| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnex | Structured version Visualization version GIF version | ||
| Description: The range of a set is a set. Corollary 6.8(3) of [TakeutiZaring] p. 26. Similar to Lemma 3D of [Enderton] p. 41. (Contributed by NM, 7-Jul-2008.) |
| Ref | Expression |
|---|---|
| dmex.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| rnex | ⊢ ran 𝐴 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | rnexg 7835 | . 2 ⊢ (𝐴 ∈ V → ran 𝐴 ∈ V) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ran 𝐴 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3436 ran crn 5620 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-cnv 5627 df-dm 5629 df-rn 5630 |
| This theorem is referenced by: elxp4 7855 elxp5 7856 ffoss 7881 fvclex 7894 wemoiso2 7909 2ndval 7927 fo2nd 7945 mapfoss 8779 ixpsnf1o 8865 bren 8882 mapen 9058 ssenen 9068 sucdom2 9117 fodomfib 9219 fodomfibOLD 9221 hartogslem1 9434 brwdom 9459 unxpwdom2 9480 noinfep 9556 r0weon 9906 fseqen 9921 acnlem 9942 infpwfien 9956 aceq3lem 10014 dfac4 10016 dfac5 10023 dfac2b 10025 dfac9 10031 dfac12lem2 10039 dfac12lem3 10040 infmap2 10111 cfflb 10153 infpssr 10202 fin23lem14 10227 fin23lem16 10229 fin23lem17 10232 fin23lem38 10243 fin23lem39 10244 axdc2lem 10342 axdc3lem2 10345 axcclem 10351 ttukeylem6 10408 wunex2 10632 wuncval2 10641 intgru 10708 wfgru 10710 qexALT 12865 seqexw 13924 shftfval 14977 vdwapval 16885 restfn 17328 prdsvallem 17358 prdsval 17359 wunfunc 17808 wunnat 17866 arwval 17950 catcfuccl 18025 catcxpccl 18113 yon11 18170 yon12 18171 yon2 18172 yonpropd 18174 oppcyon 18175 yonffth 18190 yoniso 18191 plusffval 18520 grpsubfval 18862 mulgfval 18948 sylow1lem2 19478 sylow2blem1 19499 sylow2blem2 19500 sylow3lem1 19506 sylow3lem6 19511 dmdprd 19879 dprdval 19884 staffval 20726 scaffval 20783 lpival 21231 ipffval 21555 cmpsub 23285 2ndcsep 23344 1stckgen 23439 kgencn2 23442 txcmplem1 23526 blbas 24316 met1stc 24407 psmetutop 24453 nmfval 24474 dchrptlem2 27174 dchrptlem3 27175 mulsproplem9 28032 ishpg 28704 edgval 28994 bafval 30548 vsfval 30577 foresf1o 32448 fnpreimac 32614 nsgmgc 33349 nsgqusf1o 33353 idlsrgtset 33445 locfinreflem 33807 cmpcref 33817 rspectopn 33834 ordtconnlem1 33891 qqhval 33939 sigapildsys 34129 dya2icoseg2 34246 dya2iocuni 34251 sxbrsigalem2 34254 sxbrsigalem5 34256 omssubadd 34268 mvtval 35473 mvrsval 35478 mstaval 35517 brrestrict 35923 relowlssretop 37337 exrecfnlem 37353 ctbssinf 37380 lindsdom 37594 indexdom 37714 heiborlem1 37791 isdrngo2 37938 isrngohom 37945 idlval 37993 isidl 37994 igenval 38041 lsatset 38969 dicval 41155 aks6d1c6isolem2 42148 prjcrvfval 42604 trclexi 43593 rtrclexi 43594 dfrtrcl5 43602 dfrcl2 43647 wfaxrep 44968 stoweidlem59 46040 fourierdlem71 46158 salgensscntex 46325 aacllem 49786 |
| Copyright terms: Public domain | W3C validator |