| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnex | Structured version Visualization version GIF version | ||
| Description: The range of a set is a set. Corollary 6.8(3) of [TakeutiZaring] p. 26. Similar to Lemma 3D of [Enderton] p. 41. (Contributed by NM, 7-Jul-2008.) |
| Ref | Expression |
|---|---|
| dmex.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| rnex | ⊢ ran 𝐴 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | rnexg 7827 | . 2 ⊢ (𝐴 ∈ V → ran 𝐴 ∈ V) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ran 𝐴 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 Vcvv 3436 ran crn 5612 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-cnv 5619 df-dm 5621 df-rn 5622 |
| This theorem is referenced by: elxp4 7847 elxp5 7848 ffoss 7873 fvclex 7886 wemoiso2 7901 2ndval 7919 fo2nd 7937 mapfoss 8771 ixpsnf1o 8857 bren 8874 mapen 9049 ssenen 9059 sucdom2 9107 fodomfib 9208 fodomfibOLD 9210 hartogslem1 9423 brwdom 9448 unxpwdom2 9469 noinfep 9545 r0weon 9898 fseqen 9913 acnlem 9934 infpwfien 9948 aceq3lem 10006 dfac4 10008 dfac5 10015 dfac2b 10017 dfac9 10023 dfac12lem2 10031 dfac12lem3 10032 infmap2 10103 cfflb 10145 infpssr 10194 fin23lem14 10219 fin23lem16 10221 fin23lem17 10224 fin23lem38 10235 fin23lem39 10236 axdc2lem 10334 axdc3lem2 10337 axcclem 10343 ttukeylem6 10400 wunex2 10624 wuncval2 10633 intgru 10700 wfgru 10702 qexALT 12857 seqexw 13919 shftfval 14972 vdwapval 16880 restfn 17323 prdsvallem 17353 prdsval 17354 wunfunc 17803 wunnat 17861 arwval 17945 catcfuccl 18020 catcxpccl 18108 yon11 18165 yon12 18166 yon2 18167 yonpropd 18169 oppcyon 18170 yonffth 18185 yoniso 18186 plusffval 18549 grpsubfval 18891 mulgfval 18977 sylow1lem2 19506 sylow2blem1 19527 sylow2blem2 19528 sylow3lem1 19534 sylow3lem6 19539 dmdprd 19907 dprdval 19912 staffval 20751 scaffval 20808 lpival 21256 ipffval 21580 cmpsub 23310 2ndcsep 23369 1stckgen 23464 kgencn2 23467 txcmplem1 23551 blbas 24340 met1stc 24431 psmetutop 24477 nmfval 24498 dchrptlem2 27198 dchrptlem3 27199 mulsproplem9 28058 ishpg 28732 edgval 29022 bafval 30576 vsfval 30605 foresf1o 32476 fnpreimac 32645 nsgmgc 33369 nsgqusf1o 33373 idlsrgtset 33465 locfinreflem 33845 cmpcref 33855 rspectopn 33872 ordtconnlem1 33929 qqhval 33977 sigapildsys 34167 dya2icoseg2 34283 dya2iocuni 34288 sxbrsigalem2 34291 sxbrsigalem5 34293 omssubadd 34305 mvtval 35536 mvrsval 35541 mstaval 35580 brrestrict 35983 relowlssretop 37397 exrecfnlem 37413 ctbssinf 37440 lindsdom 37654 indexdom 37774 heiborlem1 37851 isdrngo2 37998 isrngohom 38005 idlval 38053 isidl 38054 igenval 38101 lsatset 39029 dicval 41215 aks6d1c6isolem2 42208 prjcrvfval 42664 trclexi 43653 rtrclexi 43654 dfrtrcl5 43662 dfrcl2 43707 wfaxrep 45027 stoweidlem59 46097 fourierdlem71 46215 salgensscntex 46382 aacllem 49833 |
| Copyright terms: Public domain | W3C validator |