| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fof | Structured version Visualization version GIF version | ||
| Description: An onto mapping is a mapping. (Contributed by NM, 3-Aug-1994.) |
| Ref | Expression |
|---|---|
| fof | ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqimss 4008 | . . 3 ⊢ (ran 𝐹 = 𝐵 → ran 𝐹 ⊆ 𝐵) | |
| 2 | 1 | anim2i 617 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) → (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) |
| 3 | df-fo 6520 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) | |
| 4 | df-f 6518 | . 2 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
| 5 | 2, 3, 4 | 3imtr4i 292 | 1 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ⊆ wss 3917 ran crn 5642 Fn wfn 6509 ⟶wf 6510 –onto→wfo 6512 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2722 df-ss 3934 df-f 6518 df-fo 6520 |
| This theorem is referenced by: fofun 6776 fofn 6777 dffo2 6779 foima 6780 focnvimacdmdm 6787 focofo 6788 resdif 6824 fimacnvinrn 7046 fompt 7093 fconst5 7183 cocan2 7270 foeqcnvco 7278 soisoi 7306 ffoss 7927 focdmex 7937 opco1 8105 opco2 8106 tposf2 8232 smoiso2 8341 mapfoss 8828 ssdomg 8974 fopwdom 9054 unfilem2 9262 fodomfib 9287 fodomfibOLD 9289 fofinf1o 9290 brwdomn0 9529 fowdom 9531 wdomtr 9535 wdomima2g 9546 fodomfi2 10020 wdomfil 10021 alephiso 10058 iunfictbso 10074 cofsmo 10229 isf32lem10 10322 fin1a2lem7 10366 fodomb 10486 iunfo 10499 tskuni 10743 gruima 10762 gruen 10772 axpre-sup 11129 wrdsymb 14514 supcvg 15829 ruclem13 16217 imasval 17481 imasle 17493 imasaddfnlem 17498 imasaddflem 17500 imasvscafn 17507 imasvscaf 17509 imasless 17510 homadm 18009 homacd 18010 dmaf 18018 cdaf 18019 setcepi 18057 imasmnd2 18708 sursubmefmnd 18830 imasgrp2 18994 mhmid 19002 mhmmnd 19003 mhmfmhm 19004 ghmgrp 19005 efgred2 19690 ghmfghm 19767 ghmcyg 19833 gsumval3 19844 gsumzoppg 19881 gsum2dlem2 19908 imasring 20246 znunit 21480 znrrg 21482 cygznlem2a 21484 cygznlem3 21486 cncmp 23286 cnconn 23316 1stcfb 23339 dfac14 23512 qtopval2 23590 qtopuni 23596 qtopid 23599 qtopcld 23607 qtopcn 23608 qtopeu 23610 qtophmeo 23711 elfm3 23844 ovoliunnul 25415 uniiccdif 25486 dchrzrhcl 27163 lgsdchrval 27272 rpvmasumlem 27405 dchrmusum2 27412 dchrvmasumlem3 27417 dchrisum0ff 27425 dchrisum0flblem1 27426 rpvmasum2 27430 dchrisum0re 27431 dchrisum0lem2a 27435 nodense 27611 bdaydm 27693 bdayelon 27695 om2noseqlt 28200 om2noseqlt2 28201 om2noseqf1o 28202 noseqrdgfn 28207 bdayn0sf1o 28266 grpocl 30436 grporndm 30446 vafval 30539 smfval 30541 nvgf 30554 vsfval 30569 hhssabloilem 31197 pjhf 31644 elunop 31808 unopf1o 31852 cnvunop 31854 pjinvari 32127 foresf1o 32440 rabfodom 32441 iunrdx 32499 xppreima 32576 gsumpart 33004 imasmhm 33332 imasghm 33333 imasrhm 33334 qtophaus 33833 sigapildsys 34159 carsgclctunlem3 34318 mtyf 35546 poimirlem26 37647 poimirlem27 37648 volsupnfl 37666 cocanfo 37720 exidreslem 37878 rngosn3 37925 rngodm1dm2 37933 founiiun 45180 founiiun0 45191 issalnnd 46350 sge0fodjrnlem 46421 ismeannd 46472 caragenunicl 46529 fcores 47072 fcoresf1lem 47073 fcoresf1 47074 fcoresfo 47076 3f1oss1 47080 fargshiftfo 47447 uptr2 49214 |
| Copyright terms: Public domain | W3C validator |