MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fabex Structured version   Visualization version   GIF version

Theorem fabex 7978
Description: Existence of a set of functions. (Contributed by NM, 3-Dec-2007.)
Hypotheses
Ref Expression
fabex.1 𝐴 ∈ V
fabex.2 𝐵 ∈ V
fabex.3 𝐹 = {𝑥 ∣ (𝑥:𝐴𝐵𝜑)}
Assertion
Ref Expression
fabex 𝐹 ∈ V
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝐹(𝑥)

Proof of Theorem fabex
StepHypRef Expression
1 fabex.1 . 2 𝐴 ∈ V
2 fabex.2 . 2 𝐵 ∈ V
3 fabex.3 . . 3 𝐹 = {𝑥 ∣ (𝑥:𝐴𝐵𝜑)}
43fabexg 7976 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝐹 ∈ V)
51, 2, 4mp2an 691 1 𝐹 ∈ V
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1537  wcel 2108  {cab 2717  Vcvv 3488  wf 6569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-cnv 5708  df-dm 5710  df-rn 5711  df-fun 6575  df-fn 6576  df-f 6577
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator