| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fviunfun | Structured version Visualization version GIF version | ||
| Description: The function value of an indexed union is the value of one of the indexed functions. (Contributed by AV, 4-Nov-2023.) |
| Ref | Expression |
|---|---|
| fviunfun.u | ⊢ 𝑈 = ∪ 𝑖 ∈ 𝐼 (𝐹‘𝑖) |
| Ref | Expression |
|---|---|
| fviunfun | ⊢ ((Fun 𝑈 ∧ 𝐽 ∈ 𝐼 ∧ 𝑋 ∈ dom (𝐹‘𝐽)) → (𝑈‘𝑋) = ((𝐹‘𝐽)‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6858 | . . . 4 ⊢ (𝑖 = 𝐽 → (𝐹‘𝑖) = (𝐹‘𝐽)) | |
| 2 | 1 | ssiun2s 5012 | . . 3 ⊢ (𝐽 ∈ 𝐼 → (𝐹‘𝐽) ⊆ ∪ 𝑖 ∈ 𝐼 (𝐹‘𝑖)) |
| 3 | fviunfun.u | . . 3 ⊢ 𝑈 = ∪ 𝑖 ∈ 𝐼 (𝐹‘𝑖) | |
| 4 | 2, 3 | sseqtrrdi 3988 | . 2 ⊢ (𝐽 ∈ 𝐼 → (𝐹‘𝐽) ⊆ 𝑈) |
| 5 | funssfv 6879 | . 2 ⊢ ((Fun 𝑈 ∧ (𝐹‘𝐽) ⊆ 𝑈 ∧ 𝑋 ∈ dom (𝐹‘𝐽)) → (𝑈‘𝑋) = ((𝐹‘𝐽)‘𝑋)) | |
| 6 | 4, 5 | syl3an2 1164 | 1 ⊢ ((Fun 𝑈 ∧ 𝐽 ∈ 𝐼 ∧ 𝑋 ∈ dom (𝐹‘𝐽)) → (𝑈‘𝑋) = ((𝐹‘𝐽)‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ⊆ wss 3914 ∪ ciun 4955 dom cdm 5638 Fun wfun 6505 ‘cfv 6511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-res 5650 df-iota 6464 df-fun 6513 df-fv 6519 |
| This theorem is referenced by: satefvfmla0 35405 satefvfmla1 35412 |
| Copyright terms: Public domain | W3C validator |