![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rnex | Structured version Visualization version GIF version |
Description: The range of a set is a set. Corollary 6.8(3) of [TakeutiZaring] p. 26. Similar to Lemma 3D of [Enderton] p. 41. (Contributed by NM, 7-Jul-2008.) |
Ref | Expression |
---|---|
dmex.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
rnex | ⊢ ran 𝐴 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmex.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | rnexg 7942 | . 2 ⊢ (𝐴 ∈ V → ran 𝐴 ∈ V) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ran 𝐴 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 Vcvv 3488 ran crn 5701 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-cnv 5708 df-dm 5710 df-rn 5711 |
This theorem is referenced by: elxp4 7962 elxp5 7963 ffoss 7986 fvclex 7999 wemoiso2 8015 2ndval 8033 fo2nd 8051 mapfoss 8910 ixpsnf1o 8996 bren 9013 brenOLD 9014 sucdom2OLD 9148 mapen 9207 ssenen 9217 sucdom2 9269 fodomfib 9397 fodomfibOLD 9399 hartogslem1 9611 brwdom 9636 unxpwdom2 9657 noinfep 9729 r0weon 10081 fseqen 10096 acnlem 10117 infpwfien 10131 aceq3lem 10189 dfac4 10191 dfac5 10198 dfac2b 10200 dfac9 10206 dfac12lem2 10214 dfac12lem3 10215 infmap2 10286 cfflb 10328 infpssr 10377 fin23lem14 10402 fin23lem16 10404 fin23lem17 10407 fin23lem38 10418 fin23lem39 10419 axdc2lem 10517 axdc3lem2 10520 axcclem 10526 ttukeylem6 10583 wunex2 10807 wuncval2 10816 intgru 10883 wfgru 10885 qexALT 13029 seqexw 14068 shftfval 15119 vdwapval 17020 restfn 17484 prdsvallem 17514 prdsval 17515 wunfunc 17965 wunfuncOLD 17966 wunnat 18024 wunnatOLD 18025 arwval 18110 catcfuccl 18186 catcfucclOLD 18187 catcxpccl 18276 catcxpcclOLD 18277 yon11 18334 yon12 18335 yon2 18336 yonpropd 18338 oppcyon 18339 yonffth 18354 yoniso 18355 plusffval 18684 grpsubfval 19023 mulgfval 19109 sylow1lem2 19641 sylow2blem1 19662 sylow2blem2 19663 sylow3lem1 19669 sylow3lem6 19674 dmdprd 20042 dprdval 20047 staffval 20864 scaffval 20900 lpival 21357 ipffval 21689 cmpsub 23429 2ndcsep 23488 1stckgen 23583 kgencn2 23586 txcmplem1 23670 blbas 24461 met1stc 24555 psmetutop 24601 nmfval 24622 dchrptlem2 27327 dchrptlem3 27328 mulsproplem9 28168 ishpg 28785 edgval 29084 bafval 30636 vsfval 30665 foresf1o 32532 fnpreimac 32689 nsgmgc 33405 nsgqusf1o 33409 idlsrgtset 33501 locfinreflem 33786 cmpcref 33796 rspectopn 33813 ordtconnlem1 33870 qqhval 33920 sigapildsys 34126 dya2icoseg2 34243 dya2iocuni 34248 sxbrsigalem2 34251 sxbrsigalem5 34253 omssubadd 34265 mvtval 35468 mvrsval 35473 mstaval 35512 brrestrict 35913 relowlssretop 37329 exrecfnlem 37345 ctbssinf 37372 lindsdom 37574 indexdom 37694 heiborlem1 37771 isdrngo2 37918 isrngohom 37925 idlval 37973 isidl 37974 igenval 38021 lsatset 38946 dicval 41133 aks6d1c6isolem2 42132 prjcrvfval 42586 trclexi 43582 rtrclexi 43583 dfrtrcl5 43591 dfrcl2 43636 stoweidlem59 45980 fourierdlem71 46098 salgensscntex 46265 aacllem 48895 |
Copyright terms: Public domain | W3C validator |