![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fmptpr | Structured version Visualization version GIF version |
Description: Express a pair function in maps-to notation. (Contributed by Thierry Arnoux, 3-Jan-2017.) |
Ref | Expression |
---|---|
fmptpr.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
fmptpr.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
fmptpr.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑋) |
fmptpr.4 | ⊢ (𝜑 → 𝐷 ∈ 𝑌) |
fmptpr.5 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐸 = 𝐶) |
fmptpr.6 | ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → 𝐸 = 𝐷) |
Ref | Expression |
---|---|
fmptpr | ⊢ (𝜑 → {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} = (𝑥 ∈ {𝐴, 𝐵} ↦ 𝐸)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pr 4636 | . . 3 ⊢ {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} = ({〈𝐴, 𝐶〉} ∪ {〈𝐵, 𝐷〉}) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} = ({〈𝐴, 𝐶〉} ∪ {〈𝐵, 𝐷〉})) |
3 | fmptpr.5 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐸 = 𝐶) | |
4 | fmptpr.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
5 | fmptpr.3 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑋) | |
6 | 3, 4, 5 | fmptsnd 7183 | . . 3 ⊢ (𝜑 → {〈𝐴, 𝐶〉} = (𝑥 ∈ {𝐴} ↦ 𝐸)) |
7 | 6 | uneq1d 4162 | . 2 ⊢ (𝜑 → ({〈𝐴, 𝐶〉} ∪ {〈𝐵, 𝐷〉}) = ((𝑥 ∈ {𝐴} ↦ 𝐸) ∪ {〈𝐵, 𝐷〉})) |
8 | fmptpr.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
9 | fmptpr.4 | . . 3 ⊢ (𝜑 → 𝐷 ∈ 𝑌) | |
10 | df-pr 4636 | . . . . 5 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
11 | 10 | eqcomi 2735 | . . . 4 ⊢ ({𝐴} ∪ {𝐵}) = {𝐴, 𝐵} |
12 | 11 | a1i 11 | . . 3 ⊢ (𝜑 → ({𝐴} ∪ {𝐵}) = {𝐴, 𝐵}) |
13 | fmptpr.6 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → 𝐸 = 𝐷) | |
14 | 8, 9, 12, 13 | fmptapd 7185 | . 2 ⊢ (𝜑 → ((𝑥 ∈ {𝐴} ↦ 𝐸) ∪ {〈𝐵, 𝐷〉}) = (𝑥 ∈ {𝐴, 𝐵} ↦ 𝐸)) |
15 | 2, 7, 14 | 3eqtrd 2770 | 1 ⊢ (𝜑 → {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} = (𝑥 ∈ {𝐴, 𝐵} ↦ 𝐸)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ∪ cun 3945 {csn 4633 {cpr 4635 〈cop 4639 ↦ cmpt 5236 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-sbc 3777 df-dif 3950 df-un 3952 df-ss 3964 df-nul 4326 df-if 4534 df-sn 4634 df-pr 4636 df-op 4640 df-opab 5216 df-mpt 5237 |
This theorem is referenced by: pmtrprfvalrn 19486 esumsnf 33897 sge0sn 46000 zlmodzxzscm 47736 zlmodzxzadd 47737 |
Copyright terms: Public domain | W3C validator |