Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zlmodzxzscm Structured version   Visualization version   GIF version

Theorem zlmodzxzscm 44412
Description: The scalar multiplication of the -module ℤ × ℤ. (Contributed by AV, 20-May-2019.) (Revised by AV, 10-Jun-2019.)
Hypotheses
Ref Expression
zlmodzxz.z 𝑍 = (ℤring freeLMod {0, 1})
zlmodzxzscm.t = ( ·𝑠𝑍)
Assertion
Ref Expression
zlmodzxzscm ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 {⟨0, 𝐵⟩, ⟨1, 𝐶⟩}) = {⟨0, (𝐴 · 𝐵)⟩, ⟨1, (𝐴 · 𝐶)⟩})

Proof of Theorem zlmodzxzscm
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 prex 5335 . . . 4 {0, 1} ∈ V
21a1i 11 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → {0, 1} ∈ V)
3 fnconstg 6569 . . . 4 (𝐴 ∈ ℤ → ({0, 1} × {𝐴}) Fn {0, 1})
433ad2ant1 1129 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ({0, 1} × {𝐴}) Fn {0, 1})
5 c0ex 10637 . . . . . 6 0 ∈ V
6 1ex 10639 . . . . . 6 1 ∈ V
75, 6pm3.2i 473 . . . . 5 (0 ∈ V ∧ 1 ∈ V)
87a1i 11 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (0 ∈ V ∧ 1 ∈ V))
9 3simpc 1146 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ))
10 0ne1 11711 . . . . 5 0 ≠ 1
1110a1i 11 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 0 ≠ 1)
12 fnprg 6415 . . . 4 (((0 ∈ V ∧ 1 ∈ V) ∧ (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 0 ≠ 1) → {⟨0, 𝐵⟩, ⟨1, 𝐶⟩} Fn {0, 1})
138, 9, 11, 12syl3anc 1367 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → {⟨0, 𝐵⟩, ⟨1, 𝐶⟩} Fn {0, 1})
142, 4, 13offvalfv 44398 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (({0, 1} × {𝐴}) ∘f (.r‘ℤring){⟨0, 𝐵⟩, ⟨1, 𝐶⟩}) = (𝑥 ∈ {0, 1} ↦ ((({0, 1} × {𝐴})‘𝑥)(.r‘ℤring)({⟨0, 𝐵⟩, ⟨1, 𝐶⟩}‘𝑥))))
15 zlmodzxz.z . . 3 𝑍 = (ℤring freeLMod {0, 1})
16 eqid 2823 . . 3 (Base‘𝑍) = (Base‘𝑍)
17 eqid 2823 . . 3 (Base‘ℤring) = (Base‘ℤring)
18 simp1 1132 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐴 ∈ ℤ)
19 zringbas 20625 . . . 4 ℤ = (Base‘ℤring)
2018, 19eleqtrdi 2925 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐴 ∈ (Base‘ℤring))
2115zlmodzxzel 44410 . . . 4 ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → {⟨0, 𝐵⟩, ⟨1, 𝐶⟩} ∈ (Base‘𝑍))
22213adant1 1126 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → {⟨0, 𝐵⟩, ⟨1, 𝐶⟩} ∈ (Base‘𝑍))
23 zlmodzxzscm.t . . 3 = ( ·𝑠𝑍)
24 eqid 2823 . . 3 (.r‘ℤring) = (.r‘ℤring)
2515, 16, 17, 2, 20, 22, 23, 24frlmvscafval 20912 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 {⟨0, 𝐵⟩, ⟨1, 𝐶⟩}) = (({0, 1} × {𝐴}) ∘f (.r‘ℤring){⟨0, 𝐵⟩, ⟨1, 𝐶⟩}))
265a1i 11 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 0 ∈ V)
276a1i 11 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 1 ∈ V)
28 ovexd 7193 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 · 𝐵) ∈ V)
29 ovexd 7193 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 · 𝐶) ∈ V)
30 fveq2 6672 . . . . 5 (𝑥 = 0 → (({0, 1} × {𝐴})‘𝑥) = (({0, 1} × {𝐴})‘0))
31 fveq2 6672 . . . . 5 (𝑥 = 0 → ({⟨0, 𝐵⟩, ⟨1, 𝐶⟩}‘𝑥) = ({⟨0, 𝐵⟩, ⟨1, 𝐶⟩}‘0))
3230, 31oveq12d 7176 . . . 4 (𝑥 = 0 → ((({0, 1} × {𝐴})‘𝑥)(.r‘ℤring)({⟨0, 𝐵⟩, ⟨1, 𝐶⟩}‘𝑥)) = ((({0, 1} × {𝐴})‘0)(.r‘ℤring)({⟨0, 𝐵⟩, ⟨1, 𝐶⟩}‘0)))
33 zringmulr 20628 . . . . . . 7 · = (.r‘ℤring)
3433eqcomi 2832 . . . . . 6 (.r‘ℤring) = ·
3534a1i 11 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (.r‘ℤring) = · )
365prid1 4700 . . . . . 6 0 ∈ {0, 1}
37 fvconst2g 6966 . . . . . 6 ((𝐴 ∈ ℤ ∧ 0 ∈ {0, 1}) → (({0, 1} × {𝐴})‘0) = 𝐴)
3818, 36, 37sylancl 588 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (({0, 1} × {𝐴})‘0) = 𝐴)
39 simp2 1133 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐵 ∈ ℤ)
40 fvpr1g 6956 . . . . . 6 ((0 ∈ V ∧ 𝐵 ∈ ℤ ∧ 0 ≠ 1) → ({⟨0, 𝐵⟩, ⟨1, 𝐶⟩}‘0) = 𝐵)
4126, 39, 11, 40syl3anc 1367 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ({⟨0, 𝐵⟩, ⟨1, 𝐶⟩}‘0) = 𝐵)
4235, 38, 41oveq123d 7179 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((({0, 1} × {𝐴})‘0)(.r‘ℤring)({⟨0, 𝐵⟩, ⟨1, 𝐶⟩}‘0)) = (𝐴 · 𝐵))
4332, 42sylan9eqr 2880 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝑥 = 0) → ((({0, 1} × {𝐴})‘𝑥)(.r‘ℤring)({⟨0, 𝐵⟩, ⟨1, 𝐶⟩}‘𝑥)) = (𝐴 · 𝐵))
44 fveq2 6672 . . . . 5 (𝑥 = 1 → (({0, 1} × {𝐴})‘𝑥) = (({0, 1} × {𝐴})‘1))
45 fveq2 6672 . . . . 5 (𝑥 = 1 → ({⟨0, 𝐵⟩, ⟨1, 𝐶⟩}‘𝑥) = ({⟨0, 𝐵⟩, ⟨1, 𝐶⟩}‘1))
4644, 45oveq12d 7176 . . . 4 (𝑥 = 1 → ((({0, 1} × {𝐴})‘𝑥)(.r‘ℤring)({⟨0, 𝐵⟩, ⟨1, 𝐶⟩}‘𝑥)) = ((({0, 1} × {𝐴})‘1)(.r‘ℤring)({⟨0, 𝐵⟩, ⟨1, 𝐶⟩}‘1)))
476prid2 4701 . . . . . 6 1 ∈ {0, 1}
48 fvconst2g 6966 . . . . . 6 ((𝐴 ∈ ℤ ∧ 1 ∈ {0, 1}) → (({0, 1} × {𝐴})‘1) = 𝐴)
4918, 47, 48sylancl 588 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (({0, 1} × {𝐴})‘1) = 𝐴)
50 simp3 1134 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐶 ∈ ℤ)
51 fvpr2g 6957 . . . . . 6 ((1 ∈ V ∧ 𝐶 ∈ ℤ ∧ 0 ≠ 1) → ({⟨0, 𝐵⟩, ⟨1, 𝐶⟩}‘1) = 𝐶)
5227, 50, 11, 51syl3anc 1367 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ({⟨0, 𝐵⟩, ⟨1, 𝐶⟩}‘1) = 𝐶)
5335, 49, 52oveq123d 7179 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((({0, 1} × {𝐴})‘1)(.r‘ℤring)({⟨0, 𝐵⟩, ⟨1, 𝐶⟩}‘1)) = (𝐴 · 𝐶))
5446, 53sylan9eqr 2880 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝑥 = 1) → ((({0, 1} × {𝐴})‘𝑥)(.r‘ℤring)({⟨0, 𝐵⟩, ⟨1, 𝐶⟩}‘𝑥)) = (𝐴 · 𝐶))
5526, 27, 28, 29, 43, 54fmptpr 6936 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → {⟨0, (𝐴 · 𝐵)⟩, ⟨1, (𝐴 · 𝐶)⟩} = (𝑥 ∈ {0, 1} ↦ ((({0, 1} × {𝐴})‘𝑥)(.r‘ℤring)({⟨0, 𝐵⟩, ⟨1, 𝐶⟩}‘𝑥))))
5614, 25, 553eqtr4d 2868 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 {⟨0, 𝐵⟩, ⟨1, 𝐶⟩}) = {⟨0, (𝐴 · 𝐵)⟩, ⟨1, (𝐴 · 𝐶)⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3018  Vcvv 3496  {csn 4569  {cpr 4571  cop 4575  cmpt 5148   × cxp 5555   Fn wfn 6352  cfv 6357  (class class class)co 7158  f cof 7409  0cc0 10539  1c1 10540   · cmul 10544  cz 11984  Basecbs 16485  .rcmulr 16568   ·𝑠 cvsca 16571  ringzring 20619   freeLMod cfrlm 20892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-addf 10618  ax-mulf 10619
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-map 8410  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-sup 8908  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-fz 12896  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-starv 16582  df-sca 16583  df-vsca 16584  df-ip 16585  df-tset 16586  df-ple 16587  df-ds 16589  df-unif 16590  df-hom 16591  df-cco 16592  df-0g 16717  df-prds 16723  df-pws 16725  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-grp 18108  df-minusg 18109  df-subg 18278  df-cmn 18910  df-mgp 19242  df-ur 19254  df-ring 19301  df-cring 19302  df-subrg 19535  df-sra 19946  df-rgmod 19947  df-cnfld 20548  df-zring 20620  df-dsmm 20878  df-frlm 20893
This theorem is referenced by:  zlmodzxzequa  44558  zlmodzxznm  44559  zlmodzxzequap  44561
  Copyright terms: Public domain W3C validator