MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expmul Structured version   Visualization version   GIF version

Theorem expmul 13477
Description: Product of exponents law for positive integer exponentiation. Proposition 10-4.2(b) of [Gleason] p. 135, restricted to nonnegative integer exponents. (Contributed by NM, 4-Jan-2006.)
Assertion
Ref Expression
expmul ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐴↑(𝑀 · 𝑁)) = ((𝐴𝑀)↑𝑁))

Proof of Theorem expmul
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7166 . . . . . . 7 (𝑗 = 0 → (𝑀 · 𝑗) = (𝑀 · 0))
21oveq2d 7174 . . . . . 6 (𝑗 = 0 → (𝐴↑(𝑀 · 𝑗)) = (𝐴↑(𝑀 · 0)))
3 oveq2 7166 . . . . . 6 (𝑗 = 0 → ((𝐴𝑀)↑𝑗) = ((𝐴𝑀)↑0))
42, 3eqeq12d 2839 . . . . 5 (𝑗 = 0 → ((𝐴↑(𝑀 · 𝑗)) = ((𝐴𝑀)↑𝑗) ↔ (𝐴↑(𝑀 · 0)) = ((𝐴𝑀)↑0)))
54imbi2d 343 . . . 4 (𝑗 = 0 → (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 · 𝑗)) = ((𝐴𝑀)↑𝑗)) ↔ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 · 0)) = ((𝐴𝑀)↑0))))
6 oveq2 7166 . . . . . . 7 (𝑗 = 𝑘 → (𝑀 · 𝑗) = (𝑀 · 𝑘))
76oveq2d 7174 . . . . . 6 (𝑗 = 𝑘 → (𝐴↑(𝑀 · 𝑗)) = (𝐴↑(𝑀 · 𝑘)))
8 oveq2 7166 . . . . . 6 (𝑗 = 𝑘 → ((𝐴𝑀)↑𝑗) = ((𝐴𝑀)↑𝑘))
97, 8eqeq12d 2839 . . . . 5 (𝑗 = 𝑘 → ((𝐴↑(𝑀 · 𝑗)) = ((𝐴𝑀)↑𝑗) ↔ (𝐴↑(𝑀 · 𝑘)) = ((𝐴𝑀)↑𝑘)))
109imbi2d 343 . . . 4 (𝑗 = 𝑘 → (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 · 𝑗)) = ((𝐴𝑀)↑𝑗)) ↔ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 · 𝑘)) = ((𝐴𝑀)↑𝑘))))
11 oveq2 7166 . . . . . . 7 (𝑗 = (𝑘 + 1) → (𝑀 · 𝑗) = (𝑀 · (𝑘 + 1)))
1211oveq2d 7174 . . . . . 6 (𝑗 = (𝑘 + 1) → (𝐴↑(𝑀 · 𝑗)) = (𝐴↑(𝑀 · (𝑘 + 1))))
13 oveq2 7166 . . . . . 6 (𝑗 = (𝑘 + 1) → ((𝐴𝑀)↑𝑗) = ((𝐴𝑀)↑(𝑘 + 1)))
1412, 13eqeq12d 2839 . . . . 5 (𝑗 = (𝑘 + 1) → ((𝐴↑(𝑀 · 𝑗)) = ((𝐴𝑀)↑𝑗) ↔ (𝐴↑(𝑀 · (𝑘 + 1))) = ((𝐴𝑀)↑(𝑘 + 1))))
1514imbi2d 343 . . . 4 (𝑗 = (𝑘 + 1) → (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 · 𝑗)) = ((𝐴𝑀)↑𝑗)) ↔ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 · (𝑘 + 1))) = ((𝐴𝑀)↑(𝑘 + 1)))))
16 oveq2 7166 . . . . . . 7 (𝑗 = 𝑁 → (𝑀 · 𝑗) = (𝑀 · 𝑁))
1716oveq2d 7174 . . . . . 6 (𝑗 = 𝑁 → (𝐴↑(𝑀 · 𝑗)) = (𝐴↑(𝑀 · 𝑁)))
18 oveq2 7166 . . . . . 6 (𝑗 = 𝑁 → ((𝐴𝑀)↑𝑗) = ((𝐴𝑀)↑𝑁))
1917, 18eqeq12d 2839 . . . . 5 (𝑗 = 𝑁 → ((𝐴↑(𝑀 · 𝑗)) = ((𝐴𝑀)↑𝑗) ↔ (𝐴↑(𝑀 · 𝑁)) = ((𝐴𝑀)↑𝑁)))
2019imbi2d 343 . . . 4 (𝑗 = 𝑁 → (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 · 𝑗)) = ((𝐴𝑀)↑𝑗)) ↔ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 · 𝑁)) = ((𝐴𝑀)↑𝑁))))
21 nn0cn 11910 . . . . . . . 8 (𝑀 ∈ ℕ0𝑀 ∈ ℂ)
2221mul01d 10841 . . . . . . 7 (𝑀 ∈ ℕ0 → (𝑀 · 0) = 0)
2322oveq2d 7174 . . . . . 6 (𝑀 ∈ ℕ0 → (𝐴↑(𝑀 · 0)) = (𝐴↑0))
24 exp0 13436 . . . . . 6 (𝐴 ∈ ℂ → (𝐴↑0) = 1)
2523, 24sylan9eqr 2880 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 · 0)) = 1)
26 expcl 13450 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴𝑀) ∈ ℂ)
27 exp0 13436 . . . . . 6 ((𝐴𝑀) ∈ ℂ → ((𝐴𝑀)↑0) = 1)
2826, 27syl 17 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → ((𝐴𝑀)↑0) = 1)
2925, 28eqtr4d 2861 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 · 0)) = ((𝐴𝑀)↑0))
30 oveq1 7165 . . . . . . 7 ((𝐴↑(𝑀 · 𝑘)) = ((𝐴𝑀)↑𝑘) → ((𝐴↑(𝑀 · 𝑘)) · (𝐴𝑀)) = (((𝐴𝑀)↑𝑘) · (𝐴𝑀)))
31 nn0cn 11910 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
32 ax-1cn 10597 . . . . . . . . . . . . . 14 1 ∈ ℂ
33 adddi 10628 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℂ ∧ 𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑀 · (𝑘 + 1)) = ((𝑀 · 𝑘) + (𝑀 · 1)))
3432, 33mp3an3 1446 . . . . . . . . . . . . 13 ((𝑀 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝑀 · (𝑘 + 1)) = ((𝑀 · 𝑘) + (𝑀 · 1)))
35 mulid1 10641 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℂ → (𝑀 · 1) = 𝑀)
3635adantr 483 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝑀 · 1) = 𝑀)
3736oveq2d 7174 . . . . . . . . . . . . 13 ((𝑀 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((𝑀 · 𝑘) + (𝑀 · 1)) = ((𝑀 · 𝑘) + 𝑀))
3834, 37eqtrd 2858 . . . . . . . . . . . 12 ((𝑀 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝑀 · (𝑘 + 1)) = ((𝑀 · 𝑘) + 𝑀))
3921, 31, 38syl2an 597 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑀 · (𝑘 + 1)) = ((𝑀 · 𝑘) + 𝑀))
4039adantll 712 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝑀 · (𝑘 + 1)) = ((𝑀 · 𝑘) + 𝑀))
4140oveq2d 7174 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐴↑(𝑀 · (𝑘 + 1))) = (𝐴↑((𝑀 · 𝑘) + 𝑀)))
42 simpll 765 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ ℂ)
43 nn0mulcl 11936 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑀 · 𝑘) ∈ ℕ0)
4443adantll 712 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝑀 · 𝑘) ∈ ℕ0)
45 simplr 767 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝑀 ∈ ℕ0)
46 expadd 13474 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (𝑀 · 𝑘) ∈ ℕ0𝑀 ∈ ℕ0) → (𝐴↑((𝑀 · 𝑘) + 𝑀)) = ((𝐴↑(𝑀 · 𝑘)) · (𝐴𝑀)))
4742, 44, 45, 46syl3anc 1367 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐴↑((𝑀 · 𝑘) + 𝑀)) = ((𝐴↑(𝑀 · 𝑘)) · (𝐴𝑀)))
4841, 47eqtrd 2858 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐴↑(𝑀 · (𝑘 + 1))) = ((𝐴↑(𝑀 · 𝑘)) · (𝐴𝑀)))
49 expp1 13439 . . . . . . . . 9 (((𝐴𝑀) ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑀)↑(𝑘 + 1)) = (((𝐴𝑀)↑𝑘) · (𝐴𝑀)))
5026, 49sylan 582 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑀)↑(𝑘 + 1)) = (((𝐴𝑀)↑𝑘) · (𝐴𝑀)))
5148, 50eqeq12d 2839 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝐴↑(𝑀 · (𝑘 + 1))) = ((𝐴𝑀)↑(𝑘 + 1)) ↔ ((𝐴↑(𝑀 · 𝑘)) · (𝐴𝑀)) = (((𝐴𝑀)↑𝑘) · (𝐴𝑀))))
5230, 51syl5ibr 248 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝐴↑(𝑀 · 𝑘)) = ((𝐴𝑀)↑𝑘) → (𝐴↑(𝑀 · (𝑘 + 1))) = ((𝐴𝑀)↑(𝑘 + 1))))
5352expcom 416 . . . . 5 (𝑘 ∈ ℕ0 → ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → ((𝐴↑(𝑀 · 𝑘)) = ((𝐴𝑀)↑𝑘) → (𝐴↑(𝑀 · (𝑘 + 1))) = ((𝐴𝑀)↑(𝑘 + 1)))))
5453a2d 29 . . . 4 (𝑘 ∈ ℕ0 → (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 · 𝑘)) = ((𝐴𝑀)↑𝑘)) → ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 · (𝑘 + 1))) = ((𝐴𝑀)↑(𝑘 + 1)))))
555, 10, 15, 20, 29, 54nn0ind 12080 . . 3 (𝑁 ∈ ℕ0 → ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 · 𝑁)) = ((𝐴𝑀)↑𝑁)))
5655expdcom 417 . 2 (𝐴 ∈ ℂ → (𝑀 ∈ ℕ0 → (𝑁 ∈ ℕ0 → (𝐴↑(𝑀 · 𝑁)) = ((𝐴𝑀)↑𝑁))))
57563imp 1107 1 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐴↑(𝑀 · 𝑁)) = ((𝐴𝑀)↑𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  (class class class)co 7158  cc 10537  0cc0 10539  1c1 10540   + caddc 10542   · cmul 10544  0cn0 11900  cexp 13432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-n0 11901  df-z 11985  df-uz 12247  df-seq 13373  df-exp 13433
This theorem is referenced by:  expmulz  13478  expmuld  13516  expnass  13573  mcubic  25427  quart1  25436  log2cnv  25524  log2ublem2  25527  log2ub  25529  basellem3  25662  bclbnd  25858  hgt750lemd  31921  hgt750lem  31924  fmtnoprmfac1lem  43733  41prothprmlem2  43790
  Copyright terms: Public domain W3C validator