Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pell14qrexpclnn0 Structured version   Visualization version   GIF version

Theorem pell14qrexpclnn0 42839
Description: Lemma for pell14qrexpcl 42840. (Contributed by Stefan O'Rear, 18-Sep-2014.)
Assertion
Ref Expression
pell14qrexpclnn0 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ 𝐵 ∈ ℕ0) → (𝐴𝐵) ∈ (Pell14QR‘𝐷))

Proof of Theorem pell14qrexpclnn0
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7361 . . . . . 6 (𝑎 = 0 → (𝐴𝑎) = (𝐴↑0))
21eleq1d 2813 . . . . 5 (𝑎 = 0 → ((𝐴𝑎) ∈ (Pell14QR‘𝐷) ↔ (𝐴↑0) ∈ (Pell14QR‘𝐷)))
32imbi2d 340 . . . 4 (𝑎 = 0 → (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (𝐴𝑎) ∈ (Pell14QR‘𝐷)) ↔ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (𝐴↑0) ∈ (Pell14QR‘𝐷))))
4 oveq2 7361 . . . . . 6 (𝑎 = 𝑏 → (𝐴𝑎) = (𝐴𝑏))
54eleq1d 2813 . . . . 5 (𝑎 = 𝑏 → ((𝐴𝑎) ∈ (Pell14QR‘𝐷) ↔ (𝐴𝑏) ∈ (Pell14QR‘𝐷)))
65imbi2d 340 . . . 4 (𝑎 = 𝑏 → (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (𝐴𝑎) ∈ (Pell14QR‘𝐷)) ↔ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (𝐴𝑏) ∈ (Pell14QR‘𝐷))))
7 oveq2 7361 . . . . . 6 (𝑎 = (𝑏 + 1) → (𝐴𝑎) = (𝐴↑(𝑏 + 1)))
87eleq1d 2813 . . . . 5 (𝑎 = (𝑏 + 1) → ((𝐴𝑎) ∈ (Pell14QR‘𝐷) ↔ (𝐴↑(𝑏 + 1)) ∈ (Pell14QR‘𝐷)))
98imbi2d 340 . . . 4 (𝑎 = (𝑏 + 1) → (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (𝐴𝑎) ∈ (Pell14QR‘𝐷)) ↔ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (𝐴↑(𝑏 + 1)) ∈ (Pell14QR‘𝐷))))
10 oveq2 7361 . . . . . 6 (𝑎 = 𝐵 → (𝐴𝑎) = (𝐴𝐵))
1110eleq1d 2813 . . . . 5 (𝑎 = 𝐵 → ((𝐴𝑎) ∈ (Pell14QR‘𝐷) ↔ (𝐴𝐵) ∈ (Pell14QR‘𝐷)))
1211imbi2d 340 . . . 4 (𝑎 = 𝐵 → (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (𝐴𝑎) ∈ (Pell14QR‘𝐷)) ↔ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (𝐴𝐵) ∈ (Pell14QR‘𝐷))))
13 pell14qrre 42830 . . . . . . . 8 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 𝐴 ∈ ℝ)
1413recnd 11162 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 𝐴 ∈ ℂ)
1514exp0d 14065 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (𝐴↑0) = 1)
16 pell14qrne0 42831 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 𝐴 ≠ 0)
1714, 16dividd 11916 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (𝐴 / 𝐴) = 1)
1815, 17eqtr4d 2767 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (𝐴↑0) = (𝐴 / 𝐴))
19 pell14qrdivcl 42838 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (𝐴 / 𝐴) ∈ (Pell14QR‘𝐷))
20193anidm23 1423 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (𝐴 / 𝐴) ∈ (Pell14QR‘𝐷))
2118, 20eqeltrd 2828 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (𝐴↑0) ∈ (Pell14QR‘𝐷))
22143ad2ant2 1134 . . . . . . . 8 ((𝑏 ∈ ℕ0 ∧ (𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ (𝐴𝑏) ∈ (Pell14QR‘𝐷)) → 𝐴 ∈ ℂ)
23 simp1 1136 . . . . . . . 8 ((𝑏 ∈ ℕ0 ∧ (𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ (𝐴𝑏) ∈ (Pell14QR‘𝐷)) → 𝑏 ∈ ℕ0)
2422, 23expp1d 14072 . . . . . . 7 ((𝑏 ∈ ℕ0 ∧ (𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ (𝐴𝑏) ∈ (Pell14QR‘𝐷)) → (𝐴↑(𝑏 + 1)) = ((𝐴𝑏) · 𝐴))
25 simp2l 1200 . . . . . . . 8 ((𝑏 ∈ ℕ0 ∧ (𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ (𝐴𝑏) ∈ (Pell14QR‘𝐷)) → 𝐷 ∈ (ℕ ∖ ◻NN))
26 simp3 1138 . . . . . . . 8 ((𝑏 ∈ ℕ0 ∧ (𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ (𝐴𝑏) ∈ (Pell14QR‘𝐷)) → (𝐴𝑏) ∈ (Pell14QR‘𝐷))
27 simp2r 1201 . . . . . . . 8 ((𝑏 ∈ ℕ0 ∧ (𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ (𝐴𝑏) ∈ (Pell14QR‘𝐷)) → 𝐴 ∈ (Pell14QR‘𝐷))
28 pell14qrmulcl 42836 . . . . . . . 8 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝐴𝑏) ∈ (Pell14QR‘𝐷) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((𝐴𝑏) · 𝐴) ∈ (Pell14QR‘𝐷))
2925, 26, 27, 28syl3anc 1373 . . . . . . 7 ((𝑏 ∈ ℕ0 ∧ (𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ (𝐴𝑏) ∈ (Pell14QR‘𝐷)) → ((𝐴𝑏) · 𝐴) ∈ (Pell14QR‘𝐷))
3024, 29eqeltrd 2828 . . . . . 6 ((𝑏 ∈ ℕ0 ∧ (𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ (𝐴𝑏) ∈ (Pell14QR‘𝐷)) → (𝐴↑(𝑏 + 1)) ∈ (Pell14QR‘𝐷))
31303exp 1119 . . . . 5 (𝑏 ∈ ℕ0 → ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((𝐴𝑏) ∈ (Pell14QR‘𝐷) → (𝐴↑(𝑏 + 1)) ∈ (Pell14QR‘𝐷))))
3231a2d 29 . . . 4 (𝑏 ∈ ℕ0 → (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (𝐴𝑏) ∈ (Pell14QR‘𝐷)) → ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (𝐴↑(𝑏 + 1)) ∈ (Pell14QR‘𝐷))))
333, 6, 9, 12, 21, 32nn0ind 12589 . . 3 (𝐵 ∈ ℕ0 → ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (𝐴𝐵) ∈ (Pell14QR‘𝐷)))
3433expdcom 414 . 2 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐴 ∈ (Pell14QR‘𝐷) → (𝐵 ∈ ℕ0 → (𝐴𝐵) ∈ (Pell14QR‘𝐷))))
35343imp 1110 1 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ 𝐵 ∈ ℕ0) → (𝐴𝐵) ∈ (Pell14QR‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cdif 3902  cfv 6486  (class class class)co 7353  cc 11026  0cc0 11028  1c1 11029   + caddc 11031   · cmul 11033   / cdiv 11795  cn 12146  0cn0 12402  cexp 13986  NNcsquarenn 42809  Pell14QRcpell14qr 42812
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9351  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-seq 13927  df-exp 13987  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-pell14qr 42816  df-pell1234qr 42817
This theorem is referenced by:  pell14qrexpcl  42840
  Copyright terms: Public domain W3C validator