![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fof | Structured version Visualization version GIF version |
Description: An onto mapping is a mapping. (Contributed by NM, 3-Aug-1994.) |
Ref | Expression |
---|---|
fof | ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqimss 4067 | . . 3 ⊢ (ran 𝐹 = 𝐵 → ran 𝐹 ⊆ 𝐵) | |
2 | 1 | anim2i 616 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) → (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) |
3 | df-fo 6579 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) | |
4 | df-f 6577 | . 2 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
5 | 2, 3, 4 | 3imtr4i 292 | 1 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ⊆ wss 3976 ran crn 5701 Fn wfn 6568 ⟶wf 6569 –onto→wfo 6571 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-ss 3993 df-f 6577 df-fo 6579 |
This theorem is referenced by: fofun 6835 fofn 6836 dffo2 6838 foima 6839 focnvimacdmdm 6846 focofo 6847 resdif 6883 fimacnvinrn 7105 fompt 7152 fconst5 7243 cocan2 7328 foeqcnvco 7336 soisoi 7364 ffoss 7986 focdmex 7996 opco1 8164 opco2 8165 tposf2 8291 smoiso2 8425 mapfoss 8910 ssdomg 9060 fopwdom 9146 unfilem2 9372 fodomfib 9397 fodomfibOLD 9399 fofinf1o 9400 brwdomn0 9638 fowdom 9640 wdomtr 9644 wdomima2g 9655 fodomfi2 10129 wdomfil 10130 alephiso 10167 iunfictbso 10183 cofsmo 10338 isf32lem10 10431 fin1a2lem7 10475 fodomb 10595 iunfo 10608 tskuni 10852 gruima 10871 gruen 10881 axpre-sup 11238 wrdsymb 14590 supcvg 15904 ruclem13 16290 imasval 17571 imasle 17583 imasaddfnlem 17588 imasaddflem 17590 imasvscafn 17597 imasvscaf 17599 imasless 17600 homadm 18107 homacd 18108 dmaf 18116 cdaf 18117 setcepi 18155 imasmnd2 18809 sursubmefmnd 18931 imasgrp2 19095 mhmid 19103 mhmmnd 19104 mhmfmhm 19105 ghmgrp 19106 efgred2 19795 ghmfghm 19872 ghmcyg 19938 gsumval3 19949 gsumzoppg 19986 gsum2dlem2 20013 imasring 20353 znunit 21605 znrrg 21607 cygznlem2a 21609 cygznlem3 21611 cncmp 23421 cnconn 23451 1stcfb 23474 dfac14 23647 qtopval2 23725 qtopuni 23731 qtopid 23734 qtopcld 23742 qtopcn 23743 qtopeu 23745 qtophmeo 23846 elfm3 23979 ovoliunnul 25561 uniiccdif 25632 dchrzrhcl 27307 lgsdchrval 27416 rpvmasumlem 27549 dchrmusum2 27556 dchrvmasumlem3 27561 dchrisum0ff 27569 dchrisum0flblem1 27570 rpvmasum2 27574 dchrisum0re 27575 dchrisum0lem2a 27579 nodense 27755 bdaydm 27837 bdayelon 27839 om2noseqlt 28323 om2noseqlt2 28324 om2noseqf1o 28325 noseqrdgfn 28330 grpocl 30532 grporndm 30542 vafval 30635 smfval 30637 nvgf 30650 vsfval 30665 hhssabloilem 31293 pjhf 31740 elunop 31904 unopf1o 31948 cnvunop 31950 pjinvari 32223 foresf1o 32532 rabfodom 32533 iunrdx 32586 xppreima 32664 gsumpart 33038 imasmhm 33347 imasghm 33348 imasrhm 33349 qtophaus 33782 sigapildsys 34126 carsgclctunlem3 34285 mtyf 35520 poimirlem26 37606 poimirlem27 37607 volsupnfl 37625 cocanfo 37679 exidreslem 37837 rngosn3 37884 rngodm1dm2 37892 founiiun 45086 founiiun0 45097 issalnnd 46266 sge0fodjrnlem 46337 ismeannd 46388 caragenunicl 46445 fcores 46982 fcoresf1lem 46983 fcoresf1 46984 fcoresfo 46986 3f1oss1 46990 fargshiftfo 47316 |
Copyright terms: Public domain | W3C validator |