![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fmptpr | Structured version Visualization version GIF version |
Description: Express a pair function in maps-to notation. (Contributed by Thierry Arnoux, 3-Jan-2017.) |
Ref | Expression |
---|---|
fmptpr.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
fmptpr.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
fmptpr.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑋) |
fmptpr.4 | ⊢ (𝜑 → 𝐷 ∈ 𝑌) |
fmptpr.5 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐸 = 𝐶) |
fmptpr.6 | ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → 𝐸 = 𝐷) |
Ref | Expression |
---|---|
fmptpr | ⊢ (𝜑 → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} = (𝑥 ∈ {𝐴, 𝐵} ↦ 𝐸)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pr 4630 | . . 3 ⊢ {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} = ({⟨𝐴, 𝐶⟩} ∪ {⟨𝐵, 𝐷⟩}) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} = ({⟨𝐴, 𝐶⟩} ∪ {⟨𝐵, 𝐷⟩})) |
3 | fmptpr.5 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐸 = 𝐶) | |
4 | fmptpr.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
5 | fmptpr.3 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑋) | |
6 | 3, 4, 5 | fmptsnd 7168 | . . 3 ⊢ (𝜑 → {⟨𝐴, 𝐶⟩} = (𝑥 ∈ {𝐴} ↦ 𝐸)) |
7 | 6 | uneq1d 4161 | . 2 ⊢ (𝜑 → ({⟨𝐴, 𝐶⟩} ∪ {⟨𝐵, 𝐷⟩}) = ((𝑥 ∈ {𝐴} ↦ 𝐸) ∪ {⟨𝐵, 𝐷⟩})) |
8 | fmptpr.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
9 | fmptpr.4 | . . 3 ⊢ (𝜑 → 𝐷 ∈ 𝑌) | |
10 | df-pr 4630 | . . . . 5 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
11 | 10 | eqcomi 2739 | . . . 4 ⊢ ({𝐴} ∪ {𝐵}) = {𝐴, 𝐵} |
12 | 11 | a1i 11 | . . 3 ⊢ (𝜑 → ({𝐴} ∪ {𝐵}) = {𝐴, 𝐵}) |
13 | fmptpr.6 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → 𝐸 = 𝐷) | |
14 | 8, 9, 12, 13 | fmptapd 7170 | . 2 ⊢ (𝜑 → ((𝑥 ∈ {𝐴} ↦ 𝐸) ∪ {⟨𝐵, 𝐷⟩}) = (𝑥 ∈ {𝐴, 𝐵} ↦ 𝐸)) |
15 | 2, 7, 14 | 3eqtrd 2774 | 1 ⊢ (𝜑 → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} = (𝑥 ∈ {𝐴, 𝐵} ↦ 𝐸)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1539 ∈ wcel 2104 ∪ cun 3945 {csn 4627 {cpr 4629 ⟨cop 4633 ↦ cmpt 5230 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-opab 5210 df-mpt 5231 |
This theorem is referenced by: pmtrprfvalrn 19397 esumsnf 33360 sge0sn 45393 zlmodzxzscm 47121 zlmodzxzadd 47122 |
Copyright terms: Public domain | W3C validator |