MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgr2trlncl Structured version   Visualization version   GIF version

Theorem usgr2trlncl 28708
Description: In a simple graph, any trail of length 2 does not start and end at the same vertex. (Contributed by AV, 5-Jun-2021.) (Proof shortened by AV, 31-Oct-2021.)
Assertion
Ref Expression
usgr2trlncl ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → (𝐹(Trails‘𝐺)𝑃 → (𝑃‘0) ≠ (𝑃‘2)))

Proof of Theorem usgr2trlncl
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 usgrupgr 28133 . . . . 5 (𝐺 ∈ USGraph → 𝐺 ∈ UPGraph)
2 eqid 2736 . . . . . 6 (Vtx‘𝐺) = (Vtx‘𝐺)
3 eqid 2736 . . . . . 6 (iEdg‘𝐺) = (iEdg‘𝐺)
42, 3upgrf1istrl 28651 . . . . 5 (𝐺 ∈ UPGraph → (𝐹(Trails‘𝐺)𝑃 ↔ (𝐹:(0..^(♯‘𝐹))–1-1→dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
51, 4syl 17 . . . 4 (𝐺 ∈ USGraph → (𝐹(Trails‘𝐺)𝑃 ↔ (𝐹:(0..^(♯‘𝐹))–1-1→dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
6 eqidd 2737 . . . . . . . . . . . 12 ((♯‘𝐹) = 2 → 𝐹 = 𝐹)
7 oveq2 7365 . . . . . . . . . . . . 13 ((♯‘𝐹) = 2 → (0..^(♯‘𝐹)) = (0..^2))
8 fzo0to2pr 13657 . . . . . . . . . . . . 13 (0..^2) = {0, 1}
97, 8eqtrdi 2792 . . . . . . . . . . . 12 ((♯‘𝐹) = 2 → (0..^(♯‘𝐹)) = {0, 1})
10 eqidd 2737 . . . . . . . . . . . 12 ((♯‘𝐹) = 2 → dom (iEdg‘𝐺) = dom (iEdg‘𝐺))
116, 9, 10f1eq123d 6776 . . . . . . . . . . 11 ((♯‘𝐹) = 2 → (𝐹:(0..^(♯‘𝐹))–1-1→dom (iEdg‘𝐺) ↔ 𝐹:{0, 1}–1-1→dom (iEdg‘𝐺)))
129raleqdv 3313 . . . . . . . . . . . 12 ((♯‘𝐹) = 2 → (∀𝑖 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ↔ ∀𝑖 ∈ {0, 1} ((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
13 2wlklem 28615 . . . . . . . . . . . 12 (∀𝑖 ∈ {0, 1} ((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ↔ (((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))
1412, 13bitrdi 286 . . . . . . . . . . 11 ((♯‘𝐹) = 2 → (∀𝑖 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ↔ (((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})))
1511, 14anbi12d 631 . . . . . . . . . 10 ((♯‘𝐹) = 2 → ((𝐹:(0..^(♯‘𝐹))–1-1→dom (iEdg‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ↔ (𝐹:{0, 1}–1-1→dom (iEdg‘𝐺) ∧ (((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))))
1615adantl 482 . . . . . . . . 9 ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → ((𝐹:(0..^(♯‘𝐹))–1-1→dom (iEdg‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ↔ (𝐹:{0, 1}–1-1→dom (iEdg‘𝐺) ∧ (((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))))
17 c0ex 11149 . . . . . . . . . . . . . 14 0 ∈ V
18 1ex 11151 . . . . . . . . . . . . . 14 1 ∈ V
1917, 18pm3.2i 471 . . . . . . . . . . . . 13 (0 ∈ V ∧ 1 ∈ V)
20 0ne1 12224 . . . . . . . . . . . . 13 0 ≠ 1
21 eqid 2736 . . . . . . . . . . . . . 14 {0, 1} = {0, 1}
2221f12dfv 7219 . . . . . . . . . . . . 13 (((0 ∈ V ∧ 1 ∈ V) ∧ 0 ≠ 1) → (𝐹:{0, 1}–1-1→dom (iEdg‘𝐺) ↔ (𝐹:{0, 1}⟶dom (iEdg‘𝐺) ∧ (𝐹‘0) ≠ (𝐹‘1))))
2319, 20, 22mp2an 690 . . . . . . . . . . . 12 (𝐹:{0, 1}–1-1→dom (iEdg‘𝐺) ↔ (𝐹:{0, 1}⟶dom (iEdg‘𝐺) ∧ (𝐹‘0) ≠ (𝐹‘1)))
24 eqid 2736 . . . . . . . . . . . . . 14 (Edg‘𝐺) = (Edg‘𝐺)
253, 24usgrf1oedg 28155 . . . . . . . . . . . . 13 (𝐺 ∈ USGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1-onto→(Edg‘𝐺))
26 f1of1 6783 . . . . . . . . . . . . . 14 ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1-onto→(Edg‘𝐺) → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→(Edg‘𝐺))
27 id 22 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹:{0, 1}⟶dom (iEdg‘𝐺) → 𝐹:{0, 1}⟶dom (iEdg‘𝐺))
2817prid1 4723 . . . . . . . . . . . . . . . . . . . . . . . 24 0 ∈ {0, 1}
2928a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹:{0, 1}⟶dom (iEdg‘𝐺) → 0 ∈ {0, 1})
3027, 29ffvelcdmd 7036 . . . . . . . . . . . . . . . . . . . . . 22 (𝐹:{0, 1}⟶dom (iEdg‘𝐺) → (𝐹‘0) ∈ dom (iEdg‘𝐺))
3118prid2 4724 . . . . . . . . . . . . . . . . . . . . . . . 24 1 ∈ {0, 1}
3231a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹:{0, 1}⟶dom (iEdg‘𝐺) → 1 ∈ {0, 1})
3327, 32ffvelcdmd 7036 . . . . . . . . . . . . . . . . . . . . . 22 (𝐹:{0, 1}⟶dom (iEdg‘𝐺) → (𝐹‘1) ∈ dom (iEdg‘𝐺))
3430, 33jca 512 . . . . . . . . . . . . . . . . . . . . 21 (𝐹:{0, 1}⟶dom (iEdg‘𝐺) → ((𝐹‘0) ∈ dom (iEdg‘𝐺) ∧ (𝐹‘1) ∈ dom (iEdg‘𝐺)))
3534anim1ci 616 . . . . . . . . . . . . . . . . . . . 20 ((𝐹:{0, 1}⟶dom (iEdg‘𝐺) ∧ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→(Edg‘𝐺)) → ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→(Edg‘𝐺) ∧ ((𝐹‘0) ∈ dom (iEdg‘𝐺) ∧ (𝐹‘1) ∈ dom (iEdg‘𝐺))))
36 f1veqaeq 7204 . . . . . . . . . . . . . . . . . . . 20 (((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→(Edg‘𝐺) ∧ ((𝐹‘0) ∈ dom (iEdg‘𝐺) ∧ (𝐹‘1) ∈ dom (iEdg‘𝐺))) → (((iEdg‘𝐺)‘(𝐹‘0)) = ((iEdg‘𝐺)‘(𝐹‘1)) → (𝐹‘0) = (𝐹‘1)))
3735, 36syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝐹:{0, 1}⟶dom (iEdg‘𝐺) ∧ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→(Edg‘𝐺)) → (((iEdg‘𝐺)‘(𝐹‘0)) = ((iEdg‘𝐺)‘(𝐹‘1)) → (𝐹‘0) = (𝐹‘1)))
3837necon3d 2964 . . . . . . . . . . . . . . . . . 18 ((𝐹:{0, 1}⟶dom (iEdg‘𝐺) ∧ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→(Edg‘𝐺)) → ((𝐹‘0) ≠ (𝐹‘1) → ((iEdg‘𝐺)‘(𝐹‘0)) ≠ ((iEdg‘𝐺)‘(𝐹‘1))))
39 simpl 483 . . . . . . . . . . . . . . . . . . . . . 22 ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → ((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)})
40 simpr 485 . . . . . . . . . . . . . . . . . . . . . 22 ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})
4139, 40neeq12d 3005 . . . . . . . . . . . . . . . . . . . . 21 ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (((iEdg‘𝐺)‘(𝐹‘0)) ≠ ((iEdg‘𝐺)‘(𝐹‘1)) ↔ {(𝑃‘0), (𝑃‘1)} ≠ {(𝑃‘1), (𝑃‘2)}))
42 preq1 4694 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑃‘0) = (𝑃‘2) → {(𝑃‘0), (𝑃‘1)} = {(𝑃‘2), (𝑃‘1)})
43 prcom 4693 . . . . . . . . . . . . . . . . . . . . . . 23 {(𝑃‘2), (𝑃‘1)} = {(𝑃‘1), (𝑃‘2)}
4442, 43eqtrdi 2792 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑃‘0) = (𝑃‘2) → {(𝑃‘0), (𝑃‘1)} = {(𝑃‘1), (𝑃‘2)})
4544necon3i 2976 . . . . . . . . . . . . . . . . . . . . 21 ({(𝑃‘0), (𝑃‘1)} ≠ {(𝑃‘1), (𝑃‘2)} → (𝑃‘0) ≠ (𝑃‘2))
4641, 45syl6bi 252 . . . . . . . . . . . . . . . . . . . 20 ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (((iEdg‘𝐺)‘(𝐹‘0)) ≠ ((iEdg‘𝐺)‘(𝐹‘1)) → (𝑃‘0) ≠ (𝑃‘2)))
4746com12 32 . . . . . . . . . . . . . . . . . . 19 (((iEdg‘𝐺)‘(𝐹‘0)) ≠ ((iEdg‘𝐺)‘(𝐹‘1)) → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (𝑃‘0) ≠ (𝑃‘2)))
4847a1d 25 . . . . . . . . . . . . . . . . . 18 (((iEdg‘𝐺)‘(𝐹‘0)) ≠ ((iEdg‘𝐺)‘(𝐹‘1)) → (𝐺 ∈ USGraph → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (𝑃‘0) ≠ (𝑃‘2))))
4938, 48syl6 35 . . . . . . . . . . . . . . . . 17 ((𝐹:{0, 1}⟶dom (iEdg‘𝐺) ∧ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→(Edg‘𝐺)) → ((𝐹‘0) ≠ (𝐹‘1) → (𝐺 ∈ USGraph → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (𝑃‘0) ≠ (𝑃‘2)))))
5049expcom 414 . . . . . . . . . . . . . . . 16 ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→(Edg‘𝐺) → (𝐹:{0, 1}⟶dom (iEdg‘𝐺) → ((𝐹‘0) ≠ (𝐹‘1) → (𝐺 ∈ USGraph → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (𝑃‘0) ≠ (𝑃‘2))))))
5150impd 411 . . . . . . . . . . . . . . 15 ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→(Edg‘𝐺) → ((𝐹:{0, 1}⟶dom (iEdg‘𝐺) ∧ (𝐹‘0) ≠ (𝐹‘1)) → (𝐺 ∈ USGraph → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (𝑃‘0) ≠ (𝑃‘2)))))
5251com23 86 . . . . . . . . . . . . . 14 ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→(Edg‘𝐺) → (𝐺 ∈ USGraph → ((𝐹:{0, 1}⟶dom (iEdg‘𝐺) ∧ (𝐹‘0) ≠ (𝐹‘1)) → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (𝑃‘0) ≠ (𝑃‘2)))))
5326, 52syl 17 . . . . . . . . . . . . 13 ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1-onto→(Edg‘𝐺) → (𝐺 ∈ USGraph → ((𝐹:{0, 1}⟶dom (iEdg‘𝐺) ∧ (𝐹‘0) ≠ (𝐹‘1)) → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (𝑃‘0) ≠ (𝑃‘2)))))
5425, 53mpcom 38 . . . . . . . . . . . 12 (𝐺 ∈ USGraph → ((𝐹:{0, 1}⟶dom (iEdg‘𝐺) ∧ (𝐹‘0) ≠ (𝐹‘1)) → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (𝑃‘0) ≠ (𝑃‘2))))
5523, 54biimtrid 241 . . . . . . . . . . 11 (𝐺 ∈ USGraph → (𝐹:{0, 1}–1-1→dom (iEdg‘𝐺) → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (𝑃‘0) ≠ (𝑃‘2))))
5655impd 411 . . . . . . . . . 10 (𝐺 ∈ USGraph → ((𝐹:{0, 1}–1-1→dom (iEdg‘𝐺) ∧ (((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) → (𝑃‘0) ≠ (𝑃‘2)))
5756adantr 481 . . . . . . . . 9 ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → ((𝐹:{0, 1}–1-1→dom (iEdg‘𝐺) ∧ (((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) → (𝑃‘0) ≠ (𝑃‘2)))
5816, 57sylbid 239 . . . . . . . 8 ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → ((𝐹:(0..^(♯‘𝐹))–1-1→dom (iEdg‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) → (𝑃‘0) ≠ (𝑃‘2)))
5958com12 32 . . . . . . 7 ((𝐹:(0..^(♯‘𝐹))–1-1→dom (iEdg‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) → ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → (𝑃‘0) ≠ (𝑃‘2)))
60593adant2 1131 . . . . . 6 ((𝐹:(0..^(♯‘𝐹))–1-1→dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) → ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → (𝑃‘0) ≠ (𝑃‘2)))
6160expdcom 415 . . . . 5 (𝐺 ∈ USGraph → ((♯‘𝐹) = 2 → ((𝐹:(0..^(♯‘𝐹))–1-1→dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) → (𝑃‘0) ≠ (𝑃‘2))))
6261com23 86 . . . 4 (𝐺 ∈ USGraph → ((𝐹:(0..^(♯‘𝐹))–1-1→dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) → ((♯‘𝐹) = 2 → (𝑃‘0) ≠ (𝑃‘2))))
635, 62sylbid 239 . . 3 (𝐺 ∈ USGraph → (𝐹(Trails‘𝐺)𝑃 → ((♯‘𝐹) = 2 → (𝑃‘0) ≠ (𝑃‘2))))
6463com23 86 . 2 (𝐺 ∈ USGraph → ((♯‘𝐹) = 2 → (𝐹(Trails‘𝐺)𝑃 → (𝑃‘0) ≠ (𝑃‘2))))
6564imp 407 1 ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → (𝐹(Trails‘𝐺)𝑃 → (𝑃‘0) ≠ (𝑃‘2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wral 3064  Vcvv 3445  {cpr 4588   class class class wbr 5105  dom cdm 5633  wf 6492  1-1wf1 6493  1-1-ontowf1o 6495  cfv 6496  (class class class)co 7357  0cc0 11051  1c1 11052   + caddc 11054  2c2 12208  ...cfz 13424  ..^cfzo 13567  chash 14230  Vtxcvtx 27947  iEdgciedg 27948  Edgcedg 27998  UPGraphcupgr 28031  USGraphcusgr 28100  Trailsctrls 28638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-ifp 1062  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-oadd 8416  df-er 8648  df-map 8767  df-pm 8768  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-dju 9837  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-n0 12414  df-xnn0 12486  df-z 12500  df-uz 12764  df-fz 13425  df-fzo 13568  df-hash 14231  df-word 14403  df-edg 27999  df-uhgr 28009  df-upgr 28033  df-uspgr 28101  df-usgr 28102  df-wlks 28547  df-trls 28640
This theorem is referenced by:  usgr2trlspth  28709  usgr2trlncrct  28751
  Copyright terms: Public domain W3C validator