![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rnex | Structured version Visualization version GIF version |
Description: The range of a set is a set. Corollary 6.8(3) of [TakeutiZaring] p. 26. Similar to Lemma 3D of [Enderton] p. 41. (Contributed by NM, 7-Jul-2008.) |
Ref | Expression |
---|---|
dmex.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
rnex | ⊢ ran 𝐴 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmex.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | rnexg 7924 | . 2 ⊢ (𝐴 ∈ V → ran 𝐴 ∈ V) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ran 𝐴 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2105 Vcvv 3477 ran crn 5689 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 ax-un 7753 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-cnv 5696 df-dm 5698 df-rn 5699 |
This theorem is referenced by: elxp4 7944 elxp5 7945 ffoss 7968 fvclex 7981 wemoiso2 7997 2ndval 8015 fo2nd 8033 mapfoss 8890 ixpsnf1o 8976 bren 8993 sucdom2OLD 9120 mapen 9179 ssenen 9189 sucdom2 9240 fodomfib 9366 fodomfibOLD 9368 hartogslem1 9579 brwdom 9604 unxpwdom2 9625 noinfep 9697 r0weon 10049 fseqen 10064 acnlem 10085 infpwfien 10099 aceq3lem 10157 dfac4 10159 dfac5 10166 dfac2b 10168 dfac9 10174 dfac12lem2 10182 dfac12lem3 10183 infmap2 10254 cfflb 10296 infpssr 10345 fin23lem14 10370 fin23lem16 10372 fin23lem17 10375 fin23lem38 10386 fin23lem39 10387 axdc2lem 10485 axdc3lem2 10488 axcclem 10494 ttukeylem6 10551 wunex2 10775 wuncval2 10784 intgru 10851 wfgru 10853 qexALT 13003 seqexw 14054 shftfval 15105 vdwapval 17006 restfn 17470 prdsvallem 17500 prdsval 17501 wunfunc 17951 wunfuncOLD 17952 wunnat 18010 wunnatOLD 18011 arwval 18096 catcfuccl 18172 catcfucclOLD 18173 catcxpccl 18262 catcxpcclOLD 18263 yon11 18320 yon12 18321 yon2 18322 yonpropd 18324 oppcyon 18325 yonffth 18340 yoniso 18341 plusffval 18671 grpsubfval 19013 mulgfval 19099 sylow1lem2 19631 sylow2blem1 19652 sylow2blem2 19653 sylow3lem1 19659 sylow3lem6 19664 dmdprd 20032 dprdval 20037 staffval 20858 scaffval 20894 lpival 21351 ipffval 21683 cmpsub 23423 2ndcsep 23482 1stckgen 23577 kgencn2 23580 txcmplem1 23664 blbas 24455 met1stc 24549 psmetutop 24595 nmfval 24616 dchrptlem2 27323 dchrptlem3 27324 mulsproplem9 28164 ishpg 28781 edgval 29080 bafval 30632 vsfval 30661 foresf1o 32531 fnpreimac 32687 nsgmgc 33419 nsgqusf1o 33423 idlsrgtset 33515 locfinreflem 33800 cmpcref 33810 rspectopn 33827 ordtconnlem1 33884 qqhval 33934 sigapildsys 34142 dya2icoseg2 34259 dya2iocuni 34264 sxbrsigalem2 34267 sxbrsigalem5 34269 omssubadd 34281 mvtval 35484 mvrsval 35489 mstaval 35528 brrestrict 35930 relowlssretop 37345 exrecfnlem 37361 ctbssinf 37388 lindsdom 37600 indexdom 37720 heiborlem1 37797 isdrngo2 37944 isrngohom 37951 idlval 37999 isidl 38000 igenval 38047 lsatset 38971 dicval 41158 aks6d1c6isolem2 42156 prjcrvfval 42617 trclexi 43609 rtrclexi 43610 dfrtrcl5 43618 dfrcl2 43663 wfaxrep 44949 stoweidlem59 46014 fourierdlem71 46132 salgensscntex 46299 aacllem 49031 |
Copyright terms: Public domain | W3C validator |