MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f11o Structured version   Visualization version   GIF version

Theorem f11o 7945
Description: Relationship between one-to-one and one-to-one onto function. (Contributed by NM, 4-Apr-1998.)
Hypothesis
Ref Expression
f11o.1 𝐹 ∈ V
Assertion
Ref Expression
f11o (𝐹:𝐴1-1𝐵 ↔ ∃𝑥(𝐹:𝐴1-1-onto𝑥𝑥𝐵))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐴   𝑥,𝐵

Proof of Theorem f11o
StepHypRef Expression
1 f11o.1 . . . 4 𝐹 ∈ V
21ffoss 7944 . . 3 (𝐹:𝐴𝐵 ↔ ∃𝑥(𝐹:𝐴onto𝑥𝑥𝐵))
32anbi1i 624 . 2 ((𝐹:𝐴𝐵 ∧ Fun 𝐹) ↔ (∃𝑥(𝐹:𝐴onto𝑥𝑥𝐵) ∧ Fun 𝐹))
4 df-f1 6536 . 2 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ Fun 𝐹))
5 dff1o3 6824 . . . . . 6 (𝐹:𝐴1-1-onto𝑥 ↔ (𝐹:𝐴onto𝑥 ∧ Fun 𝐹))
65anbi1i 624 . . . . 5 ((𝐹:𝐴1-1-onto𝑥𝑥𝐵) ↔ ((𝐹:𝐴onto𝑥 ∧ Fun 𝐹) ∧ 𝑥𝐵))
7 an32 646 . . . . 5 (((𝐹:𝐴onto𝑥 ∧ Fun 𝐹) ∧ 𝑥𝐵) ↔ ((𝐹:𝐴onto𝑥𝑥𝐵) ∧ Fun 𝐹))
86, 7bitri 275 . . . 4 ((𝐹:𝐴1-1-onto𝑥𝑥𝐵) ↔ ((𝐹:𝐴onto𝑥𝑥𝐵) ∧ Fun 𝐹))
98exbii 1848 . . 3 (∃𝑥(𝐹:𝐴1-1-onto𝑥𝑥𝐵) ↔ ∃𝑥((𝐹:𝐴onto𝑥𝑥𝐵) ∧ Fun 𝐹))
10 19.41v 1949 . . 3 (∃𝑥((𝐹:𝐴onto𝑥𝑥𝐵) ∧ Fun 𝐹) ↔ (∃𝑥(𝐹:𝐴onto𝑥𝑥𝐵) ∧ Fun 𝐹))
119, 10bitri 275 . 2 (∃𝑥(𝐹:𝐴1-1-onto𝑥𝑥𝐵) ↔ (∃𝑥(𝐹:𝐴onto𝑥𝑥𝐵) ∧ Fun 𝐹))
123, 4, 113bitr4i 303 1 (𝐹:𝐴1-1𝐵 ↔ ∃𝑥(𝐹:𝐴1-1-onto𝑥𝑥𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wex 1779  wcel 2108  Vcvv 3459  wss 3926  ccnv 5653  Fun wfun 6525  wf 6527  1-1wf1 6528  ontowfo 6529  1-1-ontowf1o 6530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-cnv 5662  df-dm 5664  df-rn 5665  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538
This theorem is referenced by:  domen  8976  uspgrsprfo  48123
  Copyright terms: Public domain W3C validator