MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1oabexg Structured version   Visualization version   GIF version

Theorem f1oabexg 7938
Description: The class of all 1-1-onto functions mapping one set to another is a set. (Contributed by Paul Chapman, 25-Feb-2008.) (Proof shortened by AV, 9-Jun-2025.)
Hypothesis
Ref Expression
f1oabexg.1 𝐹 = {𝑓 ∣ (𝑓:𝐴1-1-onto𝐵𝜑)}
Assertion
Ref Expression
f1oabexg ((𝐴𝐶𝐵𝐷) → 𝐹 ∈ V)
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓
Allowed substitution hints:   𝜑(𝑓)   𝐶(𝑓)   𝐷(𝑓)   𝐹(𝑓)

Proof of Theorem f1oabexg
StepHypRef Expression
1 elex 3480 . 2 (𝐴𝐶𝐴 ∈ V)
2 elex 3480 . 2 (𝐵𝐷𝐵 ∈ V)
3 f1oabexg.1 . . 3 𝐹 = {𝑓 ∣ (𝑓:𝐴1-1-onto𝐵𝜑)}
4 f1of 6818 . . . . 5 (𝑓:𝐴1-1-onto𝐵𝑓:𝐴𝐵)
54ad2antrl 728 . . . 4 (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝑓:𝐴1-1-onto𝐵𝜑)) → 𝑓:𝐴𝐵)
6 simpl 482 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝐴 ∈ V)
7 simpr 484 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝐵 ∈ V)
85, 6, 7fabexd 7933 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {𝑓 ∣ (𝑓:𝐴1-1-onto𝐵𝜑)} ∈ V)
93, 8eqeltrid 2838 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝐹 ∈ V)
101, 2, 9syl2an 596 1 ((𝐴𝐶𝐵𝐷) → 𝐹 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  {cab 2713  Vcvv 3459  wf 6527  1-1-ontowf1o 6530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-xp 5660  df-rel 5661  df-cnv 5662  df-dm 5664  df-rn 5665  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-f1o 6538
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator