MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expmul Structured version   Visualization version   GIF version

Theorem expmul 14145
Description: Product of exponents law for nonnegative integer exponentiation. Proposition 10-4.2(b) of [Gleason] p. 135, restricted to nonnegative integer exponents. (Contributed by NM, 4-Jan-2006.)
Assertion
Ref Expression
expmul ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐴↑(𝑀 · 𝑁)) = ((𝐴𝑀)↑𝑁))

Proof of Theorem expmul
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7439 . . . . . . 7 (𝑗 = 0 → (𝑀 · 𝑗) = (𝑀 · 0))
21oveq2d 7447 . . . . . 6 (𝑗 = 0 → (𝐴↑(𝑀 · 𝑗)) = (𝐴↑(𝑀 · 0)))
3 oveq2 7439 . . . . . 6 (𝑗 = 0 → ((𝐴𝑀)↑𝑗) = ((𝐴𝑀)↑0))
42, 3eqeq12d 2751 . . . . 5 (𝑗 = 0 → ((𝐴↑(𝑀 · 𝑗)) = ((𝐴𝑀)↑𝑗) ↔ (𝐴↑(𝑀 · 0)) = ((𝐴𝑀)↑0)))
54imbi2d 340 . . . 4 (𝑗 = 0 → (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 · 𝑗)) = ((𝐴𝑀)↑𝑗)) ↔ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 · 0)) = ((𝐴𝑀)↑0))))
6 oveq2 7439 . . . . . . 7 (𝑗 = 𝑘 → (𝑀 · 𝑗) = (𝑀 · 𝑘))
76oveq2d 7447 . . . . . 6 (𝑗 = 𝑘 → (𝐴↑(𝑀 · 𝑗)) = (𝐴↑(𝑀 · 𝑘)))
8 oveq2 7439 . . . . . 6 (𝑗 = 𝑘 → ((𝐴𝑀)↑𝑗) = ((𝐴𝑀)↑𝑘))
97, 8eqeq12d 2751 . . . . 5 (𝑗 = 𝑘 → ((𝐴↑(𝑀 · 𝑗)) = ((𝐴𝑀)↑𝑗) ↔ (𝐴↑(𝑀 · 𝑘)) = ((𝐴𝑀)↑𝑘)))
109imbi2d 340 . . . 4 (𝑗 = 𝑘 → (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 · 𝑗)) = ((𝐴𝑀)↑𝑗)) ↔ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 · 𝑘)) = ((𝐴𝑀)↑𝑘))))
11 oveq2 7439 . . . . . . 7 (𝑗 = (𝑘 + 1) → (𝑀 · 𝑗) = (𝑀 · (𝑘 + 1)))
1211oveq2d 7447 . . . . . 6 (𝑗 = (𝑘 + 1) → (𝐴↑(𝑀 · 𝑗)) = (𝐴↑(𝑀 · (𝑘 + 1))))
13 oveq2 7439 . . . . . 6 (𝑗 = (𝑘 + 1) → ((𝐴𝑀)↑𝑗) = ((𝐴𝑀)↑(𝑘 + 1)))
1412, 13eqeq12d 2751 . . . . 5 (𝑗 = (𝑘 + 1) → ((𝐴↑(𝑀 · 𝑗)) = ((𝐴𝑀)↑𝑗) ↔ (𝐴↑(𝑀 · (𝑘 + 1))) = ((𝐴𝑀)↑(𝑘 + 1))))
1514imbi2d 340 . . . 4 (𝑗 = (𝑘 + 1) → (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 · 𝑗)) = ((𝐴𝑀)↑𝑗)) ↔ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 · (𝑘 + 1))) = ((𝐴𝑀)↑(𝑘 + 1)))))
16 oveq2 7439 . . . . . . 7 (𝑗 = 𝑁 → (𝑀 · 𝑗) = (𝑀 · 𝑁))
1716oveq2d 7447 . . . . . 6 (𝑗 = 𝑁 → (𝐴↑(𝑀 · 𝑗)) = (𝐴↑(𝑀 · 𝑁)))
18 oveq2 7439 . . . . . 6 (𝑗 = 𝑁 → ((𝐴𝑀)↑𝑗) = ((𝐴𝑀)↑𝑁))
1917, 18eqeq12d 2751 . . . . 5 (𝑗 = 𝑁 → ((𝐴↑(𝑀 · 𝑗)) = ((𝐴𝑀)↑𝑗) ↔ (𝐴↑(𝑀 · 𝑁)) = ((𝐴𝑀)↑𝑁)))
2019imbi2d 340 . . . 4 (𝑗 = 𝑁 → (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 · 𝑗)) = ((𝐴𝑀)↑𝑗)) ↔ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 · 𝑁)) = ((𝐴𝑀)↑𝑁))))
21 nn0cn 12534 . . . . . . . 8 (𝑀 ∈ ℕ0𝑀 ∈ ℂ)
2221mul01d 11458 . . . . . . 7 (𝑀 ∈ ℕ0 → (𝑀 · 0) = 0)
2322oveq2d 7447 . . . . . 6 (𝑀 ∈ ℕ0 → (𝐴↑(𝑀 · 0)) = (𝐴↑0))
24 exp0 14103 . . . . . 6 (𝐴 ∈ ℂ → (𝐴↑0) = 1)
2523, 24sylan9eqr 2797 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 · 0)) = 1)
26 expcl 14117 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴𝑀) ∈ ℂ)
27 exp0 14103 . . . . . 6 ((𝐴𝑀) ∈ ℂ → ((𝐴𝑀)↑0) = 1)
2826, 27syl 17 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → ((𝐴𝑀)↑0) = 1)
2925, 28eqtr4d 2778 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 · 0)) = ((𝐴𝑀)↑0))
30 oveq1 7438 . . . . . . 7 ((𝐴↑(𝑀 · 𝑘)) = ((𝐴𝑀)↑𝑘) → ((𝐴↑(𝑀 · 𝑘)) · (𝐴𝑀)) = (((𝐴𝑀)↑𝑘) · (𝐴𝑀)))
31 nn0cn 12534 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
32 ax-1cn 11211 . . . . . . . . . . . . . 14 1 ∈ ℂ
33 adddi 11242 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℂ ∧ 𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑀 · (𝑘 + 1)) = ((𝑀 · 𝑘) + (𝑀 · 1)))
3432, 33mp3an3 1449 . . . . . . . . . . . . 13 ((𝑀 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝑀 · (𝑘 + 1)) = ((𝑀 · 𝑘) + (𝑀 · 1)))
35 mulrid 11257 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℂ → (𝑀 · 1) = 𝑀)
3635adantr 480 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝑀 · 1) = 𝑀)
3736oveq2d 7447 . . . . . . . . . . . . 13 ((𝑀 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((𝑀 · 𝑘) + (𝑀 · 1)) = ((𝑀 · 𝑘) + 𝑀))
3834, 37eqtrd 2775 . . . . . . . . . . . 12 ((𝑀 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝑀 · (𝑘 + 1)) = ((𝑀 · 𝑘) + 𝑀))
3921, 31, 38syl2an 596 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑀 · (𝑘 + 1)) = ((𝑀 · 𝑘) + 𝑀))
4039adantll 714 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝑀 · (𝑘 + 1)) = ((𝑀 · 𝑘) + 𝑀))
4140oveq2d 7447 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐴↑(𝑀 · (𝑘 + 1))) = (𝐴↑((𝑀 · 𝑘) + 𝑀)))
42 simpll 767 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ ℂ)
43 nn0mulcl 12560 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑀 · 𝑘) ∈ ℕ0)
4443adantll 714 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝑀 · 𝑘) ∈ ℕ0)
45 simplr 769 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝑀 ∈ ℕ0)
46 expadd 14142 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (𝑀 · 𝑘) ∈ ℕ0𝑀 ∈ ℕ0) → (𝐴↑((𝑀 · 𝑘) + 𝑀)) = ((𝐴↑(𝑀 · 𝑘)) · (𝐴𝑀)))
4742, 44, 45, 46syl3anc 1370 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐴↑((𝑀 · 𝑘) + 𝑀)) = ((𝐴↑(𝑀 · 𝑘)) · (𝐴𝑀)))
4841, 47eqtrd 2775 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐴↑(𝑀 · (𝑘 + 1))) = ((𝐴↑(𝑀 · 𝑘)) · (𝐴𝑀)))
49 expp1 14106 . . . . . . . . 9 (((𝐴𝑀) ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑀)↑(𝑘 + 1)) = (((𝐴𝑀)↑𝑘) · (𝐴𝑀)))
5026, 49sylan 580 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑀)↑(𝑘 + 1)) = (((𝐴𝑀)↑𝑘) · (𝐴𝑀)))
5148, 50eqeq12d 2751 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝐴↑(𝑀 · (𝑘 + 1))) = ((𝐴𝑀)↑(𝑘 + 1)) ↔ ((𝐴↑(𝑀 · 𝑘)) · (𝐴𝑀)) = (((𝐴𝑀)↑𝑘) · (𝐴𝑀))))
5230, 51imbitrrid 246 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝐴↑(𝑀 · 𝑘)) = ((𝐴𝑀)↑𝑘) → (𝐴↑(𝑀 · (𝑘 + 1))) = ((𝐴𝑀)↑(𝑘 + 1))))
5352expcom 413 . . . . 5 (𝑘 ∈ ℕ0 → ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → ((𝐴↑(𝑀 · 𝑘)) = ((𝐴𝑀)↑𝑘) → (𝐴↑(𝑀 · (𝑘 + 1))) = ((𝐴𝑀)↑(𝑘 + 1)))))
5453a2d 29 . . . 4 (𝑘 ∈ ℕ0 → (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 · 𝑘)) = ((𝐴𝑀)↑𝑘)) → ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 · (𝑘 + 1))) = ((𝐴𝑀)↑(𝑘 + 1)))))
555, 10, 15, 20, 29, 54nn0ind 12711 . . 3 (𝑁 ∈ ℕ0 → ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 · 𝑁)) = ((𝐴𝑀)↑𝑁)))
5655expdcom 414 . 2 (𝐴 ∈ ℂ → (𝑀 ∈ ℕ0 → (𝑁 ∈ ℕ0 → (𝐴↑(𝑀 · 𝑁)) = ((𝐴𝑀)↑𝑁))))
57563imp 1110 1 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐴↑(𝑀 · 𝑁)) = ((𝐴𝑀)↑𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  (class class class)co 7431  cc 11151  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158  0cn0 12524  cexp 14099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-seq 14040  df-exp 14100
This theorem is referenced by:  expmulz  14146  expmuld  14186  expnass  14244  mcubic  26905  quart1  26914  log2cnv  27002  log2ublem2  27005  log2ub  27007  basellem3  27141  bclbnd  27339  hgt750lemd  34642  hgt750lem  34645  fmtnoprmfac1lem  47489  41prothprmlem2  47543
  Copyright terms: Public domain W3C validator