ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵)↑𝑁) = ((𝐴𝑁) · (𝐵𝑁))))
5756expdcom 418 . 2 (𝐴 ∈ ℂ → (𝐵 ∈ ℂ → (𝑁 ∈ ℕ0 → ((𝐴 · 𝐵)↑𝑁) = ((𝐴𝑁) · (𝐵𝑁)))))
58573imp 1108 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐴 · 𝐵)↑𝑁) = ((𝐴𝑁) · (𝐵𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2114  (class class class)co 7140  cc 10524  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531  0cn0 11885  cexp 13425
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-seq 13365  df-exp 13426
This theorem is referenced by:  mulexpz  13465  expdiv  13476  sqmul  13481  mulexpd  13521  expubnd  13537  efi4p  15481  logtayl2  25251  ipidsq  28491  lcmineqlem1  39278  3lexlogpow5ineq1  39302  fprodexp  42175
  Copyright terms: Public domain W3C validator