![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ffoss | Structured version Visualization version GIF version |
Description: Relationship between a mapping and an onto mapping. Figure 38 of [Enderton] p. 145. (Contributed by NM, 10-May-1998.) |
Ref | Expression |
---|---|
f11o.1 | ⊢ 𝐹 ∈ V |
Ref | Expression |
---|---|
ffoss | ⊢ (𝐹:𝐴⟶𝐵 ↔ ∃𝑥(𝐹:𝐴–onto→𝑥 ∧ 𝑥 ⊆ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-f 6577 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
2 | dffn4 6840 | . . . . 5 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴–onto→ran 𝐹) | |
3 | 2 | anbi1i 623 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵) ↔ (𝐹:𝐴–onto→ran 𝐹 ∧ ran 𝐹 ⊆ 𝐵)) |
4 | 1, 3 | bitri 275 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹:𝐴–onto→ran 𝐹 ∧ ran 𝐹 ⊆ 𝐵)) |
5 | f11o.1 | . . . . 5 ⊢ 𝐹 ∈ V | |
6 | 5 | rnex 7950 | . . . 4 ⊢ ran 𝐹 ∈ V |
7 | foeq3 6832 | . . . . 5 ⊢ (𝑥 = ran 𝐹 → (𝐹:𝐴–onto→𝑥 ↔ 𝐹:𝐴–onto→ran 𝐹)) | |
8 | sseq1 4034 | . . . . 5 ⊢ (𝑥 = ran 𝐹 → (𝑥 ⊆ 𝐵 ↔ ran 𝐹 ⊆ 𝐵)) | |
9 | 7, 8 | anbi12d 631 | . . . 4 ⊢ (𝑥 = ran 𝐹 → ((𝐹:𝐴–onto→𝑥 ∧ 𝑥 ⊆ 𝐵) ↔ (𝐹:𝐴–onto→ran 𝐹 ∧ ran 𝐹 ⊆ 𝐵))) |
10 | 6, 9 | spcev 3619 | . . 3 ⊢ ((𝐹:𝐴–onto→ran 𝐹 ∧ ran 𝐹 ⊆ 𝐵) → ∃𝑥(𝐹:𝐴–onto→𝑥 ∧ 𝑥 ⊆ 𝐵)) |
11 | 4, 10 | sylbi 217 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → ∃𝑥(𝐹:𝐴–onto→𝑥 ∧ 𝑥 ⊆ 𝐵)) |
12 | fof 6834 | . . . 4 ⊢ (𝐹:𝐴–onto→𝑥 → 𝐹:𝐴⟶𝑥) | |
13 | fss 6763 | . . . 4 ⊢ ((𝐹:𝐴⟶𝑥 ∧ 𝑥 ⊆ 𝐵) → 𝐹:𝐴⟶𝐵) | |
14 | 12, 13 | sylan 579 | . . 3 ⊢ ((𝐹:𝐴–onto→𝑥 ∧ 𝑥 ⊆ 𝐵) → 𝐹:𝐴⟶𝐵) |
15 | 14 | exlimiv 1929 | . 2 ⊢ (∃𝑥(𝐹:𝐴–onto→𝑥 ∧ 𝑥 ⊆ 𝐵) → 𝐹:𝐴⟶𝐵) |
16 | 11, 15 | impbii 209 | 1 ⊢ (𝐹:𝐴⟶𝐵 ↔ ∃𝑥(𝐹:𝐴–onto→𝑥 ∧ 𝑥 ⊆ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∃wex 1777 ∈ wcel 2108 Vcvv 3488 ⊆ wss 3976 ran crn 5701 Fn wfn 6568 ⟶wf 6569 –onto→wfo 6571 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-cnv 5708 df-dm 5710 df-rn 5711 df-f 6577 df-fo 6579 |
This theorem is referenced by: f11o 7987 |
Copyright terms: Public domain | W3C validator |