MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fviunfun Structured version   Visualization version   GIF version

Theorem fviunfun 7787
Description: The function value of an indexed union is the value of one of the indexed functions. (Contributed by AV, 4-Nov-2023.)
Hypothesis
Ref Expression
fviunfun.u 𝑈 = 𝑖𝐼 (𝐹𝑖)
Assertion
Ref Expression
fviunfun ((Fun 𝑈𝐽𝐼𝑋 ∈ dom (𝐹𝐽)) → (𝑈𝑋) = ((𝐹𝐽)‘𝑋))
Distinct variable groups:   𝑖,𝐹   𝑖,𝐼   𝑖,𝐽
Allowed substitution hints:   𝑈(𝑖)   𝑋(𝑖)

Proof of Theorem fviunfun
StepHypRef Expression
1 fveq2 6774 . . . 4 (𝑖 = 𝐽 → (𝐹𝑖) = (𝐹𝐽))
21ssiun2s 4978 . . 3 (𝐽𝐼 → (𝐹𝐽) ⊆ 𝑖𝐼 (𝐹𝑖))
3 fviunfun.u . . 3 𝑈 = 𝑖𝐼 (𝐹𝑖)
42, 3sseqtrrdi 3972 . 2 (𝐽𝐼 → (𝐹𝐽) ⊆ 𝑈)
5 funssfv 6795 . 2 ((Fun 𝑈 ∧ (𝐹𝐽) ⊆ 𝑈𝑋 ∈ dom (𝐹𝐽)) → (𝑈𝑋) = ((𝐹𝐽)‘𝑋))
64, 5syl3an2 1163 1 ((Fun 𝑈𝐽𝐼𝑋 ∈ dom (𝐹𝐽)) → (𝑈𝑋) = ((𝐹𝐽)‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1539  wcel 2106  wss 3887   ciun 4924  dom cdm 5589  Fun wfun 6427  cfv 6433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-res 5601  df-iota 6391  df-fun 6435  df-fv 6441
This theorem is referenced by:  satefvfmla0  33380  satefvfmla1  33387
  Copyright terms: Public domain W3C validator