| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fabex | Structured version Visualization version GIF version | ||
| Description: Existence of a set of functions. (Contributed by NM, 3-Dec-2007.) |
| Ref | Expression |
|---|---|
| fabex.1 | ⊢ 𝐴 ∈ V |
| fabex.2 | ⊢ 𝐵 ∈ V |
| fabex.3 | ⊢ 𝐹 = {𝑥 ∣ (𝑥:𝐴⟶𝐵 ∧ 𝜑)} |
| Ref | Expression |
|---|---|
| fabex | ⊢ 𝐹 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fabex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | fabex.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | fabex.3 | . . 3 ⊢ 𝐹 = {𝑥 ∣ (𝑥:𝐴⟶𝐵 ∧ 𝜑)} | |
| 4 | 3 | fabexg 7916 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝐹 ∈ V) |
| 5 | 1, 2, 4 | mp2an 692 | 1 ⊢ 𝐹 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2708 Vcvv 3450 ⟶wf 6509 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-xp 5646 df-rel 5647 df-cnv 5648 df-dm 5650 df-rn 5651 df-fun 6515 df-fn 6516 df-f 6517 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |