| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnex | Structured version Visualization version GIF version | ||
| Description: The range of a set is a set. Corollary 6.8(3) of [TakeutiZaring] p. 26. Similar to Lemma 3D of [Enderton] p. 41. (Contributed by NM, 7-Jul-2008.) |
| Ref | Expression |
|---|---|
| dmex.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| rnex | ⊢ ran 𝐴 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | rnexg 7878 | . 2 ⊢ (𝐴 ∈ V → ran 𝐴 ∈ V) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ran 𝐴 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3447 ran crn 5639 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-cnv 5646 df-dm 5648 df-rn 5649 |
| This theorem is referenced by: elxp4 7898 elxp5 7899 ffoss 7924 fvclex 7937 wemoiso2 7953 2ndval 7971 fo2nd 7989 mapfoss 8825 ixpsnf1o 8911 bren 8928 mapen 9105 ssenen 9115 sucdom2 9167 fodomfib 9280 fodomfibOLD 9282 hartogslem1 9495 brwdom 9520 unxpwdom2 9541 noinfep 9613 r0weon 9965 fseqen 9980 acnlem 10001 infpwfien 10015 aceq3lem 10073 dfac4 10075 dfac5 10082 dfac2b 10084 dfac9 10090 dfac12lem2 10098 dfac12lem3 10099 infmap2 10170 cfflb 10212 infpssr 10261 fin23lem14 10286 fin23lem16 10288 fin23lem17 10291 fin23lem38 10302 fin23lem39 10303 axdc2lem 10401 axdc3lem2 10404 axcclem 10410 ttukeylem6 10467 wunex2 10691 wuncval2 10700 intgru 10767 wfgru 10769 qexALT 12923 seqexw 13982 shftfval 15036 vdwapval 16944 restfn 17387 prdsvallem 17417 prdsval 17418 wunfunc 17863 wunnat 17921 arwval 18005 catcfuccl 18080 catcxpccl 18168 yon11 18225 yon12 18226 yon2 18227 yonpropd 18229 oppcyon 18230 yonffth 18245 yoniso 18246 plusffval 18573 grpsubfval 18915 mulgfval 19001 sylow1lem2 19529 sylow2blem1 19550 sylow2blem2 19551 sylow3lem1 19557 sylow3lem6 19562 dmdprd 19930 dprdval 19935 staffval 20750 scaffval 20786 lpival 21234 ipffval 21557 cmpsub 23287 2ndcsep 23346 1stckgen 23441 kgencn2 23444 txcmplem1 23528 blbas 24318 met1stc 24409 psmetutop 24455 nmfval 24476 dchrptlem2 27176 dchrptlem3 27177 mulsproplem9 28027 ishpg 28686 edgval 28976 bafval 30533 vsfval 30562 foresf1o 32433 fnpreimac 32595 nsgmgc 33383 nsgqusf1o 33387 idlsrgtset 33479 locfinreflem 33830 cmpcref 33840 rspectopn 33857 ordtconnlem1 33914 qqhval 33962 sigapildsys 34152 dya2icoseg2 34269 dya2iocuni 34274 sxbrsigalem2 34277 sxbrsigalem5 34279 omssubadd 34291 mvtval 35487 mvrsval 35492 mstaval 35531 brrestrict 35937 relowlssretop 37351 exrecfnlem 37367 ctbssinf 37394 lindsdom 37608 indexdom 37728 heiborlem1 37805 isdrngo2 37952 isrngohom 37959 idlval 38007 isidl 38008 igenval 38055 lsatset 38983 dicval 41170 aks6d1c6isolem2 42163 prjcrvfval 42619 trclexi 43609 rtrclexi 43610 dfrtrcl5 43618 dfrcl2 43663 wfaxrep 44984 stoweidlem59 46057 fourierdlem71 46175 salgensscntex 46342 aacllem 49790 |
| Copyright terms: Public domain | W3C validator |