| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fof | Structured version Visualization version GIF version | ||
| Description: An onto mapping is a mapping. (Contributed by NM, 3-Aug-1994.) |
| Ref | Expression |
|---|---|
| fof | ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqimss 3996 | . . 3 ⊢ (ran 𝐹 = 𝐵 → ran 𝐹 ⊆ 𝐵) | |
| 2 | 1 | anim2i 617 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) → (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) |
| 3 | df-fo 6492 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) | |
| 4 | df-f 6490 | . 2 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
| 5 | 2, 3, 4 | 3imtr4i 292 | 1 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ⊆ wss 3905 ran crn 5624 Fn wfn 6481 ⟶wf 6482 –onto→wfo 6484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ss 3922 df-f 6490 df-fo 6492 |
| This theorem is referenced by: fofun 6741 fofn 6742 dffo2 6744 foima 6745 focnvimacdmdm 6752 focofo 6753 resdif 6789 fimacnvinrn 7009 fompt 7056 fconst5 7146 cocan2 7233 foeqcnvco 7241 soisoi 7269 ffoss 7888 focdmex 7898 opco1 8063 opco2 8064 tposf2 8190 smoiso2 8299 mapfoss 8786 ssdomg 8932 fopwdom 9009 unfilem2 9213 fodomfib 9238 fodomfibOLD 9240 fofinf1o 9241 brwdomn0 9480 fowdom 9482 wdomtr 9486 wdomima2g 9497 fodomfi2 9973 wdomfil 9974 alephiso 10011 iunfictbso 10027 cofsmo 10182 isf32lem10 10275 fin1a2lem7 10319 fodomb 10439 iunfo 10452 tskuni 10696 gruima 10715 gruen 10725 axpre-sup 11082 wrdsymb 14467 supcvg 15781 ruclem13 16169 imasval 17433 imasle 17445 imasaddfnlem 17450 imasaddflem 17452 imasvscafn 17459 imasvscaf 17461 imasless 17462 homadm 17965 homacd 17966 dmaf 17974 cdaf 17975 setcepi 18013 imasmnd2 18666 sursubmefmnd 18788 imasgrp2 18952 mhmid 18960 mhmmnd 18961 mhmfmhm 18962 ghmgrp 18963 efgred2 19650 ghmfghm 19727 ghmcyg 19793 gsumval3 19804 gsumzoppg 19841 gsum2dlem2 19868 imasring 20233 znunit 21488 znrrg 21490 cygznlem2a 21492 cygznlem3 21494 cncmp 23295 cnconn 23325 1stcfb 23348 dfac14 23521 qtopval2 23599 qtopuni 23605 qtopid 23608 qtopcld 23616 qtopcn 23617 qtopeu 23619 qtophmeo 23720 elfm3 23853 ovoliunnul 25424 uniiccdif 25495 dchrzrhcl 27172 lgsdchrval 27281 rpvmasumlem 27414 dchrmusum2 27421 dchrvmasumlem3 27426 dchrisum0ff 27434 dchrisum0flblem1 27435 rpvmasum2 27439 dchrisum0re 27440 dchrisum0lem2a 27444 nodense 27620 bdaydm 27702 bdayelon 27704 om2noseqlt 28216 om2noseqlt2 28217 om2noseqf1o 28218 noseqrdgfn 28223 bdayn0sf1o 28282 grpocl 30462 grporndm 30472 vafval 30565 smfval 30567 nvgf 30580 vsfval 30595 hhssabloilem 31223 pjhf 31670 elunop 31834 unopf1o 31878 cnvunop 31880 pjinvari 32153 foresf1o 32466 rabfodom 32467 iunrdx 32525 xppreima 32602 gsumpart 33023 imasmhm 33301 imasghm 33302 imasrhm 33303 qtophaus 33802 sigapildsys 34128 carsgclctunlem3 34287 mtyf 35524 poimirlem26 37625 poimirlem27 37626 volsupnfl 37644 cocanfo 37698 exidreslem 37856 rngosn3 37903 rngodm1dm2 37911 founiiun 45157 founiiun0 45168 issalnnd 46327 sge0fodjrnlem 46398 ismeannd 46449 caragenunicl 46506 fcores 47052 fcoresf1lem 47053 fcoresf1 47054 fcoresfo 47056 3f1oss1 47060 fargshiftfo 47427 uptr2 49207 |
| Copyright terms: Public domain | W3C validator |