![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1oabexg | Structured version Visualization version GIF version |
Description: The class of all 1-1-onto functions mapping one set to another is a set. (Contributed by Paul Chapman, 25-Feb-2008.) |
Ref | Expression |
---|---|
f1oabexg.1 | ⊢ 𝐹 = {𝑓 ∣ (𝑓:𝐴–1-1-onto→𝐵 ∧ 𝜑)} |
Ref | Expression |
---|---|
f1oabexg | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 𝐹 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1oabexg.1 | . 2 ⊢ 𝐹 = {𝑓 ∣ (𝑓:𝐴–1-1-onto→𝐵 ∧ 𝜑)} | |
2 | f1of 6823 | . . . . 5 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝑓:𝐴⟶𝐵) | |
3 | 2 | anim1i 614 | . . . 4 ⊢ ((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝜑) → (𝑓:𝐴⟶𝐵 ∧ 𝜑)) |
4 | 3 | ss2abi 4055 | . . 3 ⊢ {𝑓 ∣ (𝑓:𝐴–1-1-onto→𝐵 ∧ 𝜑)} ⊆ {𝑓 ∣ (𝑓:𝐴⟶𝐵 ∧ 𝜑)} |
5 | eqid 2724 | . . . 4 ⊢ {𝑓 ∣ (𝑓:𝐴⟶𝐵 ∧ 𝜑)} = {𝑓 ∣ (𝑓:𝐴⟶𝐵 ∧ 𝜑)} | |
6 | 5 | fabexg 7918 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {𝑓 ∣ (𝑓:𝐴⟶𝐵 ∧ 𝜑)} ∈ V) |
7 | ssexg 5313 | . . 3 ⊢ (({𝑓 ∣ (𝑓:𝐴–1-1-onto→𝐵 ∧ 𝜑)} ⊆ {𝑓 ∣ (𝑓:𝐴⟶𝐵 ∧ 𝜑)} ∧ {𝑓 ∣ (𝑓:𝐴⟶𝐵 ∧ 𝜑)} ∈ V) → {𝑓 ∣ (𝑓:𝐴–1-1-onto→𝐵 ∧ 𝜑)} ∈ V) | |
8 | 4, 6, 7 | sylancr 586 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {𝑓 ∣ (𝑓:𝐴–1-1-onto→𝐵 ∧ 𝜑)} ∈ V) |
9 | 1, 8 | eqeltrid 2829 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 𝐹 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 {cab 2701 Vcvv 3466 ⊆ wss 3940 ⟶wf 6529 –1-1-onto→wf1o 6532 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-br 5139 df-opab 5201 df-xp 5672 df-rel 5673 df-cnv 5674 df-dm 5676 df-rn 5677 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-f1o 6540 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |