Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zlmodzxzscm Structured version   Visualization version   GIF version

Theorem zlmodzxzscm 45693
Description: The scalar multiplication of the -module ℤ × ℤ. (Contributed by AV, 20-May-2019.) (Revised by AV, 10-Jun-2019.)
Hypotheses
Ref Expression
zlmodzxz.z 𝑍 = (ℤring freeLMod {0, 1})
zlmodzxzscm.t = ( ·𝑠𝑍)
Assertion
Ref Expression
zlmodzxzscm ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 {⟨0, 𝐵⟩, ⟨1, 𝐶⟩}) = {⟨0, (𝐴 · 𝐵)⟩, ⟨1, (𝐴 · 𝐶)⟩})

Proof of Theorem zlmodzxzscm
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 prex 5355 . . . 4 {0, 1} ∈ V
21a1i 11 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → {0, 1} ∈ V)
3 fnconstg 6662 . . . 4 (𝐴 ∈ ℤ → ({0, 1} × {𝐴}) Fn {0, 1})
433ad2ant1 1132 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ({0, 1} × {𝐴}) Fn {0, 1})
5 c0ex 10969 . . . . . 6 0 ∈ V
6 1ex 10971 . . . . . 6 1 ∈ V
75, 6pm3.2i 471 . . . . 5 (0 ∈ V ∧ 1 ∈ V)
87a1i 11 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (0 ∈ V ∧ 1 ∈ V))
9 3simpc 1149 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ))
10 0ne1 12044 . . . . 5 0 ≠ 1
1110a1i 11 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 0 ≠ 1)
12 fnprg 6493 . . . 4 (((0 ∈ V ∧ 1 ∈ V) ∧ (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 0 ≠ 1) → {⟨0, 𝐵⟩, ⟨1, 𝐶⟩} Fn {0, 1})
138, 9, 11, 12syl3anc 1370 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → {⟨0, 𝐵⟩, ⟨1, 𝐶⟩} Fn {0, 1})
142, 4, 13offvalfv 45678 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (({0, 1} × {𝐴}) ∘f (.r‘ℤring){⟨0, 𝐵⟩, ⟨1, 𝐶⟩}) = (𝑥 ∈ {0, 1} ↦ ((({0, 1} × {𝐴})‘𝑥)(.r‘ℤring)({⟨0, 𝐵⟩, ⟨1, 𝐶⟩}‘𝑥))))
15 zlmodzxz.z . . 3 𝑍 = (ℤring freeLMod {0, 1})
16 eqid 2738 . . 3 (Base‘𝑍) = (Base‘𝑍)
17 eqid 2738 . . 3 (Base‘ℤring) = (Base‘ℤring)
18 simp1 1135 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐴 ∈ ℤ)
19 zringbas 20676 . . . 4 ℤ = (Base‘ℤring)
2018, 19eleqtrdi 2849 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐴 ∈ (Base‘ℤring))
2115zlmodzxzel 45691 . . . 4 ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → {⟨0, 𝐵⟩, ⟨1, 𝐶⟩} ∈ (Base‘𝑍))
22213adant1 1129 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → {⟨0, 𝐵⟩, ⟨1, 𝐶⟩} ∈ (Base‘𝑍))
23 zlmodzxzscm.t . . 3 = ( ·𝑠𝑍)
24 eqid 2738 . . 3 (.r‘ℤring) = (.r‘ℤring)
2515, 16, 17, 2, 20, 22, 23, 24frlmvscafval 20973 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 {⟨0, 𝐵⟩, ⟨1, 𝐶⟩}) = (({0, 1} × {𝐴}) ∘f (.r‘ℤring){⟨0, 𝐵⟩, ⟨1, 𝐶⟩}))
265a1i 11 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 0 ∈ V)
276a1i 11 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 1 ∈ V)
28 ovexd 7310 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 · 𝐵) ∈ V)
29 ovexd 7310 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 · 𝐶) ∈ V)
30 fveq2 6774 . . . . 5 (𝑥 = 0 → (({0, 1} × {𝐴})‘𝑥) = (({0, 1} × {𝐴})‘0))
31 fveq2 6774 . . . . 5 (𝑥 = 0 → ({⟨0, 𝐵⟩, ⟨1, 𝐶⟩}‘𝑥) = ({⟨0, 𝐵⟩, ⟨1, 𝐶⟩}‘0))
3230, 31oveq12d 7293 . . . 4 (𝑥 = 0 → ((({0, 1} × {𝐴})‘𝑥)(.r‘ℤring)({⟨0, 𝐵⟩, ⟨1, 𝐶⟩}‘𝑥)) = ((({0, 1} × {𝐴})‘0)(.r‘ℤring)({⟨0, 𝐵⟩, ⟨1, 𝐶⟩}‘0)))
33 zringmulr 20679 . . . . . . 7 · = (.r‘ℤring)
3433eqcomi 2747 . . . . . 6 (.r‘ℤring) = ·
3534a1i 11 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (.r‘ℤring) = · )
365prid1 4698 . . . . . 6 0 ∈ {0, 1}
37 fvconst2g 7077 . . . . . 6 ((𝐴 ∈ ℤ ∧ 0 ∈ {0, 1}) → (({0, 1} × {𝐴})‘0) = 𝐴)
3818, 36, 37sylancl 586 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (({0, 1} × {𝐴})‘0) = 𝐴)
39 simp2 1136 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐵 ∈ ℤ)
40 fvpr1g 7062 . . . . . 6 ((0 ∈ V ∧ 𝐵 ∈ ℤ ∧ 0 ≠ 1) → ({⟨0, 𝐵⟩, ⟨1, 𝐶⟩}‘0) = 𝐵)
4126, 39, 11, 40syl3anc 1370 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ({⟨0, 𝐵⟩, ⟨1, 𝐶⟩}‘0) = 𝐵)
4235, 38, 41oveq123d 7296 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((({0, 1} × {𝐴})‘0)(.r‘ℤring)({⟨0, 𝐵⟩, ⟨1, 𝐶⟩}‘0)) = (𝐴 · 𝐵))
4332, 42sylan9eqr 2800 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝑥 = 0) → ((({0, 1} × {𝐴})‘𝑥)(.r‘ℤring)({⟨0, 𝐵⟩, ⟨1, 𝐶⟩}‘𝑥)) = (𝐴 · 𝐵))
44 fveq2 6774 . . . . 5 (𝑥 = 1 → (({0, 1} × {𝐴})‘𝑥) = (({0, 1} × {𝐴})‘1))
45 fveq2 6774 . . . . 5 (𝑥 = 1 → ({⟨0, 𝐵⟩, ⟨1, 𝐶⟩}‘𝑥) = ({⟨0, 𝐵⟩, ⟨1, 𝐶⟩}‘1))
4644, 45oveq12d 7293 . . . 4 (𝑥 = 1 → ((({0, 1} × {𝐴})‘𝑥)(.r‘ℤring)({⟨0, 𝐵⟩, ⟨1, 𝐶⟩}‘𝑥)) = ((({0, 1} × {𝐴})‘1)(.r‘ℤring)({⟨0, 𝐵⟩, ⟨1, 𝐶⟩}‘1)))
476prid2 4699 . . . . . 6 1 ∈ {0, 1}
48 fvconst2g 7077 . . . . . 6 ((𝐴 ∈ ℤ ∧ 1 ∈ {0, 1}) → (({0, 1} × {𝐴})‘1) = 𝐴)
4918, 47, 48sylancl 586 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (({0, 1} × {𝐴})‘1) = 𝐴)
50 simp3 1137 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐶 ∈ ℤ)
51 fvpr2g 7063 . . . . . 6 ((1 ∈ V ∧ 𝐶 ∈ ℤ ∧ 0 ≠ 1) → ({⟨0, 𝐵⟩, ⟨1, 𝐶⟩}‘1) = 𝐶)
5227, 50, 11, 51syl3anc 1370 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ({⟨0, 𝐵⟩, ⟨1, 𝐶⟩}‘1) = 𝐶)
5335, 49, 52oveq123d 7296 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((({0, 1} × {𝐴})‘1)(.r‘ℤring)({⟨0, 𝐵⟩, ⟨1, 𝐶⟩}‘1)) = (𝐴 · 𝐶))
5446, 53sylan9eqr 2800 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝑥 = 1) → ((({0, 1} × {𝐴})‘𝑥)(.r‘ℤring)({⟨0, 𝐵⟩, ⟨1, 𝐶⟩}‘𝑥)) = (𝐴 · 𝐶))
5526, 27, 28, 29, 43, 54fmptpr 7044 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → {⟨0, (𝐴 · 𝐵)⟩, ⟨1, (𝐴 · 𝐶)⟩} = (𝑥 ∈ {0, 1} ↦ ((({0, 1} × {𝐴})‘𝑥)(.r‘ℤring)({⟨0, 𝐵⟩, ⟨1, 𝐶⟩}‘𝑥))))
5614, 25, 553eqtr4d 2788 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 {⟨0, 𝐵⟩, ⟨1, 𝐶⟩}) = {⟨0, (𝐴 · 𝐵)⟩, ⟨1, (𝐴 · 𝐶)⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  Vcvv 3432  {csn 4561  {cpr 4563  cop 4567  cmpt 5157   × cxp 5587   Fn wfn 6428  cfv 6433  (class class class)co 7275  f cof 7531  0cc0 10871  1c1 10872   · cmul 10876  cz 12319  Basecbs 16912  .rcmulr 16963   ·𝑠 cvsca 16966  ringczring 20670   freeLMod cfrlm 20953
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-sup 9201  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-fz 13240  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-0g 17152  df-prds 17158  df-pws 17160  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-minusg 18581  df-subg 18752  df-cmn 19388  df-mgp 19721  df-ur 19738  df-ring 19785  df-cring 19786  df-subrg 20022  df-sra 20434  df-rgmod 20435  df-cnfld 20598  df-zring 20671  df-dsmm 20939  df-frlm 20954
This theorem is referenced by:  zlmodzxzequa  45837  zlmodzxznm  45838  zlmodzxzequap  45840
  Copyright terms: Public domain W3C validator