Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rnex | Structured version Visualization version GIF version |
Description: The range of a set is a set. Corollary 6.8(3) of [TakeutiZaring] p. 26. Similar to Lemma 3D of [Enderton] p. 41. (Contributed by NM, 7-Jul-2008.) |
Ref | Expression |
---|---|
dmex.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
rnex | ⊢ ran 𝐴 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmex.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | rnexg 7751 | . 2 ⊢ (𝐴 ∈ V → ran 𝐴 ∈ V) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ran 𝐴 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 Vcvv 3432 ran crn 5590 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-cnv 5597 df-dm 5599 df-rn 5600 |
This theorem is referenced by: elxp4 7769 elxp5 7770 ffoss 7788 fvclex 7801 wemoiso2 7817 2ndval 7834 fo2nd 7852 mapfoss 8640 ixpsnf1o 8726 bren 8743 brenOLD 8744 sucdom2OLD 8869 mapen 8928 ssenen 8938 sucdom2 8989 fodomfib 9093 hartogslem1 9301 brwdom 9326 unxpwdom2 9347 noinfep 9418 r0weon 9768 fseqen 9783 acnlem 9804 infpwfien 9818 aceq3lem 9876 dfac4 9878 dfac5 9884 dfac2b 9886 dfac9 9892 dfac12lem2 9900 dfac12lem3 9901 infmap2 9974 cfflb 10015 infpssr 10064 fin23lem14 10089 fin23lem16 10091 fin23lem17 10094 fin23lem38 10105 fin23lem39 10106 axdc2lem 10204 axdc3lem2 10207 axcclem 10213 ttukeylem6 10270 wunex2 10494 wuncval2 10503 intgru 10570 wfgru 10572 qexALT 12704 seqexw 13737 hashfacenOLD 14167 shftfval 14781 vdwapval 16674 restfn 17135 prdsvallem 17165 prdsval 17166 wunfunc 17614 wunfuncOLD 17615 wunnat 17672 wunnatOLD 17673 arwval 17758 catcfuccl 17834 catcfucclOLD 17835 catcxpccl 17924 catcxpcclOLD 17925 yon11 17982 yon12 17983 yon2 17984 yonpropd 17986 oppcyon 17987 yonffth 18002 yoniso 18003 plusffval 18332 grpsubfval 18623 mulgfval 18702 sylow1lem2 19204 sylow2blem1 19225 sylow2blem2 19226 sylow3lem1 19232 sylow3lem6 19237 dmdprd 19601 dprdval 19606 staffval 20107 scaffval 20141 lpival 20516 ipffval 20853 cmpsub 22551 2ndcsep 22610 1stckgen 22705 kgencn2 22708 txcmplem1 22792 blbas 23583 met1stc 23677 psmetutop 23723 nmfval 23744 dchrptlem2 26413 dchrptlem3 26414 ishpg 27120 edgval 27419 bafval 28966 vsfval 28995 foresf1o 30850 fnpreimac 31008 nsgmgc 31597 nsgqusf1o 31601 idlsrgtset 31653 locfinreflem 31790 cmpcref 31800 rspectopn 31817 ordtconnlem1 31874 qqhval 31924 sigapildsys 32130 dya2icoseg2 32245 dya2iocuni 32250 sxbrsigalem2 32253 sxbrsigalem5 32255 omssubadd 32267 mvtval 33462 mvrsval 33467 mstaval 33506 brrestrict 34251 relowlssretop 35534 exrecfnlem 35550 ctbssinf 35577 lindsdom 35771 indexdom 35892 heiborlem1 35969 isdrngo2 36116 isrngohom 36123 idlval 36171 isidl 36172 igenval 36219 lsatset 37004 dicval 39190 prjcrvfval 40468 trclexi 41228 rtrclexi 41229 dfrtrcl5 41237 dfrcl2 41282 stoweidlem59 43600 fourierdlem71 43718 salgensscntex 43883 aacllem 46505 |
Copyright terms: Public domain | W3C validator |