MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgr2trlncl Structured version   Visualization version   GIF version

Theorem usgr2trlncl 28128
Description: In a simple graph, any trail of length 2 does not start and end at the same vertex. (Contributed by AV, 5-Jun-2021.) (Proof shortened by AV, 31-Oct-2021.)
Assertion
Ref Expression
usgr2trlncl ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → (𝐹(Trails‘𝐺)𝑃 → (𝑃‘0) ≠ (𝑃‘2)))

Proof of Theorem usgr2trlncl
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 usgrupgr 27552 . . . . 5 (𝐺 ∈ USGraph → 𝐺 ∈ UPGraph)
2 eqid 2738 . . . . . 6 (Vtx‘𝐺) = (Vtx‘𝐺)
3 eqid 2738 . . . . . 6 (iEdg‘𝐺) = (iEdg‘𝐺)
42, 3upgrf1istrl 28071 . . . . 5 (𝐺 ∈ UPGraph → (𝐹(Trails‘𝐺)𝑃 ↔ (𝐹:(0..^(♯‘𝐹))–1-1→dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
51, 4syl 17 . . . 4 (𝐺 ∈ USGraph → (𝐹(Trails‘𝐺)𝑃 ↔ (𝐹:(0..^(♯‘𝐹))–1-1→dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
6 eqidd 2739 . . . . . . . . . . . 12 ((♯‘𝐹) = 2 → 𝐹 = 𝐹)
7 oveq2 7283 . . . . . . . . . . . . 13 ((♯‘𝐹) = 2 → (0..^(♯‘𝐹)) = (0..^2))
8 fzo0to2pr 13472 . . . . . . . . . . . . 13 (0..^2) = {0, 1}
97, 8eqtrdi 2794 . . . . . . . . . . . 12 ((♯‘𝐹) = 2 → (0..^(♯‘𝐹)) = {0, 1})
10 eqidd 2739 . . . . . . . . . . . 12 ((♯‘𝐹) = 2 → dom (iEdg‘𝐺) = dom (iEdg‘𝐺))
116, 9, 10f1eq123d 6708 . . . . . . . . . . 11 ((♯‘𝐹) = 2 → (𝐹:(0..^(♯‘𝐹))–1-1→dom (iEdg‘𝐺) ↔ 𝐹:{0, 1}–1-1→dom (iEdg‘𝐺)))
129raleqdv 3348 . . . . . . . . . . . 12 ((♯‘𝐹) = 2 → (∀𝑖 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ↔ ∀𝑖 ∈ {0, 1} ((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
13 2wlklem 28035 . . . . . . . . . . . 12 (∀𝑖 ∈ {0, 1} ((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ↔ (((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))
1412, 13bitrdi 287 . . . . . . . . . . 11 ((♯‘𝐹) = 2 → (∀𝑖 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ↔ (((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})))
1511, 14anbi12d 631 . . . . . . . . . 10 ((♯‘𝐹) = 2 → ((𝐹:(0..^(♯‘𝐹))–1-1→dom (iEdg‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ↔ (𝐹:{0, 1}–1-1→dom (iEdg‘𝐺) ∧ (((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))))
1615adantl 482 . . . . . . . . 9 ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → ((𝐹:(0..^(♯‘𝐹))–1-1→dom (iEdg‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ↔ (𝐹:{0, 1}–1-1→dom (iEdg‘𝐺) ∧ (((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))))
17 c0ex 10969 . . . . . . . . . . . . . 14 0 ∈ V
18 1ex 10971 . . . . . . . . . . . . . 14 1 ∈ V
1917, 18pm3.2i 471 . . . . . . . . . . . . 13 (0 ∈ V ∧ 1 ∈ V)
20 0ne1 12044 . . . . . . . . . . . . 13 0 ≠ 1
21 eqid 2738 . . . . . . . . . . . . . 14 {0, 1} = {0, 1}
2221f12dfv 7145 . . . . . . . . . . . . 13 (((0 ∈ V ∧ 1 ∈ V) ∧ 0 ≠ 1) → (𝐹:{0, 1}–1-1→dom (iEdg‘𝐺) ↔ (𝐹:{0, 1}⟶dom (iEdg‘𝐺) ∧ (𝐹‘0) ≠ (𝐹‘1))))
2319, 20, 22mp2an 689 . . . . . . . . . . . 12 (𝐹:{0, 1}–1-1→dom (iEdg‘𝐺) ↔ (𝐹:{0, 1}⟶dom (iEdg‘𝐺) ∧ (𝐹‘0) ≠ (𝐹‘1)))
24 eqid 2738 . . . . . . . . . . . . . 14 (Edg‘𝐺) = (Edg‘𝐺)
253, 24usgrf1oedg 27574 . . . . . . . . . . . . 13 (𝐺 ∈ USGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1-onto→(Edg‘𝐺))
26 f1of1 6715 . . . . . . . . . . . . . 14 ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1-onto→(Edg‘𝐺) → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→(Edg‘𝐺))
27 id 22 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹:{0, 1}⟶dom (iEdg‘𝐺) → 𝐹:{0, 1}⟶dom (iEdg‘𝐺))
2817prid1 4698 . . . . . . . . . . . . . . . . . . . . . . . 24 0 ∈ {0, 1}
2928a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹:{0, 1}⟶dom (iEdg‘𝐺) → 0 ∈ {0, 1})
3027, 29ffvelrnd 6962 . . . . . . . . . . . . . . . . . . . . . 22 (𝐹:{0, 1}⟶dom (iEdg‘𝐺) → (𝐹‘0) ∈ dom (iEdg‘𝐺))
3118prid2 4699 . . . . . . . . . . . . . . . . . . . . . . . 24 1 ∈ {0, 1}
3231a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹:{0, 1}⟶dom (iEdg‘𝐺) → 1 ∈ {0, 1})
3327, 32ffvelrnd 6962 . . . . . . . . . . . . . . . . . . . . . 22 (𝐹:{0, 1}⟶dom (iEdg‘𝐺) → (𝐹‘1) ∈ dom (iEdg‘𝐺))
3430, 33jca 512 . . . . . . . . . . . . . . . . . . . . 21 (𝐹:{0, 1}⟶dom (iEdg‘𝐺) → ((𝐹‘0) ∈ dom (iEdg‘𝐺) ∧ (𝐹‘1) ∈ dom (iEdg‘𝐺)))
3534anim1ci 616 . . . . . . . . . . . . . . . . . . . 20 ((𝐹:{0, 1}⟶dom (iEdg‘𝐺) ∧ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→(Edg‘𝐺)) → ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→(Edg‘𝐺) ∧ ((𝐹‘0) ∈ dom (iEdg‘𝐺) ∧ (𝐹‘1) ∈ dom (iEdg‘𝐺))))
36 f1veqaeq 7130 . . . . . . . . . . . . . . . . . . . 20 (((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→(Edg‘𝐺) ∧ ((𝐹‘0) ∈ dom (iEdg‘𝐺) ∧ (𝐹‘1) ∈ dom (iEdg‘𝐺))) → (((iEdg‘𝐺)‘(𝐹‘0)) = ((iEdg‘𝐺)‘(𝐹‘1)) → (𝐹‘0) = (𝐹‘1)))
3735, 36syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝐹:{0, 1}⟶dom (iEdg‘𝐺) ∧ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→(Edg‘𝐺)) → (((iEdg‘𝐺)‘(𝐹‘0)) = ((iEdg‘𝐺)‘(𝐹‘1)) → (𝐹‘0) = (𝐹‘1)))
3837necon3d 2964 . . . . . . . . . . . . . . . . . 18 ((𝐹:{0, 1}⟶dom (iEdg‘𝐺) ∧ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→(Edg‘𝐺)) → ((𝐹‘0) ≠ (𝐹‘1) → ((iEdg‘𝐺)‘(𝐹‘0)) ≠ ((iEdg‘𝐺)‘(𝐹‘1))))
39 simpl 483 . . . . . . . . . . . . . . . . . . . . . 22 ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → ((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)})
40 simpr 485 . . . . . . . . . . . . . . . . . . . . . 22 ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})
4139, 40neeq12d 3005 . . . . . . . . . . . . . . . . . . . . 21 ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (((iEdg‘𝐺)‘(𝐹‘0)) ≠ ((iEdg‘𝐺)‘(𝐹‘1)) ↔ {(𝑃‘0), (𝑃‘1)} ≠ {(𝑃‘1), (𝑃‘2)}))
42 preq1 4669 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑃‘0) = (𝑃‘2) → {(𝑃‘0), (𝑃‘1)} = {(𝑃‘2), (𝑃‘1)})
43 prcom 4668 . . . . . . . . . . . . . . . . . . . . . . 23 {(𝑃‘2), (𝑃‘1)} = {(𝑃‘1), (𝑃‘2)}
4442, 43eqtrdi 2794 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑃‘0) = (𝑃‘2) → {(𝑃‘0), (𝑃‘1)} = {(𝑃‘1), (𝑃‘2)})
4544necon3i 2976 . . . . . . . . . . . . . . . . . . . . 21 ({(𝑃‘0), (𝑃‘1)} ≠ {(𝑃‘1), (𝑃‘2)} → (𝑃‘0) ≠ (𝑃‘2))
4641, 45syl6bi 252 . . . . . . . . . . . . . . . . . . . 20 ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (((iEdg‘𝐺)‘(𝐹‘0)) ≠ ((iEdg‘𝐺)‘(𝐹‘1)) → (𝑃‘0) ≠ (𝑃‘2)))
4746com12 32 . . . . . . . . . . . . . . . . . . 19 (((iEdg‘𝐺)‘(𝐹‘0)) ≠ ((iEdg‘𝐺)‘(𝐹‘1)) → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (𝑃‘0) ≠ (𝑃‘2)))
4847a1d 25 . . . . . . . . . . . . . . . . . 18 (((iEdg‘𝐺)‘(𝐹‘0)) ≠ ((iEdg‘𝐺)‘(𝐹‘1)) → (𝐺 ∈ USGraph → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (𝑃‘0) ≠ (𝑃‘2))))
4938, 48syl6 35 . . . . . . . . . . . . . . . . 17 ((𝐹:{0, 1}⟶dom (iEdg‘𝐺) ∧ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→(Edg‘𝐺)) → ((𝐹‘0) ≠ (𝐹‘1) → (𝐺 ∈ USGraph → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (𝑃‘0) ≠ (𝑃‘2)))))
5049expcom 414 . . . . . . . . . . . . . . . 16 ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→(Edg‘𝐺) → (𝐹:{0, 1}⟶dom (iEdg‘𝐺) → ((𝐹‘0) ≠ (𝐹‘1) → (𝐺 ∈ USGraph → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (𝑃‘0) ≠ (𝑃‘2))))))
5150impd 411 . . . . . . . . . . . . . . 15 ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→(Edg‘𝐺) → ((𝐹:{0, 1}⟶dom (iEdg‘𝐺) ∧ (𝐹‘0) ≠ (𝐹‘1)) → (𝐺 ∈ USGraph → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (𝑃‘0) ≠ (𝑃‘2)))))
5251com23 86 . . . . . . . . . . . . . 14 ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→(Edg‘𝐺) → (𝐺 ∈ USGraph → ((𝐹:{0, 1}⟶dom (iEdg‘𝐺) ∧ (𝐹‘0) ≠ (𝐹‘1)) → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (𝑃‘0) ≠ (𝑃‘2)))))
5326, 52syl 17 . . . . . . . . . . . . 13 ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1-onto→(Edg‘𝐺) → (𝐺 ∈ USGraph → ((𝐹:{0, 1}⟶dom (iEdg‘𝐺) ∧ (𝐹‘0) ≠ (𝐹‘1)) → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (𝑃‘0) ≠ (𝑃‘2)))))
5425, 53mpcom 38 . . . . . . . . . . . 12 (𝐺 ∈ USGraph → ((𝐹:{0, 1}⟶dom (iEdg‘𝐺) ∧ (𝐹‘0) ≠ (𝐹‘1)) → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (𝑃‘0) ≠ (𝑃‘2))))
5523, 54syl5bi 241 . . . . . . . . . . 11 (𝐺 ∈ USGraph → (𝐹:{0, 1}–1-1→dom (iEdg‘𝐺) → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (𝑃‘0) ≠ (𝑃‘2))))
5655impd 411 . . . . . . . . . 10 (𝐺 ∈ USGraph → ((𝐹:{0, 1}–1-1→dom (iEdg‘𝐺) ∧ (((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) → (𝑃‘0) ≠ (𝑃‘2)))
5756adantr 481 . . . . . . . . 9 ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → ((𝐹:{0, 1}–1-1→dom (iEdg‘𝐺) ∧ (((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) → (𝑃‘0) ≠ (𝑃‘2)))
5816, 57sylbid 239 . . . . . . . 8 ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → ((𝐹:(0..^(♯‘𝐹))–1-1→dom (iEdg‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) → (𝑃‘0) ≠ (𝑃‘2)))
5958com12 32 . . . . . . 7 ((𝐹:(0..^(♯‘𝐹))–1-1→dom (iEdg‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) → ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → (𝑃‘0) ≠ (𝑃‘2)))
60593adant2 1130 . . . . . 6 ((𝐹:(0..^(♯‘𝐹))–1-1→dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) → ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → (𝑃‘0) ≠ (𝑃‘2)))
6160expdcom 415 . . . . 5 (𝐺 ∈ USGraph → ((♯‘𝐹) = 2 → ((𝐹:(0..^(♯‘𝐹))–1-1→dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) → (𝑃‘0) ≠ (𝑃‘2))))
6261com23 86 . . . 4 (𝐺 ∈ USGraph → ((𝐹:(0..^(♯‘𝐹))–1-1→dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) → ((♯‘𝐹) = 2 → (𝑃‘0) ≠ (𝑃‘2))))
635, 62sylbid 239 . . 3 (𝐺 ∈ USGraph → (𝐹(Trails‘𝐺)𝑃 → ((♯‘𝐹) = 2 → (𝑃‘0) ≠ (𝑃‘2))))
6463com23 86 . 2 (𝐺 ∈ USGraph → ((♯‘𝐹) = 2 → (𝐹(Trails‘𝐺)𝑃 → (𝑃‘0) ≠ (𝑃‘2))))
6564imp 407 1 ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → (𝐹(Trails‘𝐺)𝑃 → (𝑃‘0) ≠ (𝑃‘2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  Vcvv 3432  {cpr 4563   class class class wbr 5074  dom cdm 5589  wf 6429  1-1wf1 6430  1-1-ontowf1o 6432  cfv 6433  (class class class)co 7275  0cc0 10871  1c1 10872   + caddc 10874  2c2 12028  ...cfz 13239  ..^cfzo 13382  chash 14044  Vtxcvtx 27366  iEdgciedg 27367  Edgcedg 27417  UPGraphcupgr 27450  USGraphcusgr 27519  Trailsctrls 28058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ifp 1061  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-er 8498  df-map 8617  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-n0 12234  df-xnn0 12306  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383  df-hash 14045  df-word 14218  df-edg 27418  df-uhgr 27428  df-upgr 27452  df-uspgr 27520  df-usgr 27521  df-wlks 27966  df-trls 28060
This theorem is referenced by:  usgr2trlspth  28129  usgr2trlncrct  28171
  Copyright terms: Public domain W3C validator