MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ffoss Structured version   Visualization version   GIF version

Theorem ffoss 7629
Description: Relationship between a mapping and an onto mapping. Figure 38 of [Enderton] p. 145. (Contributed by NM, 10-May-1998.)
Hypothesis
Ref Expression
f11o.1 𝐹 ∈ V
Assertion
Ref Expression
ffoss (𝐹:𝐴𝐵 ↔ ∃𝑥(𝐹:𝐴onto𝑥𝑥𝐵))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐴   𝑥,𝐵

Proof of Theorem ffoss
StepHypRef Expression
1 df-f 6328 . . . 4 (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐵))
2 dffn4 6571 . . . . 5 (𝐹 Fn 𝐴𝐹:𝐴onto→ran 𝐹)
32anbi1i 626 . . . 4 ((𝐹 Fn 𝐴 ∧ ran 𝐹𝐵) ↔ (𝐹:𝐴onto→ran 𝐹 ∧ ran 𝐹𝐵))
41, 3bitri 278 . . 3 (𝐹:𝐴𝐵 ↔ (𝐹:𝐴onto→ran 𝐹 ∧ ran 𝐹𝐵))
5 f11o.1 . . . . 5 𝐹 ∈ V
65rnex 7599 . . . 4 ran 𝐹 ∈ V
7 foeq3 6563 . . . . 5 (𝑥 = ran 𝐹 → (𝐹:𝐴onto𝑥𝐹:𝐴onto→ran 𝐹))
8 sseq1 3940 . . . . 5 (𝑥 = ran 𝐹 → (𝑥𝐵 ↔ ran 𝐹𝐵))
97, 8anbi12d 633 . . . 4 (𝑥 = ran 𝐹 → ((𝐹:𝐴onto𝑥𝑥𝐵) ↔ (𝐹:𝐴onto→ran 𝐹 ∧ ran 𝐹𝐵)))
106, 9spcev 3555 . . 3 ((𝐹:𝐴onto→ran 𝐹 ∧ ran 𝐹𝐵) → ∃𝑥(𝐹:𝐴onto𝑥𝑥𝐵))
114, 10sylbi 220 . 2 (𝐹:𝐴𝐵 → ∃𝑥(𝐹:𝐴onto𝑥𝑥𝐵))
12 fof 6565 . . . 4 (𝐹:𝐴onto𝑥𝐹:𝐴𝑥)
13 fss 6501 . . . 4 ((𝐹:𝐴𝑥𝑥𝐵) → 𝐹:𝐴𝐵)
1412, 13sylan 583 . . 3 ((𝐹:𝐴onto𝑥𝑥𝐵) → 𝐹:𝐴𝐵)
1514exlimiv 1931 . 2 (∃𝑥(𝐹:𝐴onto𝑥𝑥𝐵) → 𝐹:𝐴𝐵)
1611, 15impbii 212 1 (𝐹:𝐴𝐵 ↔ ∃𝑥(𝐹:𝐴onto𝑥𝑥𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399   = wceq 1538  wex 1781  wcel 2111  Vcvv 3441  wss 3881  ran crn 5520   Fn wfn 6319  wf 6320  ontowfo 6322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-rab 3115  df-v 3443  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-cnv 5527  df-dm 5529  df-rn 5530  df-f 6328  df-fo 6330
This theorem is referenced by:  f11o  7630
  Copyright terms: Public domain W3C validator