Step | Hyp | Ref
| Expression |
1 | | usgrupgr 28431 |
. . . . 5
β’ (πΊ β USGraph β πΊ β
UPGraph) |
2 | | eqid 2732 |
. . . . . 6
β’
(VtxβπΊ) =
(VtxβπΊ) |
3 | | eqid 2732 |
. . . . . 6
β’
(iEdgβπΊ) =
(iEdgβπΊ) |
4 | 2, 3 | upgrf1istrl 28949 |
. . . . 5
β’ (πΊ β UPGraph β (πΉ(TrailsβπΊ)π β (πΉ:(0..^(β―βπΉ))β1-1βdom (iEdgβπΊ) β§ π:(0...(β―βπΉ))βΆ(VtxβπΊ) β§ βπ β (0..^(β―βπΉ))((iEdgβπΊ)β(πΉβπ)) = {(πβπ), (πβ(π + 1))}))) |
5 | 1, 4 | syl 17 |
. . . 4
β’ (πΊ β USGraph β (πΉ(TrailsβπΊ)π β (πΉ:(0..^(β―βπΉ))β1-1βdom (iEdgβπΊ) β§ π:(0...(β―βπΉ))βΆ(VtxβπΊ) β§ βπ β (0..^(β―βπΉ))((iEdgβπΊ)β(πΉβπ)) = {(πβπ), (πβ(π + 1))}))) |
6 | | eqidd 2733 |
. . . . . . . . . . . 12
β’
((β―βπΉ) =
2 β πΉ = πΉ) |
7 | | oveq2 7413 |
. . . . . . . . . . . . 13
β’
((β―βπΉ) =
2 β (0..^(β―βπΉ)) = (0..^2)) |
8 | | fzo0to2pr 13713 |
. . . . . . . . . . . . 13
β’ (0..^2) =
{0, 1} |
9 | 7, 8 | eqtrdi 2788 |
. . . . . . . . . . . 12
β’
((β―βπΉ) =
2 β (0..^(β―βπΉ)) = {0, 1}) |
10 | | eqidd 2733 |
. . . . . . . . . . . 12
β’
((β―βπΉ) =
2 β dom (iEdgβπΊ)
= dom (iEdgβπΊ)) |
11 | 6, 9, 10 | f1eq123d 6822 |
. . . . . . . . . . 11
β’
((β―βπΉ) =
2 β (πΉ:(0..^(β―βπΉ))β1-1βdom (iEdgβπΊ) β πΉ:{0, 1}β1-1βdom (iEdgβπΊ))) |
12 | 9 | raleqdv 3325 |
. . . . . . . . . . . 12
β’
((β―βπΉ) =
2 β (βπ β
(0..^(β―βπΉ))((iEdgβπΊ)β(πΉβπ)) = {(πβπ), (πβ(π + 1))} β βπ β {0, 1} ((iEdgβπΊ)β(πΉβπ)) = {(πβπ), (πβ(π + 1))})) |
13 | | 2wlklem 28913 |
. . . . . . . . . . . 12
β’
(βπ β
{0, 1} ((iEdgβπΊ)β(πΉβπ)) = {(πβπ), (πβ(π + 1))} β (((iEdgβπΊ)β(πΉβ0)) = {(πβ0), (πβ1)} β§ ((iEdgβπΊ)β(πΉβ1)) = {(πβ1), (πβ2)})) |
14 | 12, 13 | bitrdi 286 |
. . . . . . . . . . 11
β’
((β―βπΉ) =
2 β (βπ β
(0..^(β―βπΉ))((iEdgβπΊ)β(πΉβπ)) = {(πβπ), (πβ(π + 1))} β (((iEdgβπΊ)β(πΉβ0)) = {(πβ0), (πβ1)} β§ ((iEdgβπΊ)β(πΉβ1)) = {(πβ1), (πβ2)}))) |
15 | 11, 14 | anbi12d 631 |
. . . . . . . . . 10
β’
((β―βπΉ) =
2 β ((πΉ:(0..^(β―βπΉ))β1-1βdom (iEdgβπΊ) β§ βπ β (0..^(β―βπΉ))((iEdgβπΊ)β(πΉβπ)) = {(πβπ), (πβ(π + 1))}) β (πΉ:{0, 1}β1-1βdom (iEdgβπΊ) β§ (((iEdgβπΊ)β(πΉβ0)) = {(πβ0), (πβ1)} β§ ((iEdgβπΊ)β(πΉβ1)) = {(πβ1), (πβ2)})))) |
16 | 15 | adantl 482 |
. . . . . . . . 9
β’ ((πΊ β USGraph β§
(β―βπΉ) = 2)
β ((πΉ:(0..^(β―βπΉ))β1-1βdom (iEdgβπΊ) β§ βπ β (0..^(β―βπΉ))((iEdgβπΊ)β(πΉβπ)) = {(πβπ), (πβ(π + 1))}) β (πΉ:{0, 1}β1-1βdom (iEdgβπΊ) β§ (((iEdgβπΊ)β(πΉβ0)) = {(πβ0), (πβ1)} β§ ((iEdgβπΊ)β(πΉβ1)) = {(πβ1), (πβ2)})))) |
17 | | c0ex 11204 |
. . . . . . . . . . . . . 14
β’ 0 β
V |
18 | | 1ex 11206 |
. . . . . . . . . . . . . 14
β’ 1 β
V |
19 | 17, 18 | pm3.2i 471 |
. . . . . . . . . . . . 13
β’ (0 β
V β§ 1 β V) |
20 | | 0ne1 12279 |
. . . . . . . . . . . . 13
β’ 0 β
1 |
21 | | eqid 2732 |
. . . . . . . . . . . . . 14
β’ {0, 1} =
{0, 1} |
22 | 21 | f12dfv 7267 |
. . . . . . . . . . . . 13
β’ (((0
β V β§ 1 β V) β§ 0 β 1) β (πΉ:{0, 1}β1-1βdom (iEdgβπΊ) β (πΉ:{0, 1}βΆdom (iEdgβπΊ) β§ (πΉβ0) β (πΉβ1)))) |
23 | 19, 20, 22 | mp2an 690 |
. . . . . . . . . . . 12
β’ (πΉ:{0, 1}β1-1βdom (iEdgβπΊ) β (πΉ:{0, 1}βΆdom (iEdgβπΊ) β§ (πΉβ0) β (πΉβ1))) |
24 | | eqid 2732 |
. . . . . . . . . . . . . 14
β’
(EdgβπΊ) =
(EdgβπΊ) |
25 | 3, 24 | usgrf1oedg 28453 |
. . . . . . . . . . . . 13
β’ (πΊ β USGraph β
(iEdgβπΊ):dom
(iEdgβπΊ)β1-1-ontoβ(EdgβπΊ)) |
26 | | f1of1 6829 |
. . . . . . . . . . . . . 14
β’
((iEdgβπΊ):dom
(iEdgβπΊ)β1-1-ontoβ(EdgβπΊ) β (iEdgβπΊ):dom (iEdgβπΊ)β1-1β(EdgβπΊ)) |
27 | | id 22 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ (πΉ:{0, 1}βΆdom
(iEdgβπΊ) β πΉ:{0, 1}βΆdom
(iEdgβπΊ)) |
28 | 17 | prid1 4765 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’ 0 β
{0, 1} |
29 | 28 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ (πΉ:{0, 1}βΆdom
(iEdgβπΊ) β 0
β {0, 1}) |
30 | 27, 29 | ffvelcdmd 7084 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (πΉ:{0, 1}βΆdom
(iEdgβπΊ) β
(πΉβ0) β dom
(iEdgβπΊ)) |
31 | 18 | prid2 4766 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’ 1 β
{0, 1} |
32 | 31 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ (πΉ:{0, 1}βΆdom
(iEdgβπΊ) β 1
β {0, 1}) |
33 | 27, 32 | ffvelcdmd 7084 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (πΉ:{0, 1}βΆdom
(iEdgβπΊ) β
(πΉβ1) β dom
(iEdgβπΊ)) |
34 | 30, 33 | jca 512 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (πΉ:{0, 1}βΆdom
(iEdgβπΊ) β
((πΉβ0) β dom
(iEdgβπΊ) β§ (πΉβ1) β dom
(iEdgβπΊ))) |
35 | 34 | anim1ci 616 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((πΉ:{0, 1}βΆdom
(iEdgβπΊ) β§
(iEdgβπΊ):dom
(iEdgβπΊ)β1-1β(EdgβπΊ)) β ((iEdgβπΊ):dom (iEdgβπΊ)β1-1β(EdgβπΊ) β§ ((πΉβ0) β dom (iEdgβπΊ) β§ (πΉβ1) β dom (iEdgβπΊ)))) |
36 | | f1veqaeq 7252 |
. . . . . . . . . . . . . . . . . . . 20
β’
(((iEdgβπΊ):dom
(iEdgβπΊ)β1-1β(EdgβπΊ) β§ ((πΉβ0) β dom (iEdgβπΊ) β§ (πΉβ1) β dom (iEdgβπΊ))) β (((iEdgβπΊ)β(πΉβ0)) = ((iEdgβπΊ)β(πΉβ1)) β (πΉβ0) = (πΉβ1))) |
37 | 35, 36 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
β’ ((πΉ:{0, 1}βΆdom
(iEdgβπΊ) β§
(iEdgβπΊ):dom
(iEdgβπΊ)β1-1β(EdgβπΊ)) β (((iEdgβπΊ)β(πΉβ0)) = ((iEdgβπΊ)β(πΉβ1)) β (πΉβ0) = (πΉβ1))) |
38 | 37 | necon3d 2961 |
. . . . . . . . . . . . . . . . . 18
β’ ((πΉ:{0, 1}βΆdom
(iEdgβπΊ) β§
(iEdgβπΊ):dom
(iEdgβπΊ)β1-1β(EdgβπΊ)) β ((πΉβ0) β (πΉβ1) β ((iEdgβπΊ)β(πΉβ0)) β ((iEdgβπΊ)β(πΉβ1)))) |
39 | | simpl 483 |
. . . . . . . . . . . . . . . . . . . . . 22
β’
((((iEdgβπΊ)β(πΉβ0)) = {(πβ0), (πβ1)} β§ ((iEdgβπΊ)β(πΉβ1)) = {(πβ1), (πβ2)}) β ((iEdgβπΊ)β(πΉβ0)) = {(πβ0), (πβ1)}) |
40 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . . . 22
β’
((((iEdgβπΊ)β(πΉβ0)) = {(πβ0), (πβ1)} β§ ((iEdgβπΊ)β(πΉβ1)) = {(πβ1), (πβ2)}) β ((iEdgβπΊ)β(πΉβ1)) = {(πβ1), (πβ2)}) |
41 | 39, 40 | neeq12d 3002 |
. . . . . . . . . . . . . . . . . . . . 21
β’
((((iEdgβπΊ)β(πΉβ0)) = {(πβ0), (πβ1)} β§ ((iEdgβπΊ)β(πΉβ1)) = {(πβ1), (πβ2)}) β (((iEdgβπΊ)β(πΉβ0)) β ((iEdgβπΊ)β(πΉβ1)) β {(πβ0), (πβ1)} β {(πβ1), (πβ2)})) |
42 | | preq1 4736 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ ((πβ0) = (πβ2) β {(πβ0), (πβ1)} = {(πβ2), (πβ1)}) |
43 | | prcom 4735 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ {(πβ2), (πβ1)} = {(πβ1), (πβ2)} |
44 | 42, 43 | eqtrdi 2788 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ ((πβ0) = (πβ2) β {(πβ0), (πβ1)} = {(πβ1), (πβ2)}) |
45 | 44 | necon3i 2973 |
. . . . . . . . . . . . . . . . . . . . 21
β’ ({(πβ0), (πβ1)} β {(πβ1), (πβ2)} β (πβ0) β (πβ2)) |
46 | 41, 45 | syl6bi 252 |
. . . . . . . . . . . . . . . . . . . 20
β’
((((iEdgβπΊ)β(πΉβ0)) = {(πβ0), (πβ1)} β§ ((iEdgβπΊ)β(πΉβ1)) = {(πβ1), (πβ2)}) β (((iEdgβπΊ)β(πΉβ0)) β ((iEdgβπΊ)β(πΉβ1)) β (πβ0) β (πβ2))) |
47 | 46 | com12 32 |
. . . . . . . . . . . . . . . . . . 19
β’
(((iEdgβπΊ)β(πΉβ0)) β ((iEdgβπΊ)β(πΉβ1)) β ((((iEdgβπΊ)β(πΉβ0)) = {(πβ0), (πβ1)} β§ ((iEdgβπΊ)β(πΉβ1)) = {(πβ1), (πβ2)}) β (πβ0) β (πβ2))) |
48 | 47 | a1d 25 |
. . . . . . . . . . . . . . . . . 18
β’
(((iEdgβπΊ)β(πΉβ0)) β ((iEdgβπΊ)β(πΉβ1)) β (πΊ β USGraph β ((((iEdgβπΊ)β(πΉβ0)) = {(πβ0), (πβ1)} β§ ((iEdgβπΊ)β(πΉβ1)) = {(πβ1), (πβ2)}) β (πβ0) β (πβ2)))) |
49 | 38, 48 | syl6 35 |
. . . . . . . . . . . . . . . . 17
β’ ((πΉ:{0, 1}βΆdom
(iEdgβπΊ) β§
(iEdgβπΊ):dom
(iEdgβπΊ)β1-1β(EdgβπΊ)) β ((πΉβ0) β (πΉβ1) β (πΊ β USGraph β ((((iEdgβπΊ)β(πΉβ0)) = {(πβ0), (πβ1)} β§ ((iEdgβπΊ)β(πΉβ1)) = {(πβ1), (πβ2)}) β (πβ0) β (πβ2))))) |
50 | 49 | expcom 414 |
. . . . . . . . . . . . . . . 16
β’
((iEdgβπΊ):dom
(iEdgβπΊ)β1-1β(EdgβπΊ) β (πΉ:{0, 1}βΆdom (iEdgβπΊ) β ((πΉβ0) β (πΉβ1) β (πΊ β USGraph β ((((iEdgβπΊ)β(πΉβ0)) = {(πβ0), (πβ1)} β§ ((iEdgβπΊ)β(πΉβ1)) = {(πβ1), (πβ2)}) β (πβ0) β (πβ2)))))) |
51 | 50 | impd 411 |
. . . . . . . . . . . . . . 15
β’
((iEdgβπΊ):dom
(iEdgβπΊ)β1-1β(EdgβπΊ) β ((πΉ:{0, 1}βΆdom (iEdgβπΊ) β§ (πΉβ0) β (πΉβ1)) β (πΊ β USGraph β ((((iEdgβπΊ)β(πΉβ0)) = {(πβ0), (πβ1)} β§ ((iEdgβπΊ)β(πΉβ1)) = {(πβ1), (πβ2)}) β (πβ0) β (πβ2))))) |
52 | 51 | com23 86 |
. . . . . . . . . . . . . 14
β’
((iEdgβπΊ):dom
(iEdgβπΊ)β1-1β(EdgβπΊ) β (πΊ β USGraph β ((πΉ:{0, 1}βΆdom (iEdgβπΊ) β§ (πΉβ0) β (πΉβ1)) β ((((iEdgβπΊ)β(πΉβ0)) = {(πβ0), (πβ1)} β§ ((iEdgβπΊ)β(πΉβ1)) = {(πβ1), (πβ2)}) β (πβ0) β (πβ2))))) |
53 | 26, 52 | syl 17 |
. . . . . . . . . . . . 13
β’
((iEdgβπΊ):dom
(iEdgβπΊ)β1-1-ontoβ(EdgβπΊ) β (πΊ β USGraph β ((πΉ:{0, 1}βΆdom (iEdgβπΊ) β§ (πΉβ0) β (πΉβ1)) β ((((iEdgβπΊ)β(πΉβ0)) = {(πβ0), (πβ1)} β§ ((iEdgβπΊ)β(πΉβ1)) = {(πβ1), (πβ2)}) β (πβ0) β (πβ2))))) |
54 | 25, 53 | mpcom 38 |
. . . . . . . . . . . 12
β’ (πΊ β USGraph β ((πΉ:{0, 1}βΆdom
(iEdgβπΊ) β§ (πΉβ0) β (πΉβ1)) β
((((iEdgβπΊ)β(πΉβ0)) = {(πβ0), (πβ1)} β§ ((iEdgβπΊ)β(πΉβ1)) = {(πβ1), (πβ2)}) β (πβ0) β (πβ2)))) |
55 | 23, 54 | biimtrid 241 |
. . . . . . . . . . 11
β’ (πΊ β USGraph β (πΉ:{0, 1}β1-1βdom (iEdgβπΊ) β ((((iEdgβπΊ)β(πΉβ0)) = {(πβ0), (πβ1)} β§ ((iEdgβπΊ)β(πΉβ1)) = {(πβ1), (πβ2)}) β (πβ0) β (πβ2)))) |
56 | 55 | impd 411 |
. . . . . . . . . 10
β’ (πΊ β USGraph β ((πΉ:{0, 1}β1-1βdom (iEdgβπΊ) β§ (((iEdgβπΊ)β(πΉβ0)) = {(πβ0), (πβ1)} β§ ((iEdgβπΊ)β(πΉβ1)) = {(πβ1), (πβ2)})) β (πβ0) β (πβ2))) |
57 | 56 | adantr 481 |
. . . . . . . . 9
β’ ((πΊ β USGraph β§
(β―βπΉ) = 2)
β ((πΉ:{0,
1}β1-1βdom (iEdgβπΊ) β§ (((iEdgβπΊ)β(πΉβ0)) = {(πβ0), (πβ1)} β§ ((iEdgβπΊ)β(πΉβ1)) = {(πβ1), (πβ2)})) β (πβ0) β (πβ2))) |
58 | 16, 57 | sylbid 239 |
. . . . . . . 8
β’ ((πΊ β USGraph β§
(β―βπΉ) = 2)
β ((πΉ:(0..^(β―βπΉ))β1-1βdom (iEdgβπΊ) β§ βπ β (0..^(β―βπΉ))((iEdgβπΊ)β(πΉβπ)) = {(πβπ), (πβ(π + 1))}) β (πβ0) β (πβ2))) |
59 | 58 | com12 32 |
. . . . . . 7
β’ ((πΉ:(0..^(β―βπΉ))β1-1βdom (iEdgβπΊ) β§ βπ β (0..^(β―βπΉ))((iEdgβπΊ)β(πΉβπ)) = {(πβπ), (πβ(π + 1))}) β ((πΊ β USGraph β§ (β―βπΉ) = 2) β (πβ0) β (πβ2))) |
60 | 59 | 3adant2 1131 |
. . . . . 6
β’ ((πΉ:(0..^(β―βπΉ))β1-1βdom (iEdgβπΊ) β§ π:(0...(β―βπΉ))βΆ(VtxβπΊ) β§ βπ β (0..^(β―βπΉ))((iEdgβπΊ)β(πΉβπ)) = {(πβπ), (πβ(π + 1))}) β ((πΊ β USGraph β§ (β―βπΉ) = 2) β (πβ0) β (πβ2))) |
61 | 60 | expdcom 415 |
. . . . 5
β’ (πΊ β USGraph β
((β―βπΉ) = 2
β ((πΉ:(0..^(β―βπΉ))β1-1βdom (iEdgβπΊ) β§ π:(0...(β―βπΉ))βΆ(VtxβπΊ) β§ βπ β (0..^(β―βπΉ))((iEdgβπΊ)β(πΉβπ)) = {(πβπ), (πβ(π + 1))}) β (πβ0) β (πβ2)))) |
62 | 61 | com23 86 |
. . . 4
β’ (πΊ β USGraph β ((πΉ:(0..^(β―βπΉ))β1-1βdom (iEdgβπΊ) β§ π:(0...(β―βπΉ))βΆ(VtxβπΊ) β§ βπ β (0..^(β―βπΉ))((iEdgβπΊ)β(πΉβπ)) = {(πβπ), (πβ(π + 1))}) β ((β―βπΉ) = 2 β (πβ0) β (πβ2)))) |
63 | 5, 62 | sylbid 239 |
. . 3
β’ (πΊ β USGraph β (πΉ(TrailsβπΊ)π β ((β―βπΉ) = 2 β (πβ0) β (πβ2)))) |
64 | 63 | com23 86 |
. 2
β’ (πΊ β USGraph β
((β―βπΉ) = 2
β (πΉ(TrailsβπΊ)π β (πβ0) β (πβ2)))) |
65 | 64 | imp 407 |
1
β’ ((πΊ β USGraph β§
(β―βπΉ) = 2)
β (πΉ(TrailsβπΊ)π β (πβ0) β (πβ2))) |