Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fmptpr | Structured version Visualization version GIF version |
Description: Express a pair function in maps-to notation. (Contributed by Thierry Arnoux, 3-Jan-2017.) |
Ref | Expression |
---|---|
fmptpr.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
fmptpr.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
fmptpr.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑋) |
fmptpr.4 | ⊢ (𝜑 → 𝐷 ∈ 𝑌) |
fmptpr.5 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐸 = 𝐶) |
fmptpr.6 | ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → 𝐸 = 𝐷) |
Ref | Expression |
---|---|
fmptpr | ⊢ (𝜑 → {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} = (𝑥 ∈ {𝐴, 𝐵} ↦ 𝐸)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pr 4573 | . . 3 ⊢ {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} = ({〈𝐴, 𝐶〉} ∪ {〈𝐵, 𝐷〉}) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} = ({〈𝐴, 𝐶〉} ∪ {〈𝐵, 𝐷〉})) |
3 | fmptpr.5 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐸 = 𝐶) | |
4 | fmptpr.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
5 | fmptpr.3 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑋) | |
6 | 3, 4, 5 | fmptsnd 7080 | . . 3 ⊢ (𝜑 → {〈𝐴, 𝐶〉} = (𝑥 ∈ {𝐴} ↦ 𝐸)) |
7 | 6 | uneq1d 4106 | . 2 ⊢ (𝜑 → ({〈𝐴, 𝐶〉} ∪ {〈𝐵, 𝐷〉}) = ((𝑥 ∈ {𝐴} ↦ 𝐸) ∪ {〈𝐵, 𝐷〉})) |
8 | fmptpr.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
9 | fmptpr.4 | . . 3 ⊢ (𝜑 → 𝐷 ∈ 𝑌) | |
10 | df-pr 4573 | . . . . 5 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
11 | 10 | eqcomi 2745 | . . . 4 ⊢ ({𝐴} ∪ {𝐵}) = {𝐴, 𝐵} |
12 | 11 | a1i 11 | . . 3 ⊢ (𝜑 → ({𝐴} ∪ {𝐵}) = {𝐴, 𝐵}) |
13 | fmptpr.6 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → 𝐸 = 𝐷) | |
14 | 8, 9, 12, 13 | fmptapd 7082 | . 2 ⊢ (𝜑 → ((𝑥 ∈ {𝐴} ↦ 𝐸) ∪ {〈𝐵, 𝐷〉}) = (𝑥 ∈ {𝐴, 𝐵} ↦ 𝐸)) |
15 | 2, 7, 14 | 3eqtrd 2780 | 1 ⊢ (𝜑 → {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} = (𝑥 ∈ {𝐴, 𝐵} ↦ 𝐸)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∪ cun 3894 {csn 4570 {cpr 4572 〈cop 4576 ↦ cmpt 5169 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5237 ax-nul 5244 ax-pr 5366 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3442 df-sbc 3726 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4471 df-sn 4571 df-pr 4573 df-op 4577 df-opab 5149 df-mpt 5170 |
This theorem is referenced by: pmtrprfvalrn 19169 esumsnf 32168 sge0sn 44173 zlmodzxzscm 45963 zlmodzxzadd 45964 |
Copyright terms: Public domain | W3C validator |