MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmptpr Structured version   Visualization version   GIF version

Theorem fmptpr 7026
Description: Express a pair function in maps-to notation. (Contributed by Thierry Arnoux, 3-Jan-2017.)
Hypotheses
Ref Expression
fmptpr.1 (𝜑𝐴𝑉)
fmptpr.2 (𝜑𝐵𝑊)
fmptpr.3 (𝜑𝐶𝑋)
fmptpr.4 (𝜑𝐷𝑌)
fmptpr.5 ((𝜑𝑥 = 𝐴) → 𝐸 = 𝐶)
fmptpr.6 ((𝜑𝑥 = 𝐵) → 𝐸 = 𝐷)
Assertion
Ref Expression
fmptpr (𝜑 → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} = (𝑥 ∈ {𝐴, 𝐵} ↦ 𝐸))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐷   𝜑,𝑥
Allowed substitution hints:   𝐸(𝑥)   𝑉(𝑥)   𝑊(𝑥)   𝑋(𝑥)   𝑌(𝑥)

Proof of Theorem fmptpr
StepHypRef Expression
1 df-pr 4561 . . 3 {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} = ({⟨𝐴, 𝐶⟩} ∪ {⟨𝐵, 𝐷⟩})
21a1i 11 . 2 (𝜑 → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} = ({⟨𝐴, 𝐶⟩} ∪ {⟨𝐵, 𝐷⟩}))
3 fmptpr.5 . . . 4 ((𝜑𝑥 = 𝐴) → 𝐸 = 𝐶)
4 fmptpr.1 . . . 4 (𝜑𝐴𝑉)
5 fmptpr.3 . . . 4 (𝜑𝐶𝑋)
63, 4, 5fmptsnd 7023 . . 3 (𝜑 → {⟨𝐴, 𝐶⟩} = (𝑥 ∈ {𝐴} ↦ 𝐸))
76uneq1d 4092 . 2 (𝜑 → ({⟨𝐴, 𝐶⟩} ∪ {⟨𝐵, 𝐷⟩}) = ((𝑥 ∈ {𝐴} ↦ 𝐸) ∪ {⟨𝐵, 𝐷⟩}))
8 fmptpr.2 . . 3 (𝜑𝐵𝑊)
9 fmptpr.4 . . 3 (𝜑𝐷𝑌)
10 df-pr 4561 . . . . 5 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
1110eqcomi 2747 . . . 4 ({𝐴} ∪ {𝐵}) = {𝐴, 𝐵}
1211a1i 11 . . 3 (𝜑 → ({𝐴} ∪ {𝐵}) = {𝐴, 𝐵})
13 fmptpr.6 . . 3 ((𝜑𝑥 = 𝐵) → 𝐸 = 𝐷)
148, 9, 12, 13fmptapd 7025 . 2 (𝜑 → ((𝑥 ∈ {𝐴} ↦ 𝐸) ∪ {⟨𝐵, 𝐷⟩}) = (𝑥 ∈ {𝐴, 𝐵} ↦ 𝐸))
152, 7, 143eqtrd 2782 1 (𝜑 → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} = (𝑥 ∈ {𝐴, 𝐵} ↦ 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  cun 3881  {csn 4558  {cpr 4560  cop 4564  cmpt 5153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-opab 5133  df-mpt 5154
This theorem is referenced by:  pmtrprfvalrn  19011  esumsnf  31932  sge0sn  43807  zlmodzxzscm  45581  zlmodzxzadd  45582
  Copyright terms: Public domain W3C validator