MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fabex Structured version   Visualization version   GIF version

Theorem fabex 7961
Description: Existence of a set of functions. (Contributed by NM, 3-Dec-2007.)
Hypotheses
Ref Expression
fabex.1 𝐴 ∈ V
fabex.2 𝐵 ∈ V
fabex.3 𝐹 = {𝑥 ∣ (𝑥:𝐴𝐵𝜑)}
Assertion
Ref Expression
fabex 𝐹 ∈ V
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝐹(𝑥)

Proof of Theorem fabex
StepHypRef Expression
1 fabex.1 . 2 𝐴 ∈ V
2 fabex.2 . 2 𝐵 ∈ V
3 fabex.3 . . 3 𝐹 = {𝑥 ∣ (𝑥:𝐴𝐵𝜑)}
43fabexg 7959 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝐹 ∈ V)
51, 2, 4mp2an 692 1 𝐹 ∈ V
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1537  wcel 2106  {cab 2712  Vcvv 3478  wf 6559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-xp 5695  df-rel 5696  df-cnv 5697  df-dm 5699  df-rn 5700  df-fun 6565  df-fn 6566  df-f 6567
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator