| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fof | Structured version Visualization version GIF version | ||
| Description: An onto mapping is a mapping. (Contributed by NM, 3-Aug-1994.) |
| Ref | Expression |
|---|---|
| fof | ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqimss 4005 | . . 3 ⊢ (ran 𝐹 = 𝐵 → ran 𝐹 ⊆ 𝐵) | |
| 2 | 1 | anim2i 617 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) → (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) |
| 3 | df-fo 6517 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) | |
| 4 | df-f 6515 | . 2 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
| 5 | 2, 3, 4 | 3imtr4i 292 | 1 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ⊆ wss 3914 ran crn 5639 Fn wfn 6506 ⟶wf 6507 –onto→wfo 6509 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ss 3931 df-f 6515 df-fo 6517 |
| This theorem is referenced by: fofun 6773 fofn 6774 dffo2 6776 foima 6777 focnvimacdmdm 6784 focofo 6785 resdif 6821 fimacnvinrn 7043 fompt 7090 fconst5 7180 cocan2 7267 foeqcnvco 7275 soisoi 7303 ffoss 7924 focdmex 7934 opco1 8102 opco2 8103 tposf2 8229 smoiso2 8338 mapfoss 8825 ssdomg 8971 fopwdom 9049 unfilem2 9255 fodomfib 9280 fodomfibOLD 9282 fofinf1o 9283 brwdomn0 9522 fowdom 9524 wdomtr 9528 wdomima2g 9539 fodomfi2 10013 wdomfil 10014 alephiso 10051 iunfictbso 10067 cofsmo 10222 isf32lem10 10315 fin1a2lem7 10359 fodomb 10479 iunfo 10492 tskuni 10736 gruima 10755 gruen 10765 axpre-sup 11122 wrdsymb 14507 supcvg 15822 ruclem13 16210 imasval 17474 imasle 17486 imasaddfnlem 17491 imasaddflem 17493 imasvscafn 17500 imasvscaf 17502 imasless 17503 homadm 18002 homacd 18003 dmaf 18011 cdaf 18012 setcepi 18050 imasmnd2 18701 sursubmefmnd 18823 imasgrp2 18987 mhmid 18995 mhmmnd 18996 mhmfmhm 18997 ghmgrp 18998 efgred2 19683 ghmfghm 19760 ghmcyg 19826 gsumval3 19837 gsumzoppg 19874 gsum2dlem2 19901 imasring 20239 znunit 21473 znrrg 21475 cygznlem2a 21477 cygznlem3 21479 cncmp 23279 cnconn 23309 1stcfb 23332 dfac14 23505 qtopval2 23583 qtopuni 23589 qtopid 23592 qtopcld 23600 qtopcn 23601 qtopeu 23603 qtophmeo 23704 elfm3 23837 ovoliunnul 25408 uniiccdif 25479 dchrzrhcl 27156 lgsdchrval 27265 rpvmasumlem 27398 dchrmusum2 27405 dchrvmasumlem3 27410 dchrisum0ff 27418 dchrisum0flblem1 27419 rpvmasum2 27423 dchrisum0re 27424 dchrisum0lem2a 27428 nodense 27604 bdaydm 27686 bdayelon 27688 om2noseqlt 28193 om2noseqlt2 28194 om2noseqf1o 28195 noseqrdgfn 28200 bdayn0sf1o 28259 grpocl 30429 grporndm 30439 vafval 30532 smfval 30534 nvgf 30547 vsfval 30562 hhssabloilem 31190 pjhf 31637 elunop 31801 unopf1o 31845 cnvunop 31847 pjinvari 32120 foresf1o 32433 rabfodom 32434 iunrdx 32492 xppreima 32569 gsumpart 32997 imasmhm 33325 imasghm 33326 imasrhm 33327 qtophaus 33826 sigapildsys 34152 carsgclctunlem3 34311 mtyf 35539 poimirlem26 37640 poimirlem27 37641 volsupnfl 37659 cocanfo 37713 exidreslem 37871 rngosn3 37918 rngodm1dm2 37926 founiiun 45173 founiiun0 45184 issalnnd 46343 sge0fodjrnlem 46414 ismeannd 46465 caragenunicl 46522 fcores 47068 fcoresf1lem 47069 fcoresf1 47070 fcoresfo 47072 3f1oss1 47076 fargshiftfo 47443 uptr2 49210 |
| Copyright terms: Public domain | W3C validator |