| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnex | Structured version Visualization version GIF version | ||
| Description: The range of a set is a set. Corollary 6.8(3) of [TakeutiZaring] p. 26. Similar to Lemma 3D of [Enderton] p. 41. (Contributed by NM, 7-Jul-2008.) |
| Ref | Expression |
|---|---|
| dmex.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| rnex | ⊢ ran 𝐴 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | rnexg 7858 | . 2 ⊢ (𝐴 ∈ V → ran 𝐴 ∈ V) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ran 𝐴 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3444 ran crn 5632 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-cnv 5639 df-dm 5641 df-rn 5642 |
| This theorem is referenced by: elxp4 7878 elxp5 7879 ffoss 7904 fvclex 7917 wemoiso2 7932 2ndval 7950 fo2nd 7968 mapfoss 8802 ixpsnf1o 8888 bren 8905 mapen 9082 ssenen 9092 sucdom2 9144 fodomfib 9256 fodomfibOLD 9258 hartogslem1 9471 brwdom 9496 unxpwdom2 9517 noinfep 9589 r0weon 9941 fseqen 9956 acnlem 9977 infpwfien 9991 aceq3lem 10049 dfac4 10051 dfac5 10058 dfac2b 10060 dfac9 10066 dfac12lem2 10074 dfac12lem3 10075 infmap2 10146 cfflb 10188 infpssr 10237 fin23lem14 10262 fin23lem16 10264 fin23lem17 10267 fin23lem38 10278 fin23lem39 10279 axdc2lem 10377 axdc3lem2 10380 axcclem 10386 ttukeylem6 10443 wunex2 10667 wuncval2 10676 intgru 10743 wfgru 10745 qexALT 12899 seqexw 13958 shftfval 15012 vdwapval 16920 restfn 17363 prdsvallem 17393 prdsval 17394 wunfunc 17839 wunnat 17897 arwval 17981 catcfuccl 18056 catcxpccl 18144 yon11 18201 yon12 18202 yon2 18203 yonpropd 18205 oppcyon 18206 yonffth 18221 yoniso 18222 plusffval 18549 grpsubfval 18891 mulgfval 18977 sylow1lem2 19505 sylow2blem1 19526 sylow2blem2 19527 sylow3lem1 19533 sylow3lem6 19538 dmdprd 19906 dprdval 19911 staffval 20726 scaffval 20762 lpival 21210 ipffval 21533 cmpsub 23263 2ndcsep 23322 1stckgen 23417 kgencn2 23420 txcmplem1 23504 blbas 24294 met1stc 24385 psmetutop 24431 nmfval 24452 dchrptlem2 27152 dchrptlem3 27153 mulsproplem9 28003 ishpg 28662 edgval 28952 bafval 30506 vsfval 30535 foresf1o 32406 fnpreimac 32568 nsgmgc 33356 nsgqusf1o 33360 idlsrgtset 33452 locfinreflem 33803 cmpcref 33813 rspectopn 33830 ordtconnlem1 33887 qqhval 33935 sigapildsys 34125 dya2icoseg2 34242 dya2iocuni 34247 sxbrsigalem2 34250 sxbrsigalem5 34252 omssubadd 34264 mvtval 35460 mvrsval 35465 mstaval 35504 brrestrict 35910 relowlssretop 37324 exrecfnlem 37340 ctbssinf 37367 lindsdom 37581 indexdom 37701 heiborlem1 37778 isdrngo2 37925 isrngohom 37932 idlval 37980 isidl 37981 igenval 38028 lsatset 38956 dicval 41143 aks6d1c6isolem2 42136 prjcrvfval 42592 trclexi 43582 rtrclexi 43583 dfrtrcl5 43591 dfrcl2 43636 wfaxrep 44957 stoweidlem59 46030 fourierdlem71 46148 salgensscntex 46315 aacllem 49763 |
| Copyright terms: Public domain | W3C validator |