Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rnex | Structured version Visualization version GIF version |
Description: The range of a set is a set. Corollary 6.8(3) of [TakeutiZaring] p. 26. Similar to Lemma 3D of [Enderton] p. 41. (Contributed by NM, 7-Jul-2008.) |
Ref | Expression |
---|---|
dmex.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
rnex | ⊢ ran 𝐴 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmex.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | rnexg 7725 | . 2 ⊢ (𝐴 ∈ V → ran 𝐴 ∈ V) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ran 𝐴 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 Vcvv 3422 ran crn 5581 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-cnv 5588 df-dm 5590 df-rn 5591 |
This theorem is referenced by: elxp4 7743 elxp5 7744 ffoss 7762 fvclex 7775 wemoiso2 7790 2ndval 7807 fo2nd 7825 mapfoss 8598 ixpsnf1o 8684 bren 8701 brenOLD 8702 sucdom2 8822 mapen 8877 ssenen 8887 fodomfib 9023 hartogslem1 9231 brwdom 9256 unxpwdom2 9277 noinfep 9348 trpredex 9416 r0weon 9699 fseqen 9714 acnlem 9735 infpwfien 9749 aceq3lem 9807 dfac4 9809 dfac5 9815 dfac2b 9817 dfac9 9823 dfac12lem2 9831 dfac12lem3 9832 infmap2 9905 cfflb 9946 infpssr 9995 fin23lem14 10020 fin23lem16 10022 fin23lem17 10025 fin23lem38 10036 fin23lem39 10037 axdc2lem 10135 axdc3lem2 10138 axcclem 10144 ttukeylem6 10201 wunex2 10425 wuncval2 10434 intgru 10501 wfgru 10503 qexALT 12633 seqexw 13665 hashfacenOLD 14095 shftfval 14709 vdwapval 16602 restfn 17052 prdsvallem 17082 prdsval 17083 wunfunc 17530 wunfuncOLD 17531 wunnat 17588 wunnatOLD 17589 arwval 17674 catcfuccl 17750 catcfucclOLD 17751 catcxpccl 17840 catcxpcclOLD 17841 yon11 17898 yon12 17899 yon2 17900 yonpropd 17902 oppcyon 17903 yonffth 17918 yoniso 17919 plusffval 18247 grpsubfval 18538 mulgfval 18617 sylow1lem2 19119 sylow2blem1 19140 sylow2blem2 19141 sylow3lem1 19147 sylow3lem6 19152 dmdprd 19516 dprdval 19521 staffval 20022 scaffval 20056 lpival 20429 ipffval 20765 cmpsub 22459 2ndcsep 22518 1stckgen 22613 kgencn2 22616 txcmplem1 22700 blbas 23491 met1stc 23583 psmetutop 23629 nmfval 23650 dchrptlem2 26318 dchrptlem3 26319 ishpg 27024 edgval 27322 bafval 28867 vsfval 28896 foresf1o 30751 fnpreimac 30910 nsgmgc 31499 nsgqusf1o 31503 idlsrgtset 31555 locfinreflem 31692 cmpcref 31702 rspectopn 31719 ordtconnlem1 31776 qqhval 31824 sigapildsys 32030 dya2icoseg2 32145 dya2iocuni 32150 sxbrsigalem2 32153 sxbrsigalem5 32155 omssubadd 32167 mvtval 33362 mvrsval 33367 mstaval 33406 brrestrict 34178 relowlssretop 35461 exrecfnlem 35477 ctbssinf 35504 lindsdom 35698 indexdom 35819 heiborlem1 35896 isdrngo2 36043 isrngohom 36050 idlval 36098 isidl 36099 igenval 36146 lsatset 36931 dicval 39117 trclexi 41117 rtrclexi 41118 dfrtrcl5 41126 dfrcl2 41171 stoweidlem59 43490 fourierdlem71 43608 salgensscntex 43773 aacllem 46391 |
Copyright terms: Public domain | W3C validator |