Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zlmodzxzscm Structured version   Visualization version   GIF version

Theorem zlmodzxzscm 45219
Description: The scalar multiplication of the -module ℤ × ℤ. (Contributed by AV, 20-May-2019.) (Revised by AV, 10-Jun-2019.)
Hypotheses
Ref Expression
zlmodzxz.z 𝑍 = (ℤring freeLMod {0, 1})
zlmodzxzscm.t = ( ·𝑠𝑍)
Assertion
Ref Expression
zlmodzxzscm ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 {⟨0, 𝐵⟩, ⟨1, 𝐶⟩}) = {⟨0, (𝐴 · 𝐵)⟩, ⟨1, (𝐴 · 𝐶)⟩})

Proof of Theorem zlmodzxzscm
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 prex 5300 . . . 4 {0, 1} ∈ V
21a1i 11 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → {0, 1} ∈ V)
3 fnconstg 6567 . . . 4 (𝐴 ∈ ℤ → ({0, 1} × {𝐴}) Fn {0, 1})
433ad2ant1 1134 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ({0, 1} × {𝐴}) Fn {0, 1})
5 c0ex 10714 . . . . . 6 0 ∈ V
6 1ex 10716 . . . . . 6 1 ∈ V
75, 6pm3.2i 474 . . . . 5 (0 ∈ V ∧ 1 ∈ V)
87a1i 11 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (0 ∈ V ∧ 1 ∈ V))
9 3simpc 1151 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ))
10 0ne1 11788 . . . . 5 0 ≠ 1
1110a1i 11 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 0 ≠ 1)
12 fnprg 6399 . . . 4 (((0 ∈ V ∧ 1 ∈ V) ∧ (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 0 ≠ 1) → {⟨0, 𝐵⟩, ⟨1, 𝐶⟩} Fn {0, 1})
138, 9, 11, 12syl3anc 1372 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → {⟨0, 𝐵⟩, ⟨1, 𝐶⟩} Fn {0, 1})
142, 4, 13offvalfv 45204 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (({0, 1} × {𝐴}) ∘f (.r‘ℤring){⟨0, 𝐵⟩, ⟨1, 𝐶⟩}) = (𝑥 ∈ {0, 1} ↦ ((({0, 1} × {𝐴})‘𝑥)(.r‘ℤring)({⟨0, 𝐵⟩, ⟨1, 𝐶⟩}‘𝑥))))
15 zlmodzxz.z . . 3 𝑍 = (ℤring freeLMod {0, 1})
16 eqid 2738 . . 3 (Base‘𝑍) = (Base‘𝑍)
17 eqid 2738 . . 3 (Base‘ℤring) = (Base‘ℤring)
18 simp1 1137 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐴 ∈ ℤ)
19 zringbas 20296 . . . 4 ℤ = (Base‘ℤring)
2018, 19eleqtrdi 2843 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐴 ∈ (Base‘ℤring))
2115zlmodzxzel 45217 . . . 4 ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → {⟨0, 𝐵⟩, ⟨1, 𝐶⟩} ∈ (Base‘𝑍))
22213adant1 1131 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → {⟨0, 𝐵⟩, ⟨1, 𝐶⟩} ∈ (Base‘𝑍))
23 zlmodzxzscm.t . . 3 = ( ·𝑠𝑍)
24 eqid 2738 . . 3 (.r‘ℤring) = (.r‘ℤring)
2515, 16, 17, 2, 20, 22, 23, 24frlmvscafval 20583 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 {⟨0, 𝐵⟩, ⟨1, 𝐶⟩}) = (({0, 1} × {𝐴}) ∘f (.r‘ℤring){⟨0, 𝐵⟩, ⟨1, 𝐶⟩}))
265a1i 11 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 0 ∈ V)
276a1i 11 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 1 ∈ V)
28 ovexd 7206 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 · 𝐵) ∈ V)
29 ovexd 7206 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 · 𝐶) ∈ V)
30 fveq2 6675 . . . . 5 (𝑥 = 0 → (({0, 1} × {𝐴})‘𝑥) = (({0, 1} × {𝐴})‘0))
31 fveq2 6675 . . . . 5 (𝑥 = 0 → ({⟨0, 𝐵⟩, ⟨1, 𝐶⟩}‘𝑥) = ({⟨0, 𝐵⟩, ⟨1, 𝐶⟩}‘0))
3230, 31oveq12d 7189 . . . 4 (𝑥 = 0 → ((({0, 1} × {𝐴})‘𝑥)(.r‘ℤring)({⟨0, 𝐵⟩, ⟨1, 𝐶⟩}‘𝑥)) = ((({0, 1} × {𝐴})‘0)(.r‘ℤring)({⟨0, 𝐵⟩, ⟨1, 𝐶⟩}‘0)))
33 zringmulr 20299 . . . . . . 7 · = (.r‘ℤring)
3433eqcomi 2747 . . . . . 6 (.r‘ℤring) = ·
3534a1i 11 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (.r‘ℤring) = · )
365prid1 4654 . . . . . 6 0 ∈ {0, 1}
37 fvconst2g 6975 . . . . . 6 ((𝐴 ∈ ℤ ∧ 0 ∈ {0, 1}) → (({0, 1} × {𝐴})‘0) = 𝐴)
3818, 36, 37sylancl 589 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (({0, 1} × {𝐴})‘0) = 𝐴)
39 simp2 1138 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐵 ∈ ℤ)
40 fvpr1g 6965 . . . . . 6 ((0 ∈ V ∧ 𝐵 ∈ ℤ ∧ 0 ≠ 1) → ({⟨0, 𝐵⟩, ⟨1, 𝐶⟩}‘0) = 𝐵)
4126, 39, 11, 40syl3anc 1372 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ({⟨0, 𝐵⟩, ⟨1, 𝐶⟩}‘0) = 𝐵)
4235, 38, 41oveq123d 7192 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((({0, 1} × {𝐴})‘0)(.r‘ℤring)({⟨0, 𝐵⟩, ⟨1, 𝐶⟩}‘0)) = (𝐴 · 𝐵))
4332, 42sylan9eqr 2795 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝑥 = 0) → ((({0, 1} × {𝐴})‘𝑥)(.r‘ℤring)({⟨0, 𝐵⟩, ⟨1, 𝐶⟩}‘𝑥)) = (𝐴 · 𝐵))
44 fveq2 6675 . . . . 5 (𝑥 = 1 → (({0, 1} × {𝐴})‘𝑥) = (({0, 1} × {𝐴})‘1))
45 fveq2 6675 . . . . 5 (𝑥 = 1 → ({⟨0, 𝐵⟩, ⟨1, 𝐶⟩}‘𝑥) = ({⟨0, 𝐵⟩, ⟨1, 𝐶⟩}‘1))
4644, 45oveq12d 7189 . . . 4 (𝑥 = 1 → ((({0, 1} × {𝐴})‘𝑥)(.r‘ℤring)({⟨0, 𝐵⟩, ⟨1, 𝐶⟩}‘𝑥)) = ((({0, 1} × {𝐴})‘1)(.r‘ℤring)({⟨0, 𝐵⟩, ⟨1, 𝐶⟩}‘1)))
476prid2 4655 . . . . . 6 1 ∈ {0, 1}
48 fvconst2g 6975 . . . . . 6 ((𝐴 ∈ ℤ ∧ 1 ∈ {0, 1}) → (({0, 1} × {𝐴})‘1) = 𝐴)
4918, 47, 48sylancl 589 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (({0, 1} × {𝐴})‘1) = 𝐴)
50 simp3 1139 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐶 ∈ ℤ)
51 fvpr2g 6966 . . . . . 6 ((1 ∈ V ∧ 𝐶 ∈ ℤ ∧ 0 ≠ 1) → ({⟨0, 𝐵⟩, ⟨1, 𝐶⟩}‘1) = 𝐶)
5227, 50, 11, 51syl3anc 1372 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ({⟨0, 𝐵⟩, ⟨1, 𝐶⟩}‘1) = 𝐶)
5335, 49, 52oveq123d 7192 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((({0, 1} × {𝐴})‘1)(.r‘ℤring)({⟨0, 𝐵⟩, ⟨1, 𝐶⟩}‘1)) = (𝐴 · 𝐶))
5446, 53sylan9eqr 2795 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝑥 = 1) → ((({0, 1} × {𝐴})‘𝑥)(.r‘ℤring)({⟨0, 𝐵⟩, ⟨1, 𝐶⟩}‘𝑥)) = (𝐴 · 𝐶))
5526, 27, 28, 29, 43, 54fmptpr 6945 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → {⟨0, (𝐴 · 𝐵)⟩, ⟨1, (𝐴 · 𝐶)⟩} = (𝑥 ∈ {0, 1} ↦ ((({0, 1} × {𝐴})‘𝑥)(.r‘ℤring)({⟨0, 𝐵⟩, ⟨1, 𝐶⟩}‘𝑥))))
5614, 25, 553eqtr4d 2783 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 {⟨0, 𝐵⟩, ⟨1, 𝐶⟩}) = {⟨0, (𝐴 · 𝐵)⟩, ⟨1, (𝐴 · 𝐶)⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1088   = wceq 1542  wcel 2113  wne 2934  Vcvv 3398  {csn 4517  {cpr 4519  cop 4523  cmpt 5111   × cxp 5524   Fn wfn 6335  cfv 6340  (class class class)co 7171  f cof 7424  0cc0 10616  1c1 10617   · cmul 10621  cz 12063  Basecbs 16587  .rcmulr 16670   ·𝑠 cvsca 16673  ringzring 20290   freeLMod cfrlm 20563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5233  ax-pr 5297  ax-un 7480  ax-cnex 10672  ax-resscn 10673  ax-1cn 10674  ax-icn 10675  ax-addcl 10676  ax-addrcl 10677  ax-mulcl 10678  ax-mulrcl 10679  ax-mulcom 10680  ax-addass 10681  ax-mulass 10682  ax-distr 10683  ax-i2m1 10684  ax-1ne0 10685  ax-1rid 10686  ax-rnegex 10687  ax-rrecex 10688  ax-cnre 10689  ax-pre-lttri 10690  ax-pre-lttrn 10691  ax-pre-ltadd 10692  ax-pre-mulgt0 10693  ax-addf 10695  ax-mulf 10696
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3683  df-csb 3792  df-dif 3847  df-un 3849  df-in 3851  df-ss 3861  df-pss 3863  df-nul 4213  df-if 4416  df-pw 4491  df-sn 4518  df-pr 4520  df-tp 4522  df-op 4524  df-uni 4798  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5484  df-we 5486  df-xp 5532  df-rel 5533  df-cnv 5534  df-co 5535  df-dm 5536  df-rn 5537  df-res 5538  df-ima 5539  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7128  df-ov 7174  df-oprab 7175  df-mpo 7176  df-of 7426  df-om 7601  df-1st 7715  df-2nd 7716  df-supp 7858  df-wrecs 7977  df-recs 8038  df-rdg 8076  df-1o 8132  df-er 8321  df-map 8440  df-ixp 8509  df-en 8557  df-dom 8558  df-sdom 8559  df-fin 8560  df-fsupp 8908  df-sup 8980  df-pnf 10756  df-mnf 10757  df-xr 10758  df-ltxr 10759  df-le 10760  df-sub 10951  df-neg 10952  df-nn 11718  df-2 11780  df-3 11781  df-4 11782  df-5 11783  df-6 11784  df-7 11785  df-8 11786  df-9 11787  df-n0 11978  df-z 12064  df-dec 12181  df-uz 12326  df-fz 12983  df-struct 16589  df-ndx 16590  df-slot 16591  df-base 16593  df-sets 16594  df-ress 16595  df-plusg 16682  df-mulr 16683  df-starv 16684  df-sca 16685  df-vsca 16686  df-ip 16687  df-tset 16688  df-ple 16689  df-ds 16691  df-unif 16692  df-hom 16693  df-cco 16694  df-0g 16819  df-prds 16825  df-pws 16827  df-mgm 17969  df-sgrp 18018  df-mnd 18029  df-grp 18223  df-minusg 18224  df-subg 18395  df-cmn 19027  df-mgp 19360  df-ur 19372  df-ring 19419  df-cring 19420  df-subrg 19653  df-sra 20064  df-rgmod 20065  df-cnfld 20219  df-zring 20291  df-dsmm 20549  df-frlm 20564
This theorem is referenced by:  zlmodzxzequa  45363  zlmodzxznm  45364  zlmodzxzequap  45366
  Copyright terms: Public domain W3C validator