Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fof | Structured version Visualization version GIF version |
Description: An onto mapping is a mapping. (Contributed by NM, 3-Aug-1994.) |
Ref | Expression |
---|---|
fof | ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqimss 3973 | . . 3 ⊢ (ran 𝐹 = 𝐵 → ran 𝐹 ⊆ 𝐵) | |
2 | 1 | anim2i 616 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) → (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) |
3 | df-fo 6424 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) | |
4 | df-f 6422 | . 2 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
5 | 2, 3, 4 | 3imtr4i 291 | 1 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ⊆ wss 3883 ran crn 5581 Fn wfn 6413 ⟶wf 6414 –onto→wfo 6416 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-f 6422 df-fo 6424 |
This theorem is referenced by: fofun 6673 fofn 6674 dffo2 6676 foima 6677 focnvimacdmdm 6684 focofo 6685 resdif 6720 fimacnvinrn 6931 fconst5 7063 cocan2 7144 foeqcnvco 7152 soisoi 7179 ffoss 7762 fornex 7772 opco1 7935 opco2 7936 tposf2 8037 smoiso2 8171 mapfoss 8598 ssdomg 8741 fopwdom 8820 unfilem2 9009 fodomfib 9023 fofinf1o 9024 brwdomn0 9258 fowdom 9260 wdomtr 9264 wdomima2g 9275 fodomfi2 9747 wdomfil 9748 alephiso 9785 iunfictbso 9801 cofsmo 9956 isf32lem10 10049 fin1a2lem7 10093 fodomb 10213 iunfo 10226 tskuni 10470 gruima 10489 gruen 10499 axpre-sup 10856 focdmex 13993 wrdsymb 14173 supcvg 15496 ruclem13 15879 imasval 17139 imasle 17151 imasaddfnlem 17156 imasaddflem 17158 imasvscafn 17165 imasvscaf 17167 imasless 17168 homadm 17671 homacd 17672 dmaf 17680 cdaf 17681 setcepi 17719 imasmnd2 18337 sursubmefmnd 18450 imasgrp2 18605 mhmid 18611 mhmmnd 18612 mhmfmhm 18613 ghmgrp 18614 efgred2 19274 ghmfghm 19347 ghmcyg 19412 gsumval3 19423 gsumzoppg 19460 gsum2dlem2 19487 imasring 19773 znunit 20683 znrrg 20685 cygznlem2a 20687 cygznlem3 20689 cncmp 22451 cnconn 22481 1stcfb 22504 dfac14 22677 qtopval2 22755 qtopuni 22761 qtopid 22764 qtopcld 22772 qtopcn 22773 qtopeu 22775 qtophmeo 22876 elfm3 23009 ovoliunnul 24576 uniiccdif 24647 dchrzrhcl 26298 lgsdchrval 26407 rpvmasumlem 26540 dchrmusum2 26547 dchrvmasumlem3 26552 dchrisum0ff 26560 dchrisum0flblem1 26561 rpvmasum2 26565 dchrisum0re 26566 dchrisum0lem2a 26570 grpocl 28763 grporndm 28773 vafval 28866 smfval 28868 nvgf 28881 vsfval 28896 hhssabloilem 29524 pjhf 29971 elunop 30135 unopf1o 30179 cnvunop 30181 pjinvari 30454 foresf1o 30751 rabfodom 30752 iunrdx 30804 xppreima 30884 gsumpart 31217 qtophaus 31688 sigapildsys 32030 carsgclctunlem3 32187 mtyf 33414 nodense 33822 bdaydm 33896 bdayelon 33898 poimirlem26 35730 poimirlem27 35731 volsupnfl 35749 cocanfo 35803 exidreslem 35962 rngosn3 36009 rngodm1dm2 36017 founiiun 42604 founiiun0 42617 issalnnd 43774 sge0fodjrnlem 43844 ismeannd 43895 caragenunicl 43952 fcores 44448 fcoresf1lem 44449 fcoresf1 44450 fcoresfo 44452 fargshiftfo 44782 |
Copyright terms: Public domain | W3C validator |