| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fof | Structured version Visualization version GIF version | ||
| Description: An onto mapping is a mapping. (Contributed by NM, 3-Aug-1994.) |
| Ref | Expression |
|---|---|
| fof | ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqimss 3993 | . . 3 ⊢ (ran 𝐹 = 𝐵 → ran 𝐹 ⊆ 𝐵) | |
| 2 | 1 | anim2i 617 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) → (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) |
| 3 | df-fo 6487 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) | |
| 4 | df-f 6485 | . 2 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
| 5 | 2, 3, 4 | 3imtr4i 292 | 1 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ⊆ wss 3902 ran crn 5617 Fn wfn 6476 ⟶wf 6477 –onto→wfo 6479 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 df-ss 3919 df-f 6485 df-fo 6487 |
| This theorem is referenced by: fofun 6736 fofn 6737 dffo2 6739 foima 6740 focnvimacdmdm 6747 focofo 6748 resdif 6784 fimacnvinrn 7004 fompt 7051 fconst5 7140 cocan2 7226 foeqcnvco 7234 soisoi 7262 ffoss 7878 focdmex 7888 opco1 8053 opco2 8054 tposf2 8180 smoiso2 8289 mapfoss 8776 ssdomg 8922 fopwdom 8998 unfilem2 9190 fodomfib 9213 fodomfibOLD 9215 fofinf1o 9216 brwdomn0 9455 fowdom 9457 wdomtr 9461 wdomima2g 9472 fodomfi2 9948 wdomfil 9949 alephiso 9986 iunfictbso 10002 cofsmo 10157 isf32lem10 10250 fin1a2lem7 10294 fodomb 10414 iunfo 10427 tskuni 10671 gruima 10690 gruen 10700 axpre-sup 11057 wrdsymb 14446 supcvg 15760 ruclem13 16148 imasval 17412 imasle 17424 imasaddfnlem 17429 imasaddflem 17431 imasvscafn 17438 imasvscaf 17440 imasless 17441 homadm 17944 homacd 17945 dmaf 17953 cdaf 17954 setcepi 17992 imasmnd2 18679 sursubmefmnd 18801 imasgrp2 18965 mhmid 18973 mhmmnd 18974 mhmfmhm 18975 ghmgrp 18976 efgred2 19663 ghmfghm 19740 ghmcyg 19806 gsumval3 19817 gsumzoppg 19854 gsum2dlem2 19881 imasring 20246 znunit 21498 znrrg 21500 cygznlem2a 21502 cygznlem3 21504 cncmp 23305 cnconn 23335 1stcfb 23358 dfac14 23531 qtopval2 23609 qtopuni 23615 qtopid 23618 qtopcld 23626 qtopcn 23627 qtopeu 23629 qtophmeo 23730 elfm3 23863 ovoliunnul 25433 uniiccdif 25504 dchrzrhcl 27181 lgsdchrval 27290 rpvmasumlem 27423 dchrmusum2 27430 dchrvmasumlem3 27435 dchrisum0ff 27443 dchrisum0flblem1 27444 rpvmasum2 27448 dchrisum0re 27449 dchrisum0lem2a 27453 nodense 27629 bdaydm 27711 bdayelon 27713 om2noseqlt 28227 om2noseqlt2 28228 om2noseqf1o 28229 noseqrdgfn 28234 bdayn0sf1o 28293 grpocl 30475 grporndm 30485 vafval 30578 smfval 30580 nvgf 30593 vsfval 30608 hhssabloilem 31236 pjhf 31683 elunop 31847 unopf1o 31891 cnvunop 31893 pjinvari 32166 foresf1o 32479 rabfodom 32480 iunrdx 32538 xppreima 32622 gsumpart 33032 imasmhm 33314 imasghm 33315 imasrhm 33316 qtophaus 33844 sigapildsys 34170 carsgclctunlem3 34328 mtyf 35584 poimirlem26 37685 poimirlem27 37686 volsupnfl 37704 cocanfo 37758 exidreslem 37916 rngosn3 37963 rngodm1dm2 37971 founiiun 45215 founiiun0 45226 issalnnd 46382 sge0fodjrnlem 46453 ismeannd 46504 caragenunicl 46561 fcores 47097 fcoresf1lem 47098 fcoresf1 47099 fcoresfo 47101 3f1oss1 47105 fargshiftfo 47472 uptr2 49252 |
| Copyright terms: Public domain | W3C validator |