| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fof | Structured version Visualization version GIF version | ||
| Description: An onto mapping is a mapping. (Contributed by NM, 3-Aug-1994.) |
| Ref | Expression |
|---|---|
| fof | ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqimss 4017 | . . 3 ⊢ (ran 𝐹 = 𝐵 → ran 𝐹 ⊆ 𝐵) | |
| 2 | 1 | anim2i 617 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) → (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) |
| 3 | df-fo 6536 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) | |
| 4 | df-f 6534 | . 2 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
| 5 | 2, 3, 4 | 3imtr4i 292 | 1 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ⊆ wss 3926 ran crn 5655 Fn wfn 6525 ⟶wf 6526 –onto→wfo 6528 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2727 df-ss 3943 df-f 6534 df-fo 6536 |
| This theorem is referenced by: fofun 6790 fofn 6791 dffo2 6793 foima 6794 focnvimacdmdm 6801 focofo 6802 resdif 6838 fimacnvinrn 7060 fompt 7107 fconst5 7197 cocan2 7284 foeqcnvco 7292 soisoi 7320 ffoss 7942 focdmex 7952 opco1 8120 opco2 8121 tposf2 8247 smoiso2 8381 mapfoss 8864 ssdomg 9012 fopwdom 9092 unfilem2 9314 fodomfib 9339 fodomfibOLD 9341 fofinf1o 9342 brwdomn0 9581 fowdom 9583 wdomtr 9587 wdomima2g 9598 fodomfi2 10072 wdomfil 10073 alephiso 10110 iunfictbso 10126 cofsmo 10281 isf32lem10 10374 fin1a2lem7 10418 fodomb 10538 iunfo 10551 tskuni 10795 gruima 10814 gruen 10824 axpre-sup 11181 wrdsymb 14558 supcvg 15870 ruclem13 16258 imasval 17523 imasle 17535 imasaddfnlem 17540 imasaddflem 17542 imasvscafn 17549 imasvscaf 17551 imasless 17552 homadm 18051 homacd 18052 dmaf 18060 cdaf 18061 setcepi 18099 imasmnd2 18750 sursubmefmnd 18872 imasgrp2 19036 mhmid 19044 mhmmnd 19045 mhmfmhm 19046 ghmgrp 19047 efgred2 19732 ghmfghm 19809 ghmcyg 19875 gsumval3 19886 gsumzoppg 19923 gsum2dlem2 19950 imasring 20288 znunit 21522 znrrg 21524 cygznlem2a 21526 cygznlem3 21528 cncmp 23328 cnconn 23358 1stcfb 23381 dfac14 23554 qtopval2 23632 qtopuni 23638 qtopid 23641 qtopcld 23649 qtopcn 23650 qtopeu 23652 qtophmeo 23753 elfm3 23886 ovoliunnul 25458 uniiccdif 25529 dchrzrhcl 27206 lgsdchrval 27315 rpvmasumlem 27448 dchrmusum2 27455 dchrvmasumlem3 27460 dchrisum0ff 27468 dchrisum0flblem1 27469 rpvmasum2 27473 dchrisum0re 27474 dchrisum0lem2a 27478 nodense 27654 bdaydm 27736 bdayelon 27738 om2noseqlt 28222 om2noseqlt2 28223 om2noseqf1o 28224 noseqrdgfn 28229 grpocl 30427 grporndm 30437 vafval 30530 smfval 30532 nvgf 30545 vsfval 30560 hhssabloilem 31188 pjhf 31635 elunop 31799 unopf1o 31843 cnvunop 31845 pjinvari 32118 foresf1o 32431 rabfodom 32432 iunrdx 32490 xppreima 32569 gsumpart 32997 imasmhm 33315 imasghm 33316 imasrhm 33317 qtophaus 33813 sigapildsys 34139 carsgclctunlem3 34298 mtyf 35520 poimirlem26 37616 poimirlem27 37617 volsupnfl 37635 cocanfo 37689 exidreslem 37847 rngosn3 37894 rngodm1dm2 37902 founiiun 45151 founiiun0 45162 issalnnd 46322 sge0fodjrnlem 46393 ismeannd 46444 caragenunicl 46501 fcores 47044 fcoresf1lem 47045 fcoresf1 47046 fcoresfo 47048 3f1oss1 47052 fargshiftfo 47404 |
| Copyright terms: Public domain | W3C validator |