MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ffoss Structured version   Visualization version   GIF version

Theorem ffoss 7943
Description: Relationship between a mapping and an onto mapping. Figure 38 of [Enderton] p. 145. (Contributed by NM, 10-May-1998.)
Hypothesis
Ref Expression
f11o.1 𝐹 ∈ V
Assertion
Ref Expression
ffoss (𝐹:𝐴⟢𝐡 ↔ βˆƒπ‘₯(𝐹:𝐴–ontoβ†’π‘₯ ∧ π‘₯ βŠ† 𝐡))
Distinct variable groups:   π‘₯,𝐹   π‘₯,𝐴   π‘₯,𝐡

Proof of Theorem ffoss
StepHypRef Expression
1 df-f 6546 . . . 4 (𝐹:𝐴⟢𝐡 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 βŠ† 𝐡))
2 dffn4 6811 . . . . 5 (𝐹 Fn 𝐴 ↔ 𝐹:𝐴–ontoβ†’ran 𝐹)
32anbi1i 623 . . . 4 ((𝐹 Fn 𝐴 ∧ ran 𝐹 βŠ† 𝐡) ↔ (𝐹:𝐴–ontoβ†’ran 𝐹 ∧ ran 𝐹 βŠ† 𝐡))
41, 3bitri 275 . . 3 (𝐹:𝐴⟢𝐡 ↔ (𝐹:𝐴–ontoβ†’ran 𝐹 ∧ ran 𝐹 βŠ† 𝐡))
5 f11o.1 . . . . 5 𝐹 ∈ V
65rnex 7912 . . . 4 ran 𝐹 ∈ V
7 foeq3 6803 . . . . 5 (π‘₯ = ran 𝐹 β†’ (𝐹:𝐴–ontoβ†’π‘₯ ↔ 𝐹:𝐴–ontoβ†’ran 𝐹))
8 sseq1 4003 . . . . 5 (π‘₯ = ran 𝐹 β†’ (π‘₯ βŠ† 𝐡 ↔ ran 𝐹 βŠ† 𝐡))
97, 8anbi12d 630 . . . 4 (π‘₯ = ran 𝐹 β†’ ((𝐹:𝐴–ontoβ†’π‘₯ ∧ π‘₯ βŠ† 𝐡) ↔ (𝐹:𝐴–ontoβ†’ran 𝐹 ∧ ran 𝐹 βŠ† 𝐡)))
106, 9spcev 3591 . . 3 ((𝐹:𝐴–ontoβ†’ran 𝐹 ∧ ran 𝐹 βŠ† 𝐡) β†’ βˆƒπ‘₯(𝐹:𝐴–ontoβ†’π‘₯ ∧ π‘₯ βŠ† 𝐡))
114, 10sylbi 216 . 2 (𝐹:𝐴⟢𝐡 β†’ βˆƒπ‘₯(𝐹:𝐴–ontoβ†’π‘₯ ∧ π‘₯ βŠ† 𝐡))
12 fof 6805 . . . 4 (𝐹:𝐴–ontoβ†’π‘₯ β†’ 𝐹:𝐴⟢π‘₯)
13 fss 6733 . . . 4 ((𝐹:𝐴⟢π‘₯ ∧ π‘₯ βŠ† 𝐡) β†’ 𝐹:𝐴⟢𝐡)
1412, 13sylan 579 . . 3 ((𝐹:𝐴–ontoβ†’π‘₯ ∧ π‘₯ βŠ† 𝐡) β†’ 𝐹:𝐴⟢𝐡)
1514exlimiv 1926 . 2 (βˆƒπ‘₯(𝐹:𝐴–ontoβ†’π‘₯ ∧ π‘₯ βŠ† 𝐡) β†’ 𝐹:𝐴⟢𝐡)
1611, 15impbii 208 1 (𝐹:𝐴⟢𝐡 ↔ βˆƒπ‘₯(𝐹:𝐴–ontoβ†’π‘₯ ∧ π‘₯ βŠ† 𝐡))
Colors of variables: wff setvar class
Syntax hints:   ↔ wb 205   ∧ wa 395   = wceq 1534  βˆƒwex 1774   ∈ wcel 2099  Vcvv 3469   βŠ† wss 3944  ran crn 5673   Fn wfn 6537  βŸΆwf 6538  β€“ontoβ†’wfo 6540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pr 5423  ax-un 7734
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2705  df-cleq 2719  df-clel 2805  df-rab 3428  df-v 3471  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-cnv 5680  df-dm 5682  df-rn 5683  df-f 6546  df-fo 6548
This theorem is referenced by:  f11o  7944
  Copyright terms: Public domain W3C validator