![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1oabexg | Structured version Visualization version GIF version |
Description: The class of all 1-1-onto functions mapping one set to another is a set. (Contributed by Paul Chapman, 25-Feb-2008.) (Proof shortened by AV, 9-Jun-2025.) |
Ref | Expression |
---|---|
f1oabexg.1 | ⊢ 𝐹 = {𝑓 ∣ (𝑓:𝐴–1-1-onto→𝐵 ∧ 𝜑)} |
Ref | Expression |
---|---|
f1oabexg | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 𝐹 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3509 | . 2 ⊢ (𝐴 ∈ 𝐶 → 𝐴 ∈ V) | |
2 | elex 3509 | . 2 ⊢ (𝐵 ∈ 𝐷 → 𝐵 ∈ V) | |
3 | f1oabexg.1 | . . 3 ⊢ 𝐹 = {𝑓 ∣ (𝑓:𝐴–1-1-onto→𝐵 ∧ 𝜑)} | |
4 | f1of 6862 | . . . . 5 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝑓:𝐴⟶𝐵) | |
5 | 4 | ad2antrl 727 | . . . 4 ⊢ (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝑓:𝐴–1-1-onto→𝐵 ∧ 𝜑)) → 𝑓:𝐴⟶𝐵) |
6 | simpl 482 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝐴 ∈ V) | |
7 | simpr 484 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝐵 ∈ V) | |
8 | 5, 6, 7 | fabexd 7975 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {𝑓 ∣ (𝑓:𝐴–1-1-onto→𝐵 ∧ 𝜑)} ∈ V) |
9 | 3, 8 | eqeltrid 2848 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝐹 ∈ V) |
10 | 1, 2, 9 | syl2an 595 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 𝐹 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {cab 2717 Vcvv 3488 ⟶wf 6569 –1-1-onto→wf1o 6572 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-cnv 5708 df-dm 5710 df-rn 5711 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-f1o 6580 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |