Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pell14qrexpclnn0 Structured version   Visualization version   GIF version

Theorem pell14qrexpclnn0 42822
Description: Lemma for pell14qrexpcl 42823. (Contributed by Stefan O'Rear, 18-Sep-2014.)
Assertion
Ref Expression
pell14qrexpclnn0 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ 𝐵 ∈ ℕ0) → (𝐴𝐵) ∈ (Pell14QR‘𝐷))

Proof of Theorem pell14qrexpclnn0
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7456 . . . . . 6 (𝑎 = 0 → (𝐴𝑎) = (𝐴↑0))
21eleq1d 2829 . . . . 5 (𝑎 = 0 → ((𝐴𝑎) ∈ (Pell14QR‘𝐷) ↔ (𝐴↑0) ∈ (Pell14QR‘𝐷)))
32imbi2d 340 . . . 4 (𝑎 = 0 → (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (𝐴𝑎) ∈ (Pell14QR‘𝐷)) ↔ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (𝐴↑0) ∈ (Pell14QR‘𝐷))))
4 oveq2 7456 . . . . . 6 (𝑎 = 𝑏 → (𝐴𝑎) = (𝐴𝑏))
54eleq1d 2829 . . . . 5 (𝑎 = 𝑏 → ((𝐴𝑎) ∈ (Pell14QR‘𝐷) ↔ (𝐴𝑏) ∈ (Pell14QR‘𝐷)))
65imbi2d 340 . . . 4 (𝑎 = 𝑏 → (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (𝐴𝑎) ∈ (Pell14QR‘𝐷)) ↔ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (𝐴𝑏) ∈ (Pell14QR‘𝐷))))
7 oveq2 7456 . . . . . 6 (𝑎 = (𝑏 + 1) → (𝐴𝑎) = (𝐴↑(𝑏 + 1)))
87eleq1d 2829 . . . . 5 (𝑎 = (𝑏 + 1) → ((𝐴𝑎) ∈ (Pell14QR‘𝐷) ↔ (𝐴↑(𝑏 + 1)) ∈ (Pell14QR‘𝐷)))
98imbi2d 340 . . . 4 (𝑎 = (𝑏 + 1) → (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (𝐴𝑎) ∈ (Pell14QR‘𝐷)) ↔ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (𝐴↑(𝑏 + 1)) ∈ (Pell14QR‘𝐷))))
10 oveq2 7456 . . . . . 6 (𝑎 = 𝐵 → (𝐴𝑎) = (𝐴𝐵))
1110eleq1d 2829 . . . . 5 (𝑎 = 𝐵 → ((𝐴𝑎) ∈ (Pell14QR‘𝐷) ↔ (𝐴𝐵) ∈ (Pell14QR‘𝐷)))
1211imbi2d 340 . . . 4 (𝑎 = 𝐵 → (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (𝐴𝑎) ∈ (Pell14QR‘𝐷)) ↔ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (𝐴𝐵) ∈ (Pell14QR‘𝐷))))
13 pell14qrre 42813 . . . . . . . 8 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 𝐴 ∈ ℝ)
1413recnd 11318 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 𝐴 ∈ ℂ)
1514exp0d 14190 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (𝐴↑0) = 1)
16 pell14qrne0 42814 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 𝐴 ≠ 0)
1714, 16dividd 12068 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (𝐴 / 𝐴) = 1)
1815, 17eqtr4d 2783 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (𝐴↑0) = (𝐴 / 𝐴))
19 pell14qrdivcl 42821 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (𝐴 / 𝐴) ∈ (Pell14QR‘𝐷))
20193anidm23 1421 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (𝐴 / 𝐴) ∈ (Pell14QR‘𝐷))
2118, 20eqeltrd 2844 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (𝐴↑0) ∈ (Pell14QR‘𝐷))
22143ad2ant2 1134 . . . . . . . 8 ((𝑏 ∈ ℕ0 ∧ (𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ (𝐴𝑏) ∈ (Pell14QR‘𝐷)) → 𝐴 ∈ ℂ)
23 simp1 1136 . . . . . . . 8 ((𝑏 ∈ ℕ0 ∧ (𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ (𝐴𝑏) ∈ (Pell14QR‘𝐷)) → 𝑏 ∈ ℕ0)
2422, 23expp1d 14197 . . . . . . 7 ((𝑏 ∈ ℕ0 ∧ (𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ (𝐴𝑏) ∈ (Pell14QR‘𝐷)) → (𝐴↑(𝑏 + 1)) = ((𝐴𝑏) · 𝐴))
25 simp2l 1199 . . . . . . . 8 ((𝑏 ∈ ℕ0 ∧ (𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ (𝐴𝑏) ∈ (Pell14QR‘𝐷)) → 𝐷 ∈ (ℕ ∖ ◻NN))
26 simp3 1138 . . . . . . . 8 ((𝑏 ∈ ℕ0 ∧ (𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ (𝐴𝑏) ∈ (Pell14QR‘𝐷)) → (𝐴𝑏) ∈ (Pell14QR‘𝐷))
27 simp2r 1200 . . . . . . . 8 ((𝑏 ∈ ℕ0 ∧ (𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ (𝐴𝑏) ∈ (Pell14QR‘𝐷)) → 𝐴 ∈ (Pell14QR‘𝐷))
28 pell14qrmulcl 42819 . . . . . . . 8 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝐴𝑏) ∈ (Pell14QR‘𝐷) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((𝐴𝑏) · 𝐴) ∈ (Pell14QR‘𝐷))
2925, 26, 27, 28syl3anc 1371 . . . . . . 7 ((𝑏 ∈ ℕ0 ∧ (𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ (𝐴𝑏) ∈ (Pell14QR‘𝐷)) → ((𝐴𝑏) · 𝐴) ∈ (Pell14QR‘𝐷))
3024, 29eqeltrd 2844 . . . . . 6 ((𝑏 ∈ ℕ0 ∧ (𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ (𝐴𝑏) ∈ (Pell14QR‘𝐷)) → (𝐴↑(𝑏 + 1)) ∈ (Pell14QR‘𝐷))
31303exp 1119 . . . . 5 (𝑏 ∈ ℕ0 → ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((𝐴𝑏) ∈ (Pell14QR‘𝐷) → (𝐴↑(𝑏 + 1)) ∈ (Pell14QR‘𝐷))))
3231a2d 29 . . . 4 (𝑏 ∈ ℕ0 → (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (𝐴𝑏) ∈ (Pell14QR‘𝐷)) → ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (𝐴↑(𝑏 + 1)) ∈ (Pell14QR‘𝐷))))
333, 6, 9, 12, 21, 32nn0ind 12738 . . 3 (𝐵 ∈ ℕ0 → ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (𝐴𝐵) ∈ (Pell14QR‘𝐷)))
3433expdcom 414 . 2 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐴 ∈ (Pell14QR‘𝐷) → (𝐵 ∈ ℕ0 → (𝐴𝐵) ∈ (Pell14QR‘𝐷))))
35343imp 1111 1 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ 𝐵 ∈ ℕ0) → (𝐴𝐵) ∈ (Pell14QR‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  cdif 3973  cfv 6573  (class class class)co 7448  cc 11182  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189   / cdiv 11947  cn 12293  0cn0 12553  cexp 14112  NNcsquarenn 42792  Pell14QRcpell14qr 42795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-pell14qr 42799  df-pell1234qr 42800
This theorem is referenced by:  pell14qrexpcl  42823
  Copyright terms: Public domain W3C validator