MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fviunfun Structured version   Visualization version   GIF version

Theorem fviunfun 7761
Description: The function value of an indexed union is the value of one of the indexed functions. (Contributed by AV, 4-Nov-2023.)
Hypothesis
Ref Expression
fviunfun.u 𝑈 = 𝑖𝐼 (𝐹𝑖)
Assertion
Ref Expression
fviunfun ((Fun 𝑈𝐽𝐼𝑋 ∈ dom (𝐹𝐽)) → (𝑈𝑋) = ((𝐹𝐽)‘𝑋))
Distinct variable groups:   𝑖,𝐹   𝑖,𝐼   𝑖,𝐽
Allowed substitution hints:   𝑈(𝑖)   𝑋(𝑖)

Proof of Theorem fviunfun
StepHypRef Expression
1 fveq2 6756 . . . 4 (𝑖 = 𝐽 → (𝐹𝑖) = (𝐹𝐽))
21ssiun2s 4974 . . 3 (𝐽𝐼 → (𝐹𝐽) ⊆ 𝑖𝐼 (𝐹𝑖))
3 fviunfun.u . . 3 𝑈 = 𝑖𝐼 (𝐹𝑖)
42, 3sseqtrrdi 3968 . 2 (𝐽𝐼 → (𝐹𝐽) ⊆ 𝑈)
5 funssfv 6777 . 2 ((Fun 𝑈 ∧ (𝐹𝐽) ⊆ 𝑈𝑋 ∈ dom (𝐹𝐽)) → (𝑈𝑋) = ((𝐹𝐽)‘𝑋))
64, 5syl3an2 1162 1 ((Fun 𝑈𝐽𝐼𝑋 ∈ dom (𝐹𝐽)) → (𝑈𝑋) = ((𝐹𝐽)‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085   = wceq 1539  wcel 2108  wss 3883   ciun 4921  dom cdm 5580  Fun wfun 6412  cfv 6418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-res 5592  df-iota 6376  df-fun 6420  df-fv 6426
This theorem is referenced by:  satefvfmla0  33280  satefvfmla1  33287
  Copyright terms: Public domain W3C validator