MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulexp Structured version   Visualization version   GIF version

Theorem mulexp 14121
Description: Nonnegative integer exponentiation of a product. Proposition 10-4.2(c) of [Gleason] p. 135, restricted to nonnegative integer exponents. (Contributed by NM, 13-Feb-2005.)
Assertion
Ref Expression
mulexp ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐴 · 𝐵)↑𝑁) = ((𝐴𝑁) · (𝐵𝑁)))

Proof of Theorem mulexp
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7432 . . . . . 6 (𝑗 = 0 → ((𝐴 · 𝐵)↑𝑗) = ((𝐴 · 𝐵)↑0))
2 oveq2 7432 . . . . . . 7 (𝑗 = 0 → (𝐴𝑗) = (𝐴↑0))
3 oveq2 7432 . . . . . . 7 (𝑗 = 0 → (𝐵𝑗) = (𝐵↑0))
42, 3oveq12d 7442 . . . . . 6 (𝑗 = 0 → ((𝐴𝑗) · (𝐵𝑗)) = ((𝐴↑0) · (𝐵↑0)))
51, 4eqeq12d 2742 . . . . 5 (𝑗 = 0 → (((𝐴 · 𝐵)↑𝑗) = ((𝐴𝑗) · (𝐵𝑗)) ↔ ((𝐴 · 𝐵)↑0) = ((𝐴↑0) · (𝐵↑0))))
65imbi2d 339 . . . 4 (𝑗 = 0 → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵)↑𝑗) = ((𝐴𝑗) · (𝐵𝑗))) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵)↑0) = ((𝐴↑0) · (𝐵↑0)))))
7 oveq2 7432 . . . . . 6 (𝑗 = 𝑘 → ((𝐴 · 𝐵)↑𝑗) = ((𝐴 · 𝐵)↑𝑘))
8 oveq2 7432 . . . . . . 7 (𝑗 = 𝑘 → (𝐴𝑗) = (𝐴𝑘))
9 oveq2 7432 . . . . . . 7 (𝑗 = 𝑘 → (𝐵𝑗) = (𝐵𝑘))
108, 9oveq12d 7442 . . . . . 6 (𝑗 = 𝑘 → ((𝐴𝑗) · (𝐵𝑗)) = ((𝐴𝑘) · (𝐵𝑘)))
117, 10eqeq12d 2742 . . . . 5 (𝑗 = 𝑘 → (((𝐴 · 𝐵)↑𝑗) = ((𝐴𝑗) · (𝐵𝑗)) ↔ ((𝐴 · 𝐵)↑𝑘) = ((𝐴𝑘) · (𝐵𝑘))))
1211imbi2d 339 . . . 4 (𝑗 = 𝑘 → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵)↑𝑗) = ((𝐴𝑗) · (𝐵𝑗))) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵)↑𝑘) = ((𝐴𝑘) · (𝐵𝑘)))))
13 oveq2 7432 . . . . . 6 (𝑗 = (𝑘 + 1) → ((𝐴 · 𝐵)↑𝑗) = ((𝐴 · 𝐵)↑(𝑘 + 1)))
14 oveq2 7432 . . . . . . 7 (𝑗 = (𝑘 + 1) → (𝐴𝑗) = (𝐴↑(𝑘 + 1)))
15 oveq2 7432 . . . . . . 7 (𝑗 = (𝑘 + 1) → (𝐵𝑗) = (𝐵↑(𝑘 + 1)))
1614, 15oveq12d 7442 . . . . . 6 (𝑗 = (𝑘 + 1) → ((𝐴𝑗) · (𝐵𝑗)) = ((𝐴↑(𝑘 + 1)) · (𝐵↑(𝑘 + 1))))
1713, 16eqeq12d 2742 . . . . 5 (𝑗 = (𝑘 + 1) → (((𝐴 · 𝐵)↑𝑗) = ((𝐴𝑗) · (𝐵𝑗)) ↔ ((𝐴 · 𝐵)↑(𝑘 + 1)) = ((𝐴↑(𝑘 + 1)) · (𝐵↑(𝑘 + 1)))))
1817imbi2d 339 . . . 4 (𝑗 = (𝑘 + 1) → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵)↑𝑗) = ((𝐴𝑗) · (𝐵𝑗))) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵)↑(𝑘 + 1)) = ((𝐴↑(𝑘 + 1)) · (𝐵↑(𝑘 + 1))))))
19 oveq2 7432 . . . . . 6 (𝑗 = 𝑁 → ((𝐴 · 𝐵)↑𝑗) = ((𝐴 · 𝐵)↑𝑁))
20 oveq2 7432 . . . . . . 7 (𝑗 = 𝑁 → (𝐴𝑗) = (𝐴𝑁))
21 oveq2 7432 . . . . . . 7 (𝑗 = 𝑁 → (𝐵𝑗) = (𝐵𝑁))
2220, 21oveq12d 7442 . . . . . 6 (𝑗 = 𝑁 → ((𝐴𝑗) · (𝐵𝑗)) = ((𝐴𝑁) · (𝐵𝑁)))
2319, 22eqeq12d 2742 . . . . 5 (𝑗 = 𝑁 → (((𝐴 · 𝐵)↑𝑗) = ((𝐴𝑗) · (𝐵𝑗)) ↔ ((𝐴 · 𝐵)↑𝑁) = ((𝐴𝑁) · (𝐵𝑁))))
2423imbi2d 339 . . . 4 (𝑗 = 𝑁 → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵)↑𝑗) = ((𝐴𝑗) · (𝐵𝑗))) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵)↑𝑁) = ((𝐴𝑁) · (𝐵𝑁)))))
25 mulcl 11242 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ)
26 exp0 14085 . . . . . 6 ((𝐴 · 𝐵) ∈ ℂ → ((𝐴 · 𝐵)↑0) = 1)
2725, 26syl 17 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵)↑0) = 1)
28 exp0 14085 . . . . . . 7 (𝐴 ∈ ℂ → (𝐴↑0) = 1)
29 exp0 14085 . . . . . . 7 (𝐵 ∈ ℂ → (𝐵↑0) = 1)
3028, 29oveqan12d 7443 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑0) · (𝐵↑0)) = (1 · 1))
31 1t1e1 12426 . . . . . 6 (1 · 1) = 1
3230, 31eqtrdi 2782 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑0) · (𝐵↑0)) = 1)
3327, 32eqtr4d 2769 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵)↑0) = ((𝐴↑0) · (𝐵↑0)))
34 expp1 14088 . . . . . . . . . 10 (((𝐴 · 𝐵) ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐴 · 𝐵)↑(𝑘 + 1)) = (((𝐴 · 𝐵)↑𝑘) · (𝐴 · 𝐵)))
3525, 34sylan 578 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐴 · 𝐵)↑(𝑘 + 1)) = (((𝐴 · 𝐵)↑𝑘) · (𝐴 · 𝐵)))
3635adantr 479 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ ((𝐴 · 𝐵)↑𝑘) = ((𝐴𝑘) · (𝐵𝑘))) → ((𝐴 · 𝐵)↑(𝑘 + 1)) = (((𝐴 · 𝐵)↑𝑘) · (𝐴 · 𝐵)))
37 oveq1 7431 . . . . . . . . 9 (((𝐴 · 𝐵)↑𝑘) = ((𝐴𝑘) · (𝐵𝑘)) → (((𝐴 · 𝐵)↑𝑘) · (𝐴 · 𝐵)) = (((𝐴𝑘) · (𝐵𝑘)) · (𝐴 · 𝐵)))
38 expcl 14099 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
39 expcl 14099 . . . . . . . . . . . . 13 ((𝐵 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐵𝑘) ∈ ℂ)
4038, 39anim12i 611 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) ∧ (𝐵 ∈ ℂ ∧ 𝑘 ∈ ℕ0)) → ((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ))
4140anandirs 677 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ))
42 simpl 481 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ))
43 mul4 11432 . . . . . . . . . . 11 ((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ) ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) → (((𝐴𝑘) · (𝐵𝑘)) · (𝐴 · 𝐵)) = (((𝐴𝑘) · 𝐴) · ((𝐵𝑘) · 𝐵)))
4441, 42, 43syl2anc 582 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (((𝐴𝑘) · (𝐵𝑘)) · (𝐴 · 𝐵)) = (((𝐴𝑘) · 𝐴) · ((𝐵𝑘) · 𝐵)))
45 expp1 14088 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
4645adantlr 713 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
47 expp1 14088 . . . . . . . . . . . 12 ((𝐵 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐵↑(𝑘 + 1)) = ((𝐵𝑘) · 𝐵))
4847adantll 712 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝐵↑(𝑘 + 1)) = ((𝐵𝑘) · 𝐵))
4946, 48oveq12d 7442 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐴↑(𝑘 + 1)) · (𝐵↑(𝑘 + 1))) = (((𝐴𝑘) · 𝐴) · ((𝐵𝑘) · 𝐵)))
5044, 49eqtr4d 2769 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (((𝐴𝑘) · (𝐵𝑘)) · (𝐴 · 𝐵)) = ((𝐴↑(𝑘 + 1)) · (𝐵↑(𝑘 + 1))))
5137, 50sylan9eqr 2788 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ ((𝐴 · 𝐵)↑𝑘) = ((𝐴𝑘) · (𝐵𝑘))) → (((𝐴 · 𝐵)↑𝑘) · (𝐴 · 𝐵)) = ((𝐴↑(𝑘 + 1)) · (𝐵↑(𝑘 + 1))))
5236, 51eqtrd 2766 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ ((𝐴 · 𝐵)↑𝑘) = ((𝐴𝑘) · (𝐵𝑘))) → ((𝐴 · 𝐵)↑(𝑘 + 1)) = ((𝐴↑(𝑘 + 1)) · (𝐵↑(𝑘 + 1))))
5352exp31 418 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝑘 ∈ ℕ0 → (((𝐴 · 𝐵)↑𝑘) = ((𝐴𝑘) · (𝐵𝑘)) → ((𝐴 · 𝐵)↑(𝑘 + 1)) = ((𝐴↑(𝑘 + 1)) · (𝐵↑(𝑘 + 1))))))
5453com12 32 . . . . 5 (𝑘 ∈ ℕ0 → ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 · 𝐵)↑𝑘) = ((𝐴𝑘) · (𝐵𝑘)) → ((𝐴 · 𝐵)↑(𝑘 + 1)) = ((𝐴↑(𝑘 + 1)) · (𝐵↑(𝑘 + 1))))))
5554a2d 29 . . . 4 (𝑘 ∈ ℕ0 → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵)↑𝑘) = ((𝐴𝑘) · (𝐵𝑘))) → ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵)↑(𝑘 + 1)) = ((𝐴↑(𝑘 + 1)) · (𝐵↑(𝑘 + 1))))))
566, 12, 18, 24, 33, 55nn0ind 12709 . . 3 (𝑁 ∈ ℕ0 → ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵)↑𝑁) = ((𝐴𝑁) · (𝐵𝑁))))
5756expdcom 413 . 2 (𝐴 ∈ ℂ → (𝐵 ∈ ℂ → (𝑁 ∈ ℕ0 → ((𝐴 · 𝐵)↑𝑁) = ((𝐴𝑁) · (𝐵𝑁)))))
58573imp 1108 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐴 · 𝐵)↑𝑁) = ((𝐴𝑁) · (𝐵𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1534  wcel 2099  (class class class)co 7424  cc 11156  0cc0 11158  1c1 11159   + caddc 11161   · cmul 11163  0cn0 12524  cexp 14081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-er 8734  df-en 8975  df-dom 8976  df-sdom 8977  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-nn 12265  df-n0 12525  df-z 12611  df-uz 12875  df-seq 14022  df-exp 14082
This theorem is referenced by:  mulexpz  14122  expdiv  14133  sqmul  14138  mulexpd  14180  expubnd  14196  efi4p  16139  logtayl2  26689  ipidsq  30643  lcmineqlem1  41728  fprodexp  45215
  Copyright terms: Public domain W3C validator