| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fof | Structured version Visualization version GIF version | ||
| Description: An onto mapping is a mapping. (Contributed by NM, 3-Aug-1994.) |
| Ref | Expression |
|---|---|
| fof | ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqimss 3989 | . . 3 ⊢ (ran 𝐹 = 𝐵 → ran 𝐹 ⊆ 𝐵) | |
| 2 | 1 | anim2i 617 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) → (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) |
| 3 | df-fo 6492 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) | |
| 4 | df-f 6490 | . 2 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
| 5 | 2, 3, 4 | 3imtr4i 292 | 1 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ⊆ wss 3898 ran crn 5620 Fn wfn 6481 ⟶wf 6482 –onto→wfo 6484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2725 df-ss 3915 df-f 6490 df-fo 6492 |
| This theorem is referenced by: fofun 6741 fofn 6742 dffo2 6744 foima 6745 focnvimacdmdm 6752 focofo 6753 resdif 6789 fimacnvinrn 7010 fompt 7057 fconst5 7146 cocan2 7232 foeqcnvco 7240 soisoi 7268 ffoss 7884 focdmex 7894 opco1 8059 opco2 8060 tposf2 8186 smoiso2 8295 mapfoss 8782 ssdomg 8929 fopwdom 9005 unfilem2 9197 fodomfib 9220 fodomfibOLD 9222 fofinf1o 9223 brwdomn0 9462 fowdom 9464 wdomtr 9468 wdomima2g 9479 fodomfi2 9958 wdomfil 9959 alephiso 9996 iunfictbso 10012 cofsmo 10167 isf32lem10 10260 fin1a2lem7 10304 fodomb 10424 iunfo 10437 tskuni 10681 gruima 10700 gruen 10710 axpre-sup 11067 wrdsymb 14451 supcvg 15765 ruclem13 16153 imasval 17417 imasle 17429 imasaddfnlem 17434 imasaddflem 17436 imasvscafn 17443 imasvscaf 17445 imasless 17446 homadm 17949 homacd 17950 dmaf 17958 cdaf 17959 setcepi 17997 imasmnd2 18684 sursubmefmnd 18806 imasgrp2 18970 mhmid 18978 mhmmnd 18979 mhmfmhm 18980 ghmgrp 18981 efgred2 19667 ghmfghm 19744 ghmcyg 19810 gsumval3 19821 gsumzoppg 19858 gsum2dlem2 19885 imasring 20250 znunit 21502 znrrg 21504 cygznlem2a 21506 cygznlem3 21508 cncmp 23308 cnconn 23338 1stcfb 23361 dfac14 23534 qtopval2 23612 qtopuni 23618 qtopid 23621 qtopcld 23629 qtopcn 23630 qtopeu 23632 qtophmeo 23733 elfm3 23866 ovoliunnul 25436 uniiccdif 25507 dchrzrhcl 27184 lgsdchrval 27293 rpvmasumlem 27426 dchrmusum2 27433 dchrvmasumlem3 27438 dchrisum0ff 27446 dchrisum0flblem1 27447 rpvmasum2 27451 dchrisum0re 27452 dchrisum0lem2a 27456 nodense 27632 bdaydm 27714 bdayelon 27716 om2noseqlt 28230 om2noseqlt2 28231 om2noseqf1o 28232 noseqrdgfn 28237 bdayn0sf1o 28296 grpocl 30482 grporndm 30492 vafval 30585 smfval 30587 nvgf 30600 vsfval 30615 hhssabloilem 31243 pjhf 31690 elunop 31854 unopf1o 31898 cnvunop 31900 pjinvari 32173 foresf1o 32486 rabfodom 32487 iunrdx 32545 xppreima 32629 gsumpart 33044 imasmhm 33326 imasghm 33327 imasrhm 33328 qtophaus 33870 sigapildsys 34196 carsgclctunlem3 34354 mtyf 35617 poimirlem26 37706 poimirlem27 37707 volsupnfl 37725 cocanfo 37779 exidreslem 37937 rngosn3 37984 rngodm1dm2 37992 founiiun 45300 founiiun0 45311 issalnnd 46467 sge0fodjrnlem 46538 ismeannd 46589 caragenunicl 46646 fcores 47191 fcoresf1lem 47192 fcoresf1 47193 fcoresfo 47195 3f1oss1 47199 fargshiftfo 47566 uptr2 49346 |
| Copyright terms: Public domain | W3C validator |