Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fof | Structured version Visualization version GIF version |
Description: An onto mapping is a mapping. (Contributed by NM, 3-Aug-1994.) |
Ref | Expression |
---|---|
fof | ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqimss 3978 | . . 3 ⊢ (ran 𝐹 = 𝐵 → ran 𝐹 ⊆ 𝐵) | |
2 | 1 | anim2i 617 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) → (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) |
3 | df-fo 6443 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) | |
4 | df-f 6441 | . 2 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
5 | 2, 3, 4 | 3imtr4i 292 | 1 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ⊆ wss 3888 ran crn 5591 Fn wfn 6432 ⟶wf 6433 –onto→wfo 6435 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2069 df-clab 2717 df-cleq 2731 df-clel 2817 df-v 3435 df-in 3895 df-ss 3905 df-f 6441 df-fo 6443 |
This theorem is referenced by: fofun 6698 fofn 6699 dffo2 6701 foima 6702 focnvimacdmdm 6709 focofo 6710 resdif 6746 fimacnvinrn 6958 fconst5 7090 cocan2 7173 foeqcnvco 7181 soisoi 7208 ffoss 7797 fornex 7807 opco1 7973 opco2 7974 tposf2 8075 smoiso2 8209 mapfoss 8649 ssdomg 8795 fopwdom 8876 unfilem2 9088 fodomfib 9102 fofinf1o 9103 brwdomn0 9337 fowdom 9339 wdomtr 9343 wdomima2g 9354 fodomfi2 9825 wdomfil 9826 alephiso 9863 iunfictbso 9879 cofsmo 10034 isf32lem10 10127 fin1a2lem7 10171 fodomb 10291 iunfo 10304 tskuni 10548 gruima 10567 gruen 10577 axpre-sup 10934 focdmex 14074 wrdsymb 14254 supcvg 15577 ruclem13 15960 imasval 17231 imasle 17243 imasaddfnlem 17248 imasaddflem 17250 imasvscafn 17257 imasvscaf 17259 imasless 17260 homadm 17764 homacd 17765 dmaf 17773 cdaf 17774 setcepi 17812 imasmnd2 18431 sursubmefmnd 18544 imasgrp2 18699 mhmid 18705 mhmmnd 18706 mhmfmhm 18707 ghmgrp 18708 efgred2 19368 ghmfghm 19441 ghmcyg 19506 gsumval3 19517 gsumzoppg 19554 gsum2dlem2 19581 imasring 19867 znunit 20780 znrrg 20782 cygznlem2a 20784 cygznlem3 20786 cncmp 22552 cnconn 22582 1stcfb 22605 dfac14 22778 qtopval2 22856 qtopuni 22862 qtopid 22865 qtopcld 22873 qtopcn 22874 qtopeu 22876 qtophmeo 22977 elfm3 23110 ovoliunnul 24680 uniiccdif 24751 dchrzrhcl 26402 lgsdchrval 26511 rpvmasumlem 26644 dchrmusum2 26651 dchrvmasumlem3 26656 dchrisum0ff 26664 dchrisum0flblem1 26665 rpvmasum2 26669 dchrisum0re 26670 dchrisum0lem2a 26674 grpocl 28871 grporndm 28881 vafval 28974 smfval 28976 nvgf 28989 vsfval 29004 hhssabloilem 29632 pjhf 30079 elunop 30243 unopf1o 30287 cnvunop 30289 pjinvari 30562 foresf1o 30859 rabfodom 30860 iunrdx 30912 xppreima 30992 gsumpart 31324 qtophaus 31795 sigapildsys 32139 carsgclctunlem3 32296 mtyf 33523 nodense 33904 bdaydm 33978 bdayelon 33980 poimirlem26 35812 poimirlem27 35813 volsupnfl 35831 cocanfo 35885 exidreslem 36044 rngosn3 36091 rngodm1dm2 36099 founiiun 42722 founiiun0 42735 issalnnd 43891 sge0fodjrnlem 43961 ismeannd 44012 caragenunicl 44069 fcores 44572 fcoresf1lem 44573 fcoresf1 44574 fcoresfo 44576 fargshiftfo 44905 |
Copyright terms: Public domain | W3C validator |