Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zlmodzxzscm Structured version   Visualization version   GIF version

Theorem zlmodzxzscm 48361
Description: The scalar multiplication of the -module ℤ × ℤ. (Contributed by AV, 20-May-2019.) (Revised by AV, 10-Jun-2019.)
Hypotheses
Ref Expression
zlmodzxz.z 𝑍 = (ℤring freeLMod {0, 1})
zlmodzxzscm.t = ( ·𝑠𝑍)
Assertion
Ref Expression
zlmodzxzscm ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 {⟨0, 𝐵⟩, ⟨1, 𝐶⟩}) = {⟨0, (𝐴 · 𝐵)⟩, ⟨1, (𝐴 · 𝐶)⟩})

Proof of Theorem zlmodzxzscm
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 prex 5376 . . . 4 {0, 1} ∈ V
21a1i 11 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → {0, 1} ∈ V)
3 fnconstg 6712 . . . 4 (𝐴 ∈ ℤ → ({0, 1} × {𝐴}) Fn {0, 1})
433ad2ant1 1133 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ({0, 1} × {𝐴}) Fn {0, 1})
5 c0ex 11109 . . . . . 6 0 ∈ V
6 1ex 11111 . . . . . 6 1 ∈ V
75, 6pm3.2i 470 . . . . 5 (0 ∈ V ∧ 1 ∈ V)
87a1i 11 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (0 ∈ V ∧ 1 ∈ V))
9 3simpc 1150 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ))
10 0ne1 12199 . . . . 5 0 ≠ 1
1110a1i 11 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 0 ≠ 1)
12 fnprg 6541 . . . 4 (((0 ∈ V ∧ 1 ∈ V) ∧ (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 0 ≠ 1) → {⟨0, 𝐵⟩, ⟨1, 𝐶⟩} Fn {0, 1})
138, 9, 11, 12syl3anc 1373 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → {⟨0, 𝐵⟩, ⟨1, 𝐶⟩} Fn {0, 1})
142, 4, 13offvalfv 7635 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (({0, 1} × {𝐴}) ∘f (.r‘ℤring){⟨0, 𝐵⟩, ⟨1, 𝐶⟩}) = (𝑥 ∈ {0, 1} ↦ ((({0, 1} × {𝐴})‘𝑥)(.r‘ℤring)({⟨0, 𝐵⟩, ⟨1, 𝐶⟩}‘𝑥))))
15 zlmodzxz.z . . 3 𝑍 = (ℤring freeLMod {0, 1})
16 eqid 2729 . . 3 (Base‘𝑍) = (Base‘𝑍)
17 eqid 2729 . . 3 (Base‘ℤring) = (Base‘ℤring)
18 simp1 1136 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐴 ∈ ℤ)
19 zringbas 21360 . . . 4 ℤ = (Base‘ℤring)
2018, 19eleqtrdi 2838 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐴 ∈ (Base‘ℤring))
2115zlmodzxzel 48359 . . . 4 ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → {⟨0, 𝐵⟩, ⟨1, 𝐶⟩} ∈ (Base‘𝑍))
22213adant1 1130 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → {⟨0, 𝐵⟩, ⟨1, 𝐶⟩} ∈ (Base‘𝑍))
23 zlmodzxzscm.t . . 3 = ( ·𝑠𝑍)
24 eqid 2729 . . 3 (.r‘ℤring) = (.r‘ℤring)
2515, 16, 17, 2, 20, 22, 23, 24frlmvscafval 21673 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 {⟨0, 𝐵⟩, ⟨1, 𝐶⟩}) = (({0, 1} × {𝐴}) ∘f (.r‘ℤring){⟨0, 𝐵⟩, ⟨1, 𝐶⟩}))
265a1i 11 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 0 ∈ V)
276a1i 11 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 1 ∈ V)
28 ovexd 7384 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 · 𝐵) ∈ V)
29 ovexd 7384 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 · 𝐶) ∈ V)
30 fveq2 6822 . . . . 5 (𝑥 = 0 → (({0, 1} × {𝐴})‘𝑥) = (({0, 1} × {𝐴})‘0))
31 fveq2 6822 . . . . 5 (𝑥 = 0 → ({⟨0, 𝐵⟩, ⟨1, 𝐶⟩}‘𝑥) = ({⟨0, 𝐵⟩, ⟨1, 𝐶⟩}‘0))
3230, 31oveq12d 7367 . . . 4 (𝑥 = 0 → ((({0, 1} × {𝐴})‘𝑥)(.r‘ℤring)({⟨0, 𝐵⟩, ⟨1, 𝐶⟩}‘𝑥)) = ((({0, 1} × {𝐴})‘0)(.r‘ℤring)({⟨0, 𝐵⟩, ⟨1, 𝐶⟩}‘0)))
33 zringmulr 21364 . . . . . . 7 · = (.r‘ℤring)
3433eqcomi 2738 . . . . . 6 (.r‘ℤring) = ·
3534a1i 11 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (.r‘ℤring) = · )
365prid1 4714 . . . . . 6 0 ∈ {0, 1}
37 fvconst2g 7138 . . . . . 6 ((𝐴 ∈ ℤ ∧ 0 ∈ {0, 1}) → (({0, 1} × {𝐴})‘0) = 𝐴)
3818, 36, 37sylancl 586 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (({0, 1} × {𝐴})‘0) = 𝐴)
39 simp2 1137 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐵 ∈ ℤ)
40 fvpr1g 7126 . . . . . 6 ((0 ∈ V ∧ 𝐵 ∈ ℤ ∧ 0 ≠ 1) → ({⟨0, 𝐵⟩, ⟨1, 𝐶⟩}‘0) = 𝐵)
4126, 39, 11, 40syl3anc 1373 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ({⟨0, 𝐵⟩, ⟨1, 𝐶⟩}‘0) = 𝐵)
4235, 38, 41oveq123d 7370 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((({0, 1} × {𝐴})‘0)(.r‘ℤring)({⟨0, 𝐵⟩, ⟨1, 𝐶⟩}‘0)) = (𝐴 · 𝐵))
4332, 42sylan9eqr 2786 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝑥 = 0) → ((({0, 1} × {𝐴})‘𝑥)(.r‘ℤring)({⟨0, 𝐵⟩, ⟨1, 𝐶⟩}‘𝑥)) = (𝐴 · 𝐵))
44 fveq2 6822 . . . . 5 (𝑥 = 1 → (({0, 1} × {𝐴})‘𝑥) = (({0, 1} × {𝐴})‘1))
45 fveq2 6822 . . . . 5 (𝑥 = 1 → ({⟨0, 𝐵⟩, ⟨1, 𝐶⟩}‘𝑥) = ({⟨0, 𝐵⟩, ⟨1, 𝐶⟩}‘1))
4644, 45oveq12d 7367 . . . 4 (𝑥 = 1 → ((({0, 1} × {𝐴})‘𝑥)(.r‘ℤring)({⟨0, 𝐵⟩, ⟨1, 𝐶⟩}‘𝑥)) = ((({0, 1} × {𝐴})‘1)(.r‘ℤring)({⟨0, 𝐵⟩, ⟨1, 𝐶⟩}‘1)))
476prid2 4715 . . . . . 6 1 ∈ {0, 1}
48 fvconst2g 7138 . . . . . 6 ((𝐴 ∈ ℤ ∧ 1 ∈ {0, 1}) → (({0, 1} × {𝐴})‘1) = 𝐴)
4918, 47, 48sylancl 586 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (({0, 1} × {𝐴})‘1) = 𝐴)
50 simp3 1138 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐶 ∈ ℤ)
51 fvpr2g 7127 . . . . . 6 ((1 ∈ V ∧ 𝐶 ∈ ℤ ∧ 0 ≠ 1) → ({⟨0, 𝐵⟩, ⟨1, 𝐶⟩}‘1) = 𝐶)
5227, 50, 11, 51syl3anc 1373 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ({⟨0, 𝐵⟩, ⟨1, 𝐶⟩}‘1) = 𝐶)
5335, 49, 52oveq123d 7370 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((({0, 1} × {𝐴})‘1)(.r‘ℤring)({⟨0, 𝐵⟩, ⟨1, 𝐶⟩}‘1)) = (𝐴 · 𝐶))
5446, 53sylan9eqr 2786 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝑥 = 1) → ((({0, 1} × {𝐴})‘𝑥)(.r‘ℤring)({⟨0, 𝐵⟩, ⟨1, 𝐶⟩}‘𝑥)) = (𝐴 · 𝐶))
5526, 27, 28, 29, 43, 54fmptpr 7108 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → {⟨0, (𝐴 · 𝐵)⟩, ⟨1, (𝐴 · 𝐶)⟩} = (𝑥 ∈ {0, 1} ↦ ((({0, 1} × {𝐴})‘𝑥)(.r‘ℤring)({⟨0, 𝐵⟩, ⟨1, 𝐶⟩}‘𝑥))))
5614, 25, 553eqtr4d 2774 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 {⟨0, 𝐵⟩, ⟨1, 𝐶⟩}) = {⟨0, (𝐴 · 𝐵)⟩, ⟨1, (𝐴 · 𝐶)⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  Vcvv 3436  {csn 4577  {cpr 4579  cop 4583  cmpt 5173   × cxp 5617   Fn wfn 6477  cfv 6482  (class class class)co 7349  f cof 7611  0cc0 11009  1c1 11010   · cmul 11014  cz 12471  Basecbs 17120  .rcmulr 17162   ·𝑠 cvsca 17165  ringczring 21353   freeLMod cfrlm 21653
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-addf 11088  ax-mulf 11089
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-sup 9332  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-fz 13411  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-0g 17345  df-prds 17351  df-pws 17353  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-grp 18815  df-minusg 18816  df-subg 19002  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-cring 20121  df-subrng 20431  df-subrg 20455  df-sra 21077  df-rgmod 21078  df-cnfld 21262  df-zring 21354  df-dsmm 21639  df-frlm 21654
This theorem is referenced by:  zlmodzxzequa  48501  zlmodzxznm  48502  zlmodzxzequap  48504
  Copyright terms: Public domain W3C validator