MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expmul Structured version   Visualization version   GIF version

Theorem expmul 14130
Description: Product of exponents law for nonnegative integer exponentiation. Proposition 10-4.2(b) of [Gleason] p. 135, restricted to nonnegative integer exponents. (Contributed by NM, 4-Jan-2006.)
Assertion
Ref Expression
expmul ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐴↑(𝑀 · 𝑁)) = ((𝐴𝑀)↑𝑁))

Proof of Theorem expmul
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7418 . . . . . . 7 (𝑗 = 0 → (𝑀 · 𝑗) = (𝑀 · 0))
21oveq2d 7426 . . . . . 6 (𝑗 = 0 → (𝐴↑(𝑀 · 𝑗)) = (𝐴↑(𝑀 · 0)))
3 oveq2 7418 . . . . . 6 (𝑗 = 0 → ((𝐴𝑀)↑𝑗) = ((𝐴𝑀)↑0))
42, 3eqeq12d 2752 . . . . 5 (𝑗 = 0 → ((𝐴↑(𝑀 · 𝑗)) = ((𝐴𝑀)↑𝑗) ↔ (𝐴↑(𝑀 · 0)) = ((𝐴𝑀)↑0)))
54imbi2d 340 . . . 4 (𝑗 = 0 → (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 · 𝑗)) = ((𝐴𝑀)↑𝑗)) ↔ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 · 0)) = ((𝐴𝑀)↑0))))
6 oveq2 7418 . . . . . . 7 (𝑗 = 𝑘 → (𝑀 · 𝑗) = (𝑀 · 𝑘))
76oveq2d 7426 . . . . . 6 (𝑗 = 𝑘 → (𝐴↑(𝑀 · 𝑗)) = (𝐴↑(𝑀 · 𝑘)))
8 oveq2 7418 . . . . . 6 (𝑗 = 𝑘 → ((𝐴𝑀)↑𝑗) = ((𝐴𝑀)↑𝑘))
97, 8eqeq12d 2752 . . . . 5 (𝑗 = 𝑘 → ((𝐴↑(𝑀 · 𝑗)) = ((𝐴𝑀)↑𝑗) ↔ (𝐴↑(𝑀 · 𝑘)) = ((𝐴𝑀)↑𝑘)))
109imbi2d 340 . . . 4 (𝑗 = 𝑘 → (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 · 𝑗)) = ((𝐴𝑀)↑𝑗)) ↔ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 · 𝑘)) = ((𝐴𝑀)↑𝑘))))
11 oveq2 7418 . . . . . . 7 (𝑗 = (𝑘 + 1) → (𝑀 · 𝑗) = (𝑀 · (𝑘 + 1)))
1211oveq2d 7426 . . . . . 6 (𝑗 = (𝑘 + 1) → (𝐴↑(𝑀 · 𝑗)) = (𝐴↑(𝑀 · (𝑘 + 1))))
13 oveq2 7418 . . . . . 6 (𝑗 = (𝑘 + 1) → ((𝐴𝑀)↑𝑗) = ((𝐴𝑀)↑(𝑘 + 1)))
1412, 13eqeq12d 2752 . . . . 5 (𝑗 = (𝑘 + 1) → ((𝐴↑(𝑀 · 𝑗)) = ((𝐴𝑀)↑𝑗) ↔ (𝐴↑(𝑀 · (𝑘 + 1))) = ((𝐴𝑀)↑(𝑘 + 1))))
1514imbi2d 340 . . . 4 (𝑗 = (𝑘 + 1) → (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 · 𝑗)) = ((𝐴𝑀)↑𝑗)) ↔ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 · (𝑘 + 1))) = ((𝐴𝑀)↑(𝑘 + 1)))))
16 oveq2 7418 . . . . . . 7 (𝑗 = 𝑁 → (𝑀 · 𝑗) = (𝑀 · 𝑁))
1716oveq2d 7426 . . . . . 6 (𝑗 = 𝑁 → (𝐴↑(𝑀 · 𝑗)) = (𝐴↑(𝑀 · 𝑁)))
18 oveq2 7418 . . . . . 6 (𝑗 = 𝑁 → ((𝐴𝑀)↑𝑗) = ((𝐴𝑀)↑𝑁))
1917, 18eqeq12d 2752 . . . . 5 (𝑗 = 𝑁 → ((𝐴↑(𝑀 · 𝑗)) = ((𝐴𝑀)↑𝑗) ↔ (𝐴↑(𝑀 · 𝑁)) = ((𝐴𝑀)↑𝑁)))
2019imbi2d 340 . . . 4 (𝑗 = 𝑁 → (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 · 𝑗)) = ((𝐴𝑀)↑𝑗)) ↔ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 · 𝑁)) = ((𝐴𝑀)↑𝑁))))
21 nn0cn 12516 . . . . . . . 8 (𝑀 ∈ ℕ0𝑀 ∈ ℂ)
2221mul01d 11439 . . . . . . 7 (𝑀 ∈ ℕ0 → (𝑀 · 0) = 0)
2322oveq2d 7426 . . . . . 6 (𝑀 ∈ ℕ0 → (𝐴↑(𝑀 · 0)) = (𝐴↑0))
24 exp0 14088 . . . . . 6 (𝐴 ∈ ℂ → (𝐴↑0) = 1)
2523, 24sylan9eqr 2793 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 · 0)) = 1)
26 expcl 14102 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴𝑀) ∈ ℂ)
27 exp0 14088 . . . . . 6 ((𝐴𝑀) ∈ ℂ → ((𝐴𝑀)↑0) = 1)
2826, 27syl 17 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → ((𝐴𝑀)↑0) = 1)
2925, 28eqtr4d 2774 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 · 0)) = ((𝐴𝑀)↑0))
30 oveq1 7417 . . . . . . 7 ((𝐴↑(𝑀 · 𝑘)) = ((𝐴𝑀)↑𝑘) → ((𝐴↑(𝑀 · 𝑘)) · (𝐴𝑀)) = (((𝐴𝑀)↑𝑘) · (𝐴𝑀)))
31 nn0cn 12516 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
32 ax-1cn 11192 . . . . . . . . . . . . . 14 1 ∈ ℂ
33 adddi 11223 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℂ ∧ 𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑀 · (𝑘 + 1)) = ((𝑀 · 𝑘) + (𝑀 · 1)))
3432, 33mp3an3 1452 . . . . . . . . . . . . 13 ((𝑀 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝑀 · (𝑘 + 1)) = ((𝑀 · 𝑘) + (𝑀 · 1)))
35 mulrid 11238 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℂ → (𝑀 · 1) = 𝑀)
3635adantr 480 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝑀 · 1) = 𝑀)
3736oveq2d 7426 . . . . . . . . . . . . 13 ((𝑀 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((𝑀 · 𝑘) + (𝑀 · 1)) = ((𝑀 · 𝑘) + 𝑀))
3834, 37eqtrd 2771 . . . . . . . . . . . 12 ((𝑀 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝑀 · (𝑘 + 1)) = ((𝑀 · 𝑘) + 𝑀))
3921, 31, 38syl2an 596 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑀 · (𝑘 + 1)) = ((𝑀 · 𝑘) + 𝑀))
4039adantll 714 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝑀 · (𝑘 + 1)) = ((𝑀 · 𝑘) + 𝑀))
4140oveq2d 7426 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐴↑(𝑀 · (𝑘 + 1))) = (𝐴↑((𝑀 · 𝑘) + 𝑀)))
42 simpll 766 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ ℂ)
43 nn0mulcl 12542 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑀 · 𝑘) ∈ ℕ0)
4443adantll 714 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝑀 · 𝑘) ∈ ℕ0)
45 simplr 768 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝑀 ∈ ℕ0)
46 expadd 14127 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (𝑀 · 𝑘) ∈ ℕ0𝑀 ∈ ℕ0) → (𝐴↑((𝑀 · 𝑘) + 𝑀)) = ((𝐴↑(𝑀 · 𝑘)) · (𝐴𝑀)))
4742, 44, 45, 46syl3anc 1373 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐴↑((𝑀 · 𝑘) + 𝑀)) = ((𝐴↑(𝑀 · 𝑘)) · (𝐴𝑀)))
4841, 47eqtrd 2771 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐴↑(𝑀 · (𝑘 + 1))) = ((𝐴↑(𝑀 · 𝑘)) · (𝐴𝑀)))
49 expp1 14091 . . . . . . . . 9 (((𝐴𝑀) ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑀)↑(𝑘 + 1)) = (((𝐴𝑀)↑𝑘) · (𝐴𝑀)))
5026, 49sylan 580 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑀)↑(𝑘 + 1)) = (((𝐴𝑀)↑𝑘) · (𝐴𝑀)))
5148, 50eqeq12d 2752 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝐴↑(𝑀 · (𝑘 + 1))) = ((𝐴𝑀)↑(𝑘 + 1)) ↔ ((𝐴↑(𝑀 · 𝑘)) · (𝐴𝑀)) = (((𝐴𝑀)↑𝑘) · (𝐴𝑀))))
5230, 51imbitrrid 246 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝐴↑(𝑀 · 𝑘)) = ((𝐴𝑀)↑𝑘) → (𝐴↑(𝑀 · (𝑘 + 1))) = ((𝐴𝑀)↑(𝑘 + 1))))
5352expcom 413 . . . . 5 (𝑘 ∈ ℕ0 → ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → ((𝐴↑(𝑀 · 𝑘)) = ((𝐴𝑀)↑𝑘) → (𝐴↑(𝑀 · (𝑘 + 1))) = ((𝐴𝑀)↑(𝑘 + 1)))))
5453a2d 29 . . . 4 (𝑘 ∈ ℕ0 → (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 · 𝑘)) = ((𝐴𝑀)↑𝑘)) → ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 · (𝑘 + 1))) = ((𝐴𝑀)↑(𝑘 + 1)))))
555, 10, 15, 20, 29, 54nn0ind 12693 . . 3 (𝑁 ∈ ℕ0 → ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 · 𝑁)) = ((𝐴𝑀)↑𝑁)))
5655expdcom 414 . 2 (𝐴 ∈ ℂ → (𝑀 ∈ ℕ0 → (𝑁 ∈ ℕ0 → (𝐴↑(𝑀 · 𝑁)) = ((𝐴𝑀)↑𝑁))))
57563imp 1110 1 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐴↑(𝑀 · 𝑁)) = ((𝐴𝑀)↑𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  (class class class)co 7410  cc 11132  0cc0 11134  1c1 11135   + caddc 11137   · cmul 11139  0cn0 12506  cexp 14084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-n0 12507  df-z 12594  df-uz 12858  df-seq 14025  df-exp 14085
This theorem is referenced by:  expmulz  14131  expmuld  14172  expnass  14231  mcubic  26814  quart1  26823  log2cnv  26911  log2ublem2  26914  log2ub  26916  basellem3  27050  bclbnd  27248  cos9thpiminplylem4  33824  cos9thpiminplylem5  33825  hgt750lemd  34685  hgt750lem  34688  fmtnoprmfac1lem  47545  41prothprmlem2  47599
  Copyright terms: Public domain W3C validator