Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fviunfun | Structured version Visualization version GIF version |
Description: The function value of an indexed union is the value of one of the indexed functions. (Contributed by AV, 4-Nov-2023.) |
Ref | Expression |
---|---|
fviunfun.u | ⊢ 𝑈 = ∪ 𝑖 ∈ 𝐼 (𝐹‘𝑖) |
Ref | Expression |
---|---|
fviunfun | ⊢ ((Fun 𝑈 ∧ 𝐽 ∈ 𝐼 ∧ 𝑋 ∈ dom (𝐹‘𝐽)) → (𝑈‘𝑋) = ((𝐹‘𝐽)‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6811 | . . . 4 ⊢ (𝑖 = 𝐽 → (𝐹‘𝑖) = (𝐹‘𝐽)) | |
2 | 1 | ssiun2s 4990 | . . 3 ⊢ (𝐽 ∈ 𝐼 → (𝐹‘𝐽) ⊆ ∪ 𝑖 ∈ 𝐼 (𝐹‘𝑖)) |
3 | fviunfun.u | . . 3 ⊢ 𝑈 = ∪ 𝑖 ∈ 𝐼 (𝐹‘𝑖) | |
4 | 2, 3 | sseqtrrdi 3981 | . 2 ⊢ (𝐽 ∈ 𝐼 → (𝐹‘𝐽) ⊆ 𝑈) |
5 | funssfv 6832 | . 2 ⊢ ((Fun 𝑈 ∧ (𝐹‘𝐽) ⊆ 𝑈 ∧ 𝑋 ∈ dom (𝐹‘𝐽)) → (𝑈‘𝑋) = ((𝐹‘𝐽)‘𝑋)) | |
6 | 4, 5 | syl3an2 1163 | 1 ⊢ ((Fun 𝑈 ∧ 𝐽 ∈ 𝐼 ∧ 𝑋 ∈ dom (𝐹‘𝐽)) → (𝑈‘𝑋) = ((𝐹‘𝐽)‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ⊆ wss 3896 ∪ ciun 4936 dom cdm 5607 Fun wfun 6459 ‘cfv 6465 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5237 ax-nul 5244 ax-pr 5366 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3442 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4471 df-sn 4571 df-pr 4573 df-op 4577 df-uni 4850 df-iun 4938 df-br 5087 df-opab 5149 df-id 5506 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-res 5619 df-iota 6417 df-fun 6467 df-fv 6473 |
This theorem is referenced by: satefvfmla0 33515 satefvfmla1 33522 |
Copyright terms: Public domain | W3C validator |