![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fof | Structured version Visualization version GIF version |
Description: An onto mapping is a mapping. (Contributed by NM, 3-Aug-1994.) |
Ref | Expression |
---|---|
fof | ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqimss 4053 | . . 3 ⊢ (ran 𝐹 = 𝐵 → ran 𝐹 ⊆ 𝐵) | |
2 | 1 | anim2i 617 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) → (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) |
3 | df-fo 6568 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) | |
4 | df-f 6566 | . 2 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
5 | 2, 3, 4 | 3imtr4i 292 | 1 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1536 ⊆ wss 3962 ran crn 5689 Fn wfn 6557 ⟶wf 6558 –onto→wfo 6560 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1776 df-cleq 2726 df-ss 3979 df-f 6566 df-fo 6568 |
This theorem is referenced by: fofun 6821 fofn 6822 dffo2 6824 foima 6825 focnvimacdmdm 6832 focofo 6833 resdif 6869 fimacnvinrn 7090 fompt 7137 fconst5 7225 cocan2 7311 foeqcnvco 7319 soisoi 7347 ffoss 7968 focdmex 7978 opco1 8146 opco2 8147 tposf2 8273 smoiso2 8407 mapfoss 8890 ssdomg 9038 fopwdom 9118 unfilem2 9341 fodomfib 9366 fodomfibOLD 9368 fofinf1o 9369 brwdomn0 9606 fowdom 9608 wdomtr 9612 wdomima2g 9623 fodomfi2 10097 wdomfil 10098 alephiso 10135 iunfictbso 10151 cofsmo 10306 isf32lem10 10399 fin1a2lem7 10443 fodomb 10563 iunfo 10576 tskuni 10820 gruima 10839 gruen 10849 axpre-sup 11206 wrdsymb 14576 supcvg 15888 ruclem13 16274 imasval 17557 imasle 17569 imasaddfnlem 17574 imasaddflem 17576 imasvscafn 17583 imasvscaf 17585 imasless 17586 homadm 18093 homacd 18094 dmaf 18102 cdaf 18103 setcepi 18141 imasmnd2 18799 sursubmefmnd 18921 imasgrp2 19085 mhmid 19093 mhmmnd 19094 mhmfmhm 19095 ghmgrp 19096 efgred2 19785 ghmfghm 19862 ghmcyg 19928 gsumval3 19939 gsumzoppg 19976 gsum2dlem2 20003 imasring 20343 znunit 21599 znrrg 21601 cygznlem2a 21603 cygznlem3 21605 cncmp 23415 cnconn 23445 1stcfb 23468 dfac14 23641 qtopval2 23719 qtopuni 23725 qtopid 23728 qtopcld 23736 qtopcn 23737 qtopeu 23739 qtophmeo 23840 elfm3 23973 ovoliunnul 25555 uniiccdif 25626 dchrzrhcl 27303 lgsdchrval 27412 rpvmasumlem 27545 dchrmusum2 27552 dchrvmasumlem3 27557 dchrisum0ff 27565 dchrisum0flblem1 27566 rpvmasum2 27570 dchrisum0re 27571 dchrisum0lem2a 27575 nodense 27751 bdaydm 27833 bdayelon 27835 om2noseqlt 28319 om2noseqlt2 28320 om2noseqf1o 28321 noseqrdgfn 28326 grpocl 30528 grporndm 30538 vafval 30631 smfval 30633 nvgf 30646 vsfval 30661 hhssabloilem 31289 pjhf 31736 elunop 31900 unopf1o 31944 cnvunop 31946 pjinvari 32219 foresf1o 32531 rabfodom 32532 iunrdx 32583 xppreima 32661 gsumpart 33042 imasmhm 33361 imasghm 33362 imasrhm 33363 qtophaus 33796 sigapildsys 34142 carsgclctunlem3 34301 mtyf 35536 poimirlem26 37632 poimirlem27 37633 volsupnfl 37651 cocanfo 37705 exidreslem 37863 rngosn3 37910 rngodm1dm2 37918 founiiun 45121 founiiun0 45132 issalnnd 46300 sge0fodjrnlem 46371 ismeannd 46422 caragenunicl 46479 fcores 47016 fcoresf1lem 47017 fcoresf1 47018 fcoresfo 47020 3f1oss1 47024 fargshiftfo 47366 |
Copyright terms: Public domain | W3C validator |