MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fviunfun Structured version   Visualization version   GIF version

Theorem fviunfun 7833
Description: The function value of an indexed union is the value of one of the indexed functions. (Contributed by AV, 4-Nov-2023.)
Hypothesis
Ref Expression
fviunfun.u 𝑈 = 𝑖𝐼 (𝐹𝑖)
Assertion
Ref Expression
fviunfun ((Fun 𝑈𝐽𝐼𝑋 ∈ dom (𝐹𝐽)) → (𝑈𝑋) = ((𝐹𝐽)‘𝑋))
Distinct variable groups:   𝑖,𝐹   𝑖,𝐼   𝑖,𝐽
Allowed substitution hints:   𝑈(𝑖)   𝑋(𝑖)

Proof of Theorem fviunfun
StepHypRef Expression
1 fveq2 6811 . . . 4 (𝑖 = 𝐽 → (𝐹𝑖) = (𝐹𝐽))
21ssiun2s 4990 . . 3 (𝐽𝐼 → (𝐹𝐽) ⊆ 𝑖𝐼 (𝐹𝑖))
3 fviunfun.u . . 3 𝑈 = 𝑖𝐼 (𝐹𝑖)
42, 3sseqtrrdi 3981 . 2 (𝐽𝐼 → (𝐹𝐽) ⊆ 𝑈)
5 funssfv 6832 . 2 ((Fun 𝑈 ∧ (𝐹𝐽) ⊆ 𝑈𝑋 ∈ dom (𝐹𝐽)) → (𝑈𝑋) = ((𝐹𝐽)‘𝑋))
64, 5syl3an2 1163 1 ((Fun 𝑈𝐽𝐼𝑋 ∈ dom (𝐹𝐽)) → (𝑈𝑋) = ((𝐹𝐽)‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2105  wss 3896   ciun 4936  dom cdm 5607  Fun wfun 6459  cfv 6465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5237  ax-nul 5244  ax-pr 5366
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3442  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-nul 4267  df-if 4471  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4850  df-iun 4938  df-br 5087  df-opab 5149  df-id 5506  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-res 5619  df-iota 6417  df-fun 6467  df-fv 6473
This theorem is referenced by:  satefvfmla0  33515  satefvfmla1  33522
  Copyright terms: Public domain W3C validator