MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fabex Structured version   Visualization version   GIF version

Theorem fabex 7918
Description: Existence of a set of functions. (Contributed by NM, 3-Dec-2007.)
Hypotheses
Ref Expression
fabex.1 𝐴 ∈ V
fabex.2 𝐵 ∈ V
fabex.3 𝐹 = {𝑥 ∣ (𝑥:𝐴𝐵𝜑)}
Assertion
Ref Expression
fabex 𝐹 ∈ V
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝐹(𝑥)

Proof of Theorem fabex
StepHypRef Expression
1 fabex.1 . 2 𝐴 ∈ V
2 fabex.2 . 2 𝐵 ∈ V
3 fabex.3 . . 3 𝐹 = {𝑥 ∣ (𝑥:𝐴𝐵𝜑)}
43fabexg 7916 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝐹 ∈ V)
51, 2, 4mp2an 692 1 𝐹 ∈ V
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2109  {cab 2708  Vcvv 3450  wf 6509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-opab 5172  df-xp 5646  df-rel 5647  df-cnv 5648  df-dm 5650  df-rn 5651  df-fun 6515  df-fn 6516  df-f 6517
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator