MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulexp Structured version   Visualization version   GIF version

Theorem mulexp 14066
Description: Nonnegative integer exponentiation of a product. Proposition 10-4.2(c) of [Gleason] p. 135, restricted to nonnegative integer exponents. (Contributed by NM, 13-Feb-2005.)
Assertion
Ref Expression
mulexp ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐴 · 𝐵)↑𝑁) = ((𝐴𝑁) · (𝐵𝑁)))

Proof of Theorem mulexp
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7395 . . . . . 6 (𝑗 = 0 → ((𝐴 · 𝐵)↑𝑗) = ((𝐴 · 𝐵)↑0))
2 oveq2 7395 . . . . . . 7 (𝑗 = 0 → (𝐴𝑗) = (𝐴↑0))
3 oveq2 7395 . . . . . . 7 (𝑗 = 0 → (𝐵𝑗) = (𝐵↑0))
42, 3oveq12d 7405 . . . . . 6 (𝑗 = 0 → ((𝐴𝑗) · (𝐵𝑗)) = ((𝐴↑0) · (𝐵↑0)))
51, 4eqeq12d 2745 . . . . 5 (𝑗 = 0 → (((𝐴 · 𝐵)↑𝑗) = ((𝐴𝑗) · (𝐵𝑗)) ↔ ((𝐴 · 𝐵)↑0) = ((𝐴↑0) · (𝐵↑0))))
65imbi2d 340 . . . 4 (𝑗 = 0 → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵)↑𝑗) = ((𝐴𝑗) · (𝐵𝑗))) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵)↑0) = ((𝐴↑0) · (𝐵↑0)))))
7 oveq2 7395 . . . . . 6 (𝑗 = 𝑘 → ((𝐴 · 𝐵)↑𝑗) = ((𝐴 · 𝐵)↑𝑘))
8 oveq2 7395 . . . . . . 7 (𝑗 = 𝑘 → (𝐴𝑗) = (𝐴𝑘))
9 oveq2 7395 . . . . . . 7 (𝑗 = 𝑘 → (𝐵𝑗) = (𝐵𝑘))
108, 9oveq12d 7405 . . . . . 6 (𝑗 = 𝑘 → ((𝐴𝑗) · (𝐵𝑗)) = ((𝐴𝑘) · (𝐵𝑘)))
117, 10eqeq12d 2745 . . . . 5 (𝑗 = 𝑘 → (((𝐴 · 𝐵)↑𝑗) = ((𝐴𝑗) · (𝐵𝑗)) ↔ ((𝐴 · 𝐵)↑𝑘) = ((𝐴𝑘) · (𝐵𝑘))))
1211imbi2d 340 . . . 4 (𝑗 = 𝑘 → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵)↑𝑗) = ((𝐴𝑗) · (𝐵𝑗))) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵)↑𝑘) = ((𝐴𝑘) · (𝐵𝑘)))))
13 oveq2 7395 . . . . . 6 (𝑗 = (𝑘 + 1) → ((𝐴 · 𝐵)↑𝑗) = ((𝐴 · 𝐵)↑(𝑘 + 1)))
14 oveq2 7395 . . . . . . 7 (𝑗 = (𝑘 + 1) → (𝐴𝑗) = (𝐴↑(𝑘 + 1)))
15 oveq2 7395 . . . . . . 7 (𝑗 = (𝑘 + 1) → (𝐵𝑗) = (𝐵↑(𝑘 + 1)))
1614, 15oveq12d 7405 . . . . . 6 (𝑗 = (𝑘 + 1) → ((𝐴𝑗) · (𝐵𝑗)) = ((𝐴↑(𝑘 + 1)) · (𝐵↑(𝑘 + 1))))
1713, 16eqeq12d 2745 . . . . 5 (𝑗 = (𝑘 + 1) → (((𝐴 · 𝐵)↑𝑗) = ((𝐴𝑗) · (𝐵𝑗)) ↔ ((𝐴 · 𝐵)↑(𝑘 + 1)) = ((𝐴↑(𝑘 + 1)) · (𝐵↑(𝑘 + 1)))))
1817imbi2d 340 . . . 4 (𝑗 = (𝑘 + 1) → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵)↑𝑗) = ((𝐴𝑗) · (𝐵𝑗))) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵)↑(𝑘 + 1)) = ((𝐴↑(𝑘 + 1)) · (𝐵↑(𝑘 + 1))))))
19 oveq2 7395 . . . . . 6 (𝑗 = 𝑁 → ((𝐴 · 𝐵)↑𝑗) = ((𝐴 · 𝐵)↑𝑁))
20 oveq2 7395 . . . . . . 7 (𝑗 = 𝑁 → (𝐴𝑗) = (𝐴𝑁))
21 oveq2 7395 . . . . . . 7 (𝑗 = 𝑁 → (𝐵𝑗) = (𝐵𝑁))
2220, 21oveq12d 7405 . . . . . 6 (𝑗 = 𝑁 → ((𝐴𝑗) · (𝐵𝑗)) = ((𝐴𝑁) · (𝐵𝑁)))
2319, 22eqeq12d 2745 . . . . 5 (𝑗 = 𝑁 → (((𝐴 · 𝐵)↑𝑗) = ((𝐴𝑗) · (𝐵𝑗)) ↔ ((𝐴 · 𝐵)↑𝑁) = ((𝐴𝑁) · (𝐵𝑁))))
2423imbi2d 340 . . . 4 (𝑗 = 𝑁 → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵)↑𝑗) = ((𝐴𝑗) · (𝐵𝑗))) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵)↑𝑁) = ((𝐴𝑁) · (𝐵𝑁)))))
25 mulcl 11152 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ)
26 exp0 14030 . . . . . 6 ((𝐴 · 𝐵) ∈ ℂ → ((𝐴 · 𝐵)↑0) = 1)
2725, 26syl 17 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵)↑0) = 1)
28 exp0 14030 . . . . . . 7 (𝐴 ∈ ℂ → (𝐴↑0) = 1)
29 exp0 14030 . . . . . . 7 (𝐵 ∈ ℂ → (𝐵↑0) = 1)
3028, 29oveqan12d 7406 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑0) · (𝐵↑0)) = (1 · 1))
31 1t1e1 12343 . . . . . 6 (1 · 1) = 1
3230, 31eqtrdi 2780 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑0) · (𝐵↑0)) = 1)
3327, 32eqtr4d 2767 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵)↑0) = ((𝐴↑0) · (𝐵↑0)))
34 expp1 14033 . . . . . . . . . 10 (((𝐴 · 𝐵) ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐴 · 𝐵)↑(𝑘 + 1)) = (((𝐴 · 𝐵)↑𝑘) · (𝐴 · 𝐵)))
3525, 34sylan 580 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐴 · 𝐵)↑(𝑘 + 1)) = (((𝐴 · 𝐵)↑𝑘) · (𝐴 · 𝐵)))
3635adantr 480 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ ((𝐴 · 𝐵)↑𝑘) = ((𝐴𝑘) · (𝐵𝑘))) → ((𝐴 · 𝐵)↑(𝑘 + 1)) = (((𝐴 · 𝐵)↑𝑘) · (𝐴 · 𝐵)))
37 oveq1 7394 . . . . . . . . 9 (((𝐴 · 𝐵)↑𝑘) = ((𝐴𝑘) · (𝐵𝑘)) → (((𝐴 · 𝐵)↑𝑘) · (𝐴 · 𝐵)) = (((𝐴𝑘) · (𝐵𝑘)) · (𝐴 · 𝐵)))
38 expcl 14044 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
39 expcl 14044 . . . . . . . . . . . . 13 ((𝐵 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐵𝑘) ∈ ℂ)
4038, 39anim12i 613 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) ∧ (𝐵 ∈ ℂ ∧ 𝑘 ∈ ℕ0)) → ((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ))
4140anandirs 679 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ))
42 simpl 482 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ))
43 mul4 11342 . . . . . . . . . . 11 ((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ) ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) → (((𝐴𝑘) · (𝐵𝑘)) · (𝐴 · 𝐵)) = (((𝐴𝑘) · 𝐴) · ((𝐵𝑘) · 𝐵)))
4441, 42, 43syl2anc 584 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (((𝐴𝑘) · (𝐵𝑘)) · (𝐴 · 𝐵)) = (((𝐴𝑘) · 𝐴) · ((𝐵𝑘) · 𝐵)))
45 expp1 14033 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
4645adantlr 715 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
47 expp1 14033 . . . . . . . . . . . 12 ((𝐵 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐵↑(𝑘 + 1)) = ((𝐵𝑘) · 𝐵))
4847adantll 714 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝐵↑(𝑘 + 1)) = ((𝐵𝑘) · 𝐵))
4946, 48oveq12d 7405 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐴↑(𝑘 + 1)) · (𝐵↑(𝑘 + 1))) = (((𝐴𝑘) · 𝐴) · ((𝐵𝑘) · 𝐵)))
5044, 49eqtr4d 2767 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (((𝐴𝑘) · (𝐵𝑘)) · (𝐴 · 𝐵)) = ((𝐴↑(𝑘 + 1)) · (𝐵↑(𝑘 + 1))))
5137, 50sylan9eqr 2786 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ ((𝐴 · 𝐵)↑𝑘) = ((𝐴𝑘) · (𝐵𝑘))) → (((𝐴 · 𝐵)↑𝑘) · (𝐴 · 𝐵)) = ((𝐴↑(𝑘 + 1)) · (𝐵↑(𝑘 + 1))))
5236, 51eqtrd 2764 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ ((𝐴 · 𝐵)↑𝑘) = ((𝐴𝑘) · (𝐵𝑘))) → ((𝐴 · 𝐵)↑(𝑘 + 1)) = ((𝐴↑(𝑘 + 1)) · (𝐵↑(𝑘 + 1))))
5352exp31 419 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝑘 ∈ ℕ0 → (((𝐴 · 𝐵)↑𝑘) = ((𝐴𝑘) · (𝐵𝑘)) → ((𝐴 · 𝐵)↑(𝑘 + 1)) = ((𝐴↑(𝑘 + 1)) · (𝐵↑(𝑘 + 1))))))
5453com12 32 . . . . 5 (𝑘 ∈ ℕ0 → ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 · 𝐵)↑𝑘) = ((𝐴𝑘) · (𝐵𝑘)) → ((𝐴 · 𝐵)↑(𝑘 + 1)) = ((𝐴↑(𝑘 + 1)) · (𝐵↑(𝑘 + 1))))))
5554a2d 29 . . . 4 (𝑘 ∈ ℕ0 → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵)↑𝑘) = ((𝐴𝑘) · (𝐵𝑘))) → ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵)↑(𝑘 + 1)) = ((𝐴↑(𝑘 + 1)) · (𝐵↑(𝑘 + 1))))))
566, 12, 18, 24, 33, 55nn0ind 12629 . . 3 (𝑁 ∈ ℕ0 → ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵)↑𝑁) = ((𝐴𝑁) · (𝐵𝑁))))
5756expdcom 414 . 2 (𝐴 ∈ ℂ → (𝐵 ∈ ℂ → (𝑁 ∈ ℕ0 → ((𝐴 · 𝐵)↑𝑁) = ((𝐴𝑁) · (𝐵𝑁)))))
58573imp 1110 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐴 · 𝐵)↑𝑁) = ((𝐴𝑁) · (𝐵𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  (class class class)co 7387  cc 11066  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073  0cn0 12442  cexp 14026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-seq 13967  df-exp 14027
This theorem is referenced by:  mulexpz  14067  expdiv  14078  sqmul  14084  mulexpd  14126  expubnd  14143  efi4p  16105  logtayl2  26571  ipidsq  30639  lcmineqlem1  42017  fprodexp  45592
  Copyright terms: Public domain W3C validator