![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fof | Structured version Visualization version GIF version |
Description: An onto mapping is a mapping. (Contributed by NM, 3-Aug-1994.) |
Ref | Expression |
---|---|
fof | ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqimss 3906 | . . 3 ⊢ (ran 𝐹 = 𝐵 → ran 𝐹 ⊆ 𝐵) | |
2 | 1 | anim2i 608 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) → (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) |
3 | df-fo 6191 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) | |
4 | df-f 6189 | . 2 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
5 | 2, 3, 4 | 3imtr4i 284 | 1 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 = wceq 1508 ⊆ wss 3822 ran crn 5404 Fn wfn 6180 ⟶wf 6181 –onto→wfo 6183 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-ext 2743 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-clab 2752 df-cleq 2764 df-clel 2839 df-in 3829 df-ss 3836 df-f 6189 df-fo 6191 |
This theorem is referenced by: fofun 6417 fofn 6418 dffo2 6420 foima 6421 resdif 6461 fimacnvinrn 6663 fconst5 6793 cocan2 6871 foeqcnvco 6879 soisoi 6902 ffoss 7457 fornex 7467 algrflem 7622 tposf2 7717 smoiso2 7808 ssdomg 8350 fopwdom 8419 unfilem2 8576 fodomfib 8591 fofinf1o 8592 brwdomn0 8826 fowdom 8828 wdomtr 8832 wdomima2g 8843 fodomfi2 9278 wdomfil 9279 alephiso 9316 iunfictbso 9332 cofsmo 9487 isf32lem10 9580 fin1a2lem7 9624 fodomb 9744 iunfo 9757 tskuni 10001 gruima 10020 gruen 10030 axpre-sup 10387 focdmex 13524 wrdsymb 13702 supcvg 15069 ruclem13 15453 imasval 16638 imasle 16650 imasaddfnlem 16655 imasaddflem 16657 imasvscafn 16664 imasvscaf 16666 imasless 16667 homadm 17170 homacd 17171 dmaf 17179 cdaf 17180 setcepi 17218 imasmnd2 17807 imasgrp2 18013 mhmid 18019 mhmmnd 18020 mhmfmhm 18021 ghmgrp 18022 efgred2 18651 ghmfghm 18721 ghmcyg 18782 gsumval3 18793 gsumzoppg 18829 gsum2dlem2 18856 imasring 19104 znunit 20427 znrrg 20429 cygznlem2a 20431 cygznlem3 20433 cncmp 21719 cnconn 21749 1stcfb 21772 dfac14 21945 qtopval2 22023 qtopuni 22029 qtopid 22032 qtopcld 22040 qtopcn 22041 qtopeu 22043 qtophmeo 22144 elfm3 22277 ovoliunnul 23826 uniiccdif 23897 dchrzrhcl 25538 lgsdchrval 25647 rpvmasumlem 25780 dchrmusum2 25787 dchrvmasumlem3 25792 dchrisum0ff 25800 dchrisum0flblem1 25801 rpvmasum2 25805 dchrisum0re 25806 dchrisum0lem2a 25810 grpocl 28069 grporndm 28079 vafval 28172 smfval 28174 nvgf 28187 vsfval 28202 hhssabloilem 28832 pjhf 29281 elunop 29445 unopf1o 29489 cnvunop 29491 pjinvari 29764 foresf1o 30059 rabfodom 30060 iunrdx 30101 xppreima 30173 qtophaus 30776 sigapildsys 31098 carsgclctunlem3 31255 mtyf 32356 nodense 32754 bdaydm 32802 bdayelon 32804 poimirlem26 34396 poimirlem27 34397 volsupnfl 34415 cocanfo 34472 exidreslem 34634 rngosn3 34681 rngodm1dm2 34689 founiiun 40894 founiiun0 40910 issalnnd 42093 sge0fodjrnlem 42163 ismeannd 42214 caragenunicl 42271 fargshiftfo 43008 |
Copyright terms: Public domain | W3C validator |