| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fabex | Structured version Visualization version GIF version | ||
| Description: Existence of a set of functions. (Contributed by NM, 3-Dec-2007.) |
| Ref | Expression |
|---|---|
| fabex.1 | ⊢ 𝐴 ∈ V |
| fabex.2 | ⊢ 𝐵 ∈ V |
| fabex.3 | ⊢ 𝐹 = {𝑥 ∣ (𝑥:𝐴⟶𝐵 ∧ 𝜑)} |
| Ref | Expression |
|---|---|
| fabex | ⊢ 𝐹 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fabex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | fabex.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | fabex.3 | . . 3 ⊢ 𝐹 = {𝑥 ∣ (𝑥:𝐴⟶𝐵 ∧ 𝜑)} | |
| 4 | 3 | fabexg 7874 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝐹 ∈ V) |
| 5 | 1, 2, 4 | mp2an 692 | 1 ⊢ 𝐹 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2113 {cab 2711 Vcvv 3437 ⟶wf 6482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-xp 5625 df-rel 5626 df-cnv 5627 df-dm 5629 df-rn 5630 df-fun 6488 df-fn 6489 df-f 6490 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |