Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > f11o | Structured version Visualization version GIF version |
Description: Relationship between one-to-one and one-to-one onto function. (Contributed by NM, 4-Apr-1998.) |
Ref | Expression |
---|---|
f11o.1 | ⊢ 𝐹 ∈ V |
Ref | Expression |
---|---|
f11o | ⊢ (𝐹:𝐴–1-1→𝐵 ↔ ∃𝑥(𝐹:𝐴–1-1-onto→𝑥 ∧ 𝑥 ⊆ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f11o.1 | . . . 4 ⊢ 𝐹 ∈ V | |
2 | 1 | ffoss 7788 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 ↔ ∃𝑥(𝐹:𝐴–onto→𝑥 ∧ 𝑥 ⊆ 𝐵)) |
3 | 2 | anbi1i 624 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ Fun ◡𝐹) ↔ (∃𝑥(𝐹:𝐴–onto→𝑥 ∧ 𝑥 ⊆ 𝐵) ∧ Fun ◡𝐹)) |
4 | df-f1 6438 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ Fun ◡𝐹)) | |
5 | dff1o3 6722 | . . . . . 6 ⊢ (𝐹:𝐴–1-1-onto→𝑥 ↔ (𝐹:𝐴–onto→𝑥 ∧ Fun ◡𝐹)) | |
6 | 5 | anbi1i 624 | . . . . 5 ⊢ ((𝐹:𝐴–1-1-onto→𝑥 ∧ 𝑥 ⊆ 𝐵) ↔ ((𝐹:𝐴–onto→𝑥 ∧ Fun ◡𝐹) ∧ 𝑥 ⊆ 𝐵)) |
7 | an32 643 | . . . . 5 ⊢ (((𝐹:𝐴–onto→𝑥 ∧ Fun ◡𝐹) ∧ 𝑥 ⊆ 𝐵) ↔ ((𝐹:𝐴–onto→𝑥 ∧ 𝑥 ⊆ 𝐵) ∧ Fun ◡𝐹)) | |
8 | 6, 7 | bitri 274 | . . . 4 ⊢ ((𝐹:𝐴–1-1-onto→𝑥 ∧ 𝑥 ⊆ 𝐵) ↔ ((𝐹:𝐴–onto→𝑥 ∧ 𝑥 ⊆ 𝐵) ∧ Fun ◡𝐹)) |
9 | 8 | exbii 1850 | . . 3 ⊢ (∃𝑥(𝐹:𝐴–1-1-onto→𝑥 ∧ 𝑥 ⊆ 𝐵) ↔ ∃𝑥((𝐹:𝐴–onto→𝑥 ∧ 𝑥 ⊆ 𝐵) ∧ Fun ◡𝐹)) |
10 | 19.41v 1953 | . . 3 ⊢ (∃𝑥((𝐹:𝐴–onto→𝑥 ∧ 𝑥 ⊆ 𝐵) ∧ Fun ◡𝐹) ↔ (∃𝑥(𝐹:𝐴–onto→𝑥 ∧ 𝑥 ⊆ 𝐵) ∧ Fun ◡𝐹)) | |
11 | 9, 10 | bitri 274 | . 2 ⊢ (∃𝑥(𝐹:𝐴–1-1-onto→𝑥 ∧ 𝑥 ⊆ 𝐵) ↔ (∃𝑥(𝐹:𝐴–onto→𝑥 ∧ 𝑥 ⊆ 𝐵) ∧ Fun ◡𝐹)) |
12 | 3, 4, 11 | 3bitr4i 303 | 1 ⊢ (𝐹:𝐴–1-1→𝐵 ↔ ∃𝑥(𝐹:𝐴–1-1-onto→𝑥 ∧ 𝑥 ⊆ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∃wex 1782 ∈ wcel 2106 Vcvv 3432 ⊆ wss 3887 ◡ccnv 5588 Fun wfun 6427 ⟶wf 6429 –1-1→wf1 6430 –onto→wfo 6431 –1-1-onto→wf1o 6432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-cnv 5597 df-dm 5599 df-rn 5600 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 |
This theorem is referenced by: domen 8751 uspgrsprfo 45310 |
Copyright terms: Public domain | W3C validator |