Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pell14qrexpclnn0 Structured version   Visualization version   GIF version

Theorem pell14qrexpclnn0 42983
Description: Lemma for pell14qrexpcl 42984. (Contributed by Stefan O'Rear, 18-Sep-2014.)
Assertion
Ref Expression
pell14qrexpclnn0 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ 𝐵 ∈ ℕ0) → (𝐴𝐵) ∈ (Pell14QR‘𝐷))

Proof of Theorem pell14qrexpclnn0
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7360 . . . . . 6 (𝑎 = 0 → (𝐴𝑎) = (𝐴↑0))
21eleq1d 2818 . . . . 5 (𝑎 = 0 → ((𝐴𝑎) ∈ (Pell14QR‘𝐷) ↔ (𝐴↑0) ∈ (Pell14QR‘𝐷)))
32imbi2d 340 . . . 4 (𝑎 = 0 → (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (𝐴𝑎) ∈ (Pell14QR‘𝐷)) ↔ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (𝐴↑0) ∈ (Pell14QR‘𝐷))))
4 oveq2 7360 . . . . . 6 (𝑎 = 𝑏 → (𝐴𝑎) = (𝐴𝑏))
54eleq1d 2818 . . . . 5 (𝑎 = 𝑏 → ((𝐴𝑎) ∈ (Pell14QR‘𝐷) ↔ (𝐴𝑏) ∈ (Pell14QR‘𝐷)))
65imbi2d 340 . . . 4 (𝑎 = 𝑏 → (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (𝐴𝑎) ∈ (Pell14QR‘𝐷)) ↔ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (𝐴𝑏) ∈ (Pell14QR‘𝐷))))
7 oveq2 7360 . . . . . 6 (𝑎 = (𝑏 + 1) → (𝐴𝑎) = (𝐴↑(𝑏 + 1)))
87eleq1d 2818 . . . . 5 (𝑎 = (𝑏 + 1) → ((𝐴𝑎) ∈ (Pell14QR‘𝐷) ↔ (𝐴↑(𝑏 + 1)) ∈ (Pell14QR‘𝐷)))
98imbi2d 340 . . . 4 (𝑎 = (𝑏 + 1) → (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (𝐴𝑎) ∈ (Pell14QR‘𝐷)) ↔ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (𝐴↑(𝑏 + 1)) ∈ (Pell14QR‘𝐷))))
10 oveq2 7360 . . . . . 6 (𝑎 = 𝐵 → (𝐴𝑎) = (𝐴𝐵))
1110eleq1d 2818 . . . . 5 (𝑎 = 𝐵 → ((𝐴𝑎) ∈ (Pell14QR‘𝐷) ↔ (𝐴𝐵) ∈ (Pell14QR‘𝐷)))
1211imbi2d 340 . . . 4 (𝑎 = 𝐵 → (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (𝐴𝑎) ∈ (Pell14QR‘𝐷)) ↔ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (𝐴𝐵) ∈ (Pell14QR‘𝐷))))
13 pell14qrre 42974 . . . . . . . 8 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 𝐴 ∈ ℝ)
1413recnd 11147 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 𝐴 ∈ ℂ)
1514exp0d 14049 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (𝐴↑0) = 1)
16 pell14qrne0 42975 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 𝐴 ≠ 0)
1714, 16dividd 11902 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (𝐴 / 𝐴) = 1)
1815, 17eqtr4d 2771 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (𝐴↑0) = (𝐴 / 𝐴))
19 pell14qrdivcl 42982 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (𝐴 / 𝐴) ∈ (Pell14QR‘𝐷))
20193anidm23 1423 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (𝐴 / 𝐴) ∈ (Pell14QR‘𝐷))
2118, 20eqeltrd 2833 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (𝐴↑0) ∈ (Pell14QR‘𝐷))
22143ad2ant2 1134 . . . . . . . 8 ((𝑏 ∈ ℕ0 ∧ (𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ (𝐴𝑏) ∈ (Pell14QR‘𝐷)) → 𝐴 ∈ ℂ)
23 simp1 1136 . . . . . . . 8 ((𝑏 ∈ ℕ0 ∧ (𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ (𝐴𝑏) ∈ (Pell14QR‘𝐷)) → 𝑏 ∈ ℕ0)
2422, 23expp1d 14056 . . . . . . 7 ((𝑏 ∈ ℕ0 ∧ (𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ (𝐴𝑏) ∈ (Pell14QR‘𝐷)) → (𝐴↑(𝑏 + 1)) = ((𝐴𝑏) · 𝐴))
25 simp2l 1200 . . . . . . . 8 ((𝑏 ∈ ℕ0 ∧ (𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ (𝐴𝑏) ∈ (Pell14QR‘𝐷)) → 𝐷 ∈ (ℕ ∖ ◻NN))
26 simp3 1138 . . . . . . . 8 ((𝑏 ∈ ℕ0 ∧ (𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ (𝐴𝑏) ∈ (Pell14QR‘𝐷)) → (𝐴𝑏) ∈ (Pell14QR‘𝐷))
27 simp2r 1201 . . . . . . . 8 ((𝑏 ∈ ℕ0 ∧ (𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ (𝐴𝑏) ∈ (Pell14QR‘𝐷)) → 𝐴 ∈ (Pell14QR‘𝐷))
28 pell14qrmulcl 42980 . . . . . . . 8 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝐴𝑏) ∈ (Pell14QR‘𝐷) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((𝐴𝑏) · 𝐴) ∈ (Pell14QR‘𝐷))
2925, 26, 27, 28syl3anc 1373 . . . . . . 7 ((𝑏 ∈ ℕ0 ∧ (𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ (𝐴𝑏) ∈ (Pell14QR‘𝐷)) → ((𝐴𝑏) · 𝐴) ∈ (Pell14QR‘𝐷))
3024, 29eqeltrd 2833 . . . . . 6 ((𝑏 ∈ ℕ0 ∧ (𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ (𝐴𝑏) ∈ (Pell14QR‘𝐷)) → (𝐴↑(𝑏 + 1)) ∈ (Pell14QR‘𝐷))
31303exp 1119 . . . . 5 (𝑏 ∈ ℕ0 → ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((𝐴𝑏) ∈ (Pell14QR‘𝐷) → (𝐴↑(𝑏 + 1)) ∈ (Pell14QR‘𝐷))))
3231a2d 29 . . . 4 (𝑏 ∈ ℕ0 → (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (𝐴𝑏) ∈ (Pell14QR‘𝐷)) → ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (𝐴↑(𝑏 + 1)) ∈ (Pell14QR‘𝐷))))
333, 6, 9, 12, 21, 32nn0ind 12574 . . 3 (𝐵 ∈ ℕ0 → ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (𝐴𝐵) ∈ (Pell14QR‘𝐷)))
3433expdcom 414 . 2 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐴 ∈ (Pell14QR‘𝐷) → (𝐵 ∈ ℕ0 → (𝐴𝐵) ∈ (Pell14QR‘𝐷))))
35343imp 1110 1 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ 𝐵 ∈ ℕ0) → (𝐴𝐵) ∈ (Pell14QR‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  cdif 3895  cfv 6486  (class class class)co 7352  cc 11011  0cc0 11013  1c1 11014   + caddc 11016   · cmul 11018   / cdiv 11781  cn 12132  0cn0 12388  cexp 13970  NNcsquarenn 42953  Pell14QRcpell14qr 42956
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-sup 9333  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-n0 12389  df-z 12476  df-uz 12739  df-rp 12893  df-seq 13911  df-exp 13971  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-pell14qr 42960  df-pell1234qr 42961
This theorem is referenced by:  pell14qrexpcl  42984
  Copyright terms: Public domain W3C validator