|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > fmptpr | Structured version Visualization version GIF version | ||
| Description: Express a pair function in maps-to notation. (Contributed by Thierry Arnoux, 3-Jan-2017.) | 
| Ref | Expression | 
|---|---|
| fmptpr.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) | 
| fmptpr.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) | 
| fmptpr.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑋) | 
| fmptpr.4 | ⊢ (𝜑 → 𝐷 ∈ 𝑌) | 
| fmptpr.5 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐸 = 𝐶) | 
| fmptpr.6 | ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → 𝐸 = 𝐷) | 
| Ref | Expression | 
|---|---|
| fmptpr | ⊢ (𝜑 → {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} = (𝑥 ∈ {𝐴, 𝐵} ↦ 𝐸)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-pr 4629 | . . 3 ⊢ {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} = ({〈𝐴, 𝐶〉} ∪ {〈𝐵, 𝐷〉}) | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} = ({〈𝐴, 𝐶〉} ∪ {〈𝐵, 𝐷〉})) | 
| 3 | fmptpr.5 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐸 = 𝐶) | |
| 4 | fmptpr.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 5 | fmptpr.3 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑋) | |
| 6 | 3, 4, 5 | fmptsnd 7189 | . . 3 ⊢ (𝜑 → {〈𝐴, 𝐶〉} = (𝑥 ∈ {𝐴} ↦ 𝐸)) | 
| 7 | 6 | uneq1d 4167 | . 2 ⊢ (𝜑 → ({〈𝐴, 𝐶〉} ∪ {〈𝐵, 𝐷〉}) = ((𝑥 ∈ {𝐴} ↦ 𝐸) ∪ {〈𝐵, 𝐷〉})) | 
| 8 | fmptpr.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 9 | fmptpr.4 | . . 3 ⊢ (𝜑 → 𝐷 ∈ 𝑌) | |
| 10 | df-pr 4629 | . . . . 5 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
| 11 | 10 | eqcomi 2746 | . . . 4 ⊢ ({𝐴} ∪ {𝐵}) = {𝐴, 𝐵} | 
| 12 | 11 | a1i 11 | . . 3 ⊢ (𝜑 → ({𝐴} ∪ {𝐵}) = {𝐴, 𝐵}) | 
| 13 | fmptpr.6 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → 𝐸 = 𝐷) | |
| 14 | 8, 9, 12, 13 | fmptapd 7191 | . 2 ⊢ (𝜑 → ((𝑥 ∈ {𝐴} ↦ 𝐸) ∪ {〈𝐵, 𝐷〉}) = (𝑥 ∈ {𝐴, 𝐵} ↦ 𝐸)) | 
| 15 | 2, 7, 14 | 3eqtrd 2781 | 1 ⊢ (𝜑 → {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} = (𝑥 ∈ {𝐴, 𝐵} ↦ 𝐸)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∪ cun 3949 {csn 4626 {cpr 4628 〈cop 4632 ↦ cmpt 5225 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-opab 5206 df-mpt 5226 | 
| This theorem is referenced by: pmtrprfvalrn 19506 esumsnf 34065 sge0sn 46394 zlmodzxzscm 48273 zlmodzxzadd 48274 | 
| Copyright terms: Public domain | W3C validator |