MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ffoss Structured version   Visualization version   GIF version

Theorem ffoss 7948
Description: Relationship between a mapping and an onto mapping. Figure 38 of [Enderton] p. 145. (Contributed by NM, 10-May-1998.)
Hypothesis
Ref Expression
f11o.1 𝐹 ∈ V
Assertion
Ref Expression
ffoss (𝐹:𝐴⟢𝐡 ↔ βˆƒπ‘₯(𝐹:𝐴–ontoβ†’π‘₯ ∧ π‘₯ βŠ† 𝐡))
Distinct variable groups:   π‘₯,𝐹   π‘₯,𝐴   π‘₯,𝐡

Proof of Theorem ffoss
StepHypRef Expression
1 df-f 6551 . . . 4 (𝐹:𝐴⟢𝐡 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 βŠ† 𝐡))
2 dffn4 6814 . . . . 5 (𝐹 Fn 𝐴 ↔ 𝐹:𝐴–ontoβ†’ran 𝐹)
32anbi1i 622 . . . 4 ((𝐹 Fn 𝐴 ∧ ran 𝐹 βŠ† 𝐡) ↔ (𝐹:𝐴–ontoβ†’ran 𝐹 ∧ ran 𝐹 βŠ† 𝐡))
41, 3bitri 274 . . 3 (𝐹:𝐴⟢𝐡 ↔ (𝐹:𝐴–ontoβ†’ran 𝐹 ∧ ran 𝐹 βŠ† 𝐡))
5 f11o.1 . . . . 5 𝐹 ∈ V
65rnex 7916 . . . 4 ran 𝐹 ∈ V
7 foeq3 6806 . . . . 5 (π‘₯ = ran 𝐹 β†’ (𝐹:𝐴–ontoβ†’π‘₯ ↔ 𝐹:𝐴–ontoβ†’ran 𝐹))
8 sseq1 4003 . . . . 5 (π‘₯ = ran 𝐹 β†’ (π‘₯ βŠ† 𝐡 ↔ ran 𝐹 βŠ† 𝐡))
97, 8anbi12d 630 . . . 4 (π‘₯ = ran 𝐹 β†’ ((𝐹:𝐴–ontoβ†’π‘₯ ∧ π‘₯ βŠ† 𝐡) ↔ (𝐹:𝐴–ontoβ†’ran 𝐹 ∧ ran 𝐹 βŠ† 𝐡)))
106, 9spcev 3591 . . 3 ((𝐹:𝐴–ontoβ†’ran 𝐹 ∧ ran 𝐹 βŠ† 𝐡) β†’ βˆƒπ‘₯(𝐹:𝐴–ontoβ†’π‘₯ ∧ π‘₯ βŠ† 𝐡))
114, 10sylbi 216 . 2 (𝐹:𝐴⟢𝐡 β†’ βˆƒπ‘₯(𝐹:𝐴–ontoβ†’π‘₯ ∧ π‘₯ βŠ† 𝐡))
12 fof 6808 . . . 4 (𝐹:𝐴–ontoβ†’π‘₯ β†’ 𝐹:𝐴⟢π‘₯)
13 fss 6737 . . . 4 ((𝐹:𝐴⟢π‘₯ ∧ π‘₯ βŠ† 𝐡) β†’ 𝐹:𝐴⟢𝐡)
1412, 13sylan 578 . . 3 ((𝐹:𝐴–ontoβ†’π‘₯ ∧ π‘₯ βŠ† 𝐡) β†’ 𝐹:𝐴⟢𝐡)
1514exlimiv 1925 . 2 (βˆƒπ‘₯(𝐹:𝐴–ontoβ†’π‘₯ ∧ π‘₯ βŠ† 𝐡) β†’ 𝐹:𝐴⟢𝐡)
1611, 15impbii 208 1 (𝐹:𝐴⟢𝐡 ↔ βˆƒπ‘₯(𝐹:𝐴–ontoβ†’π‘₯ ∧ π‘₯ βŠ† 𝐡))
Colors of variables: wff setvar class
Syntax hints:   ↔ wb 205   ∧ wa 394   = wceq 1533  βˆƒwex 1773   ∈ wcel 2098  Vcvv 3463   βŠ† wss 3945  ran crn 5678   Fn wfn 6542  βŸΆwf 6543  β€“ontoβ†’wfo 6545
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696  ax-sep 5299  ax-nul 5306  ax-pr 5428  ax-un 7739
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-rab 3420  df-v 3465  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-opab 5211  df-cnv 5685  df-dm 5687  df-rn 5688  df-f 6551  df-fo 6553
This theorem is referenced by:  f11o  7949
  Copyright terms: Public domain W3C validator