| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnex | Structured version Visualization version GIF version | ||
| Description: The range of a set is a set. Corollary 6.8(3) of [TakeutiZaring] p. 26. Similar to Lemma 3D of [Enderton] p. 41. (Contributed by NM, 7-Jul-2008.) |
| Ref | Expression |
|---|---|
| dmex.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| rnex | ⊢ ran 𝐴 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | rnexg 7903 | . 2 ⊢ (𝐴 ∈ V → ran 𝐴 ∈ V) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ran 𝐴 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3464 ran crn 5660 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-cnv 5667 df-dm 5669 df-rn 5670 |
| This theorem is referenced by: elxp4 7923 elxp5 7924 ffoss 7949 fvclex 7962 wemoiso2 7978 2ndval 7996 fo2nd 8014 mapfoss 8871 ixpsnf1o 8957 bren 8974 sucdom2OLD 9101 mapen 9160 ssenen 9170 sucdom2 9222 fodomfib 9346 fodomfibOLD 9348 hartogslem1 9561 brwdom 9586 unxpwdom2 9607 noinfep 9679 r0weon 10031 fseqen 10046 acnlem 10067 infpwfien 10081 aceq3lem 10139 dfac4 10141 dfac5 10148 dfac2b 10150 dfac9 10156 dfac12lem2 10164 dfac12lem3 10165 infmap2 10236 cfflb 10278 infpssr 10327 fin23lem14 10352 fin23lem16 10354 fin23lem17 10357 fin23lem38 10368 fin23lem39 10369 axdc2lem 10467 axdc3lem2 10470 axcclem 10476 ttukeylem6 10533 wunex2 10757 wuncval2 10766 intgru 10833 wfgru 10835 qexALT 12985 seqexw 14040 shftfval 15094 vdwapval 16998 restfn 17443 prdsvallem 17473 prdsval 17474 wunfunc 17919 wunnat 17977 arwval 18061 catcfuccl 18136 catcxpccl 18224 yon11 18281 yon12 18282 yon2 18283 yonpropd 18285 oppcyon 18286 yonffth 18301 yoniso 18302 plusffval 18629 grpsubfval 18971 mulgfval 19057 sylow1lem2 19585 sylow2blem1 19606 sylow2blem2 19607 sylow3lem1 19613 sylow3lem6 19618 dmdprd 19986 dprdval 19991 staffval 20806 scaffval 20842 lpival 21290 ipffval 21613 cmpsub 23343 2ndcsep 23402 1stckgen 23497 kgencn2 23500 txcmplem1 23584 blbas 24374 met1stc 24465 psmetutop 24511 nmfval 24532 dchrptlem2 27233 dchrptlem3 27234 mulsproplem9 28084 ishpg 28743 edgval 29033 bafval 30590 vsfval 30619 foresf1o 32490 fnpreimac 32654 nsgmgc 33432 nsgqusf1o 33436 idlsrgtset 33528 locfinreflem 33876 cmpcref 33886 rspectopn 33903 ordtconnlem1 33960 qqhval 34008 sigapildsys 34198 dya2icoseg2 34315 dya2iocuni 34320 sxbrsigalem2 34323 sxbrsigalem5 34325 omssubadd 34337 mvtval 35527 mvrsval 35532 mstaval 35571 brrestrict 35972 relowlssretop 37386 exrecfnlem 37402 ctbssinf 37429 lindsdom 37643 indexdom 37763 heiborlem1 37840 isdrngo2 37987 isrngohom 37994 idlval 38042 isidl 38043 igenval 38090 lsatset 39013 dicval 41200 aks6d1c6isolem2 42193 prjcrvfval 42629 trclexi 43619 rtrclexi 43620 dfrtrcl5 43628 dfrcl2 43673 wfaxrep 44994 stoweidlem59 46068 fourierdlem71 46186 salgensscntex 46353 aacllem 49645 |
| Copyright terms: Public domain | W3C validator |