![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvresi | Structured version Visualization version GIF version |
Description: The value of a restricted identity function. (Contributed by NM, 19-May-2004.) |
Ref | Expression |
---|---|
fvresi | ⊢ (𝐵 ∈ 𝐴 → (( I ↾ 𝐴)‘𝐵) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvres 6549 | . 2 ⊢ (𝐵 ∈ 𝐴 → (( I ↾ 𝐴)‘𝐵) = ( I ‘𝐵)) | |
2 | fvi 6599 | . 2 ⊢ (𝐵 ∈ 𝐴 → ( I ‘𝐵) = 𝐵) | |
3 | 1, 2 | eqtrd 2829 | 1 ⊢ (𝐵 ∈ 𝐴 → (( I ↾ 𝐴)‘𝐵) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1520 ∈ wcel 2079 I cid 5339 ↾ cres 5437 ‘cfv 6217 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1775 ax-4 1789 ax-5 1886 ax-6 1945 ax-7 1990 ax-8 2081 ax-9 2089 ax-10 2110 ax-11 2124 ax-12 2139 ax-13 2342 ax-ext 2767 ax-sep 5088 ax-nul 5095 ax-pr 5214 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1080 df-tru 1523 df-ex 1760 df-nf 1764 df-sb 2041 df-mo 2574 df-eu 2610 df-clab 2774 df-cleq 2786 df-clel 2861 df-nfc 2933 df-ral 3108 df-rex 3109 df-rab 3112 df-v 3434 df-sbc 3702 df-dif 3857 df-un 3859 df-in 3861 df-ss 3869 df-nul 4207 df-if 4376 df-sn 4467 df-pr 4469 df-op 4473 df-uni 4740 df-br 4957 df-opab 5019 df-id 5340 df-xp 5441 df-rel 5442 df-cnv 5443 df-co 5444 df-dm 5445 df-res 5447 df-iota 6181 df-fun 6219 df-fv 6225 |
This theorem is referenced by: fninfp 6790 fndifnfp 6792 fnnfpeq0 6794 f1ocnvfv1 6889 f1ocnvfv2 6890 fcof1 6899 fcofo 6900 isoid 6936 weniso 6961 iordsmo 7837 fipreima 8666 infxpenc 9279 dfac9 9397 fproddvdsd 15505 ndxarg 16325 idfu2 16965 idfu1 16967 idfucl 16968 cofurid 16978 funcestrcsetclem6 17212 funcestrcsetclem7 17213 funcestrcsetclem9 17215 funcsetcestrclem6 17227 funcsetcestrclem7 17228 funcsetcestrclem9 17230 yonedainv 17348 idmhm 17771 idghm 18102 lactghmga 18251 symgga 18253 cayleylem2 18260 gsmsymgrfix 18275 gsmsymgreq 18279 pmtrfinv 18308 idlmhm 19491 evl1vard 20170 islinds2 20627 lindsind2 20633 madetsumid 20742 mdetunilem7 20899 txkgen 21932 ustuqtop3 22523 iducn 22563 nmoid 23022 dvid 24186 mvth 24260 fta1blem 24433 qaa 24583 idmot 25993 dfiop2 29209 idunop 29434 idcnop 29437 elunop2 29469 lnophm 29475 cycpmfv3 30368 islinds5 30535 ellspds 30536 pmtridfv1 30627 pmtridfv2 30628 qqhre 30834 subfacp1lem4 31994 subfacp1lem5 31995 cvmliftlem5 32100 bj-evalid 33911 idlaut 36713 idldil 36731 ltrnid 36752 idltrn 36767 ltrnideq 36792 tendoidcl 37386 tendo1ne0 37445 cdleml7 37599 dvalveclem 37642 dvhlveclem 37725 cdlemn8 37821 cdlemn11a 37824 rngunsnply 39209 isomgreqve 43426 isomushgr 43427 ushrisomgr 43442 idmgmhm 43491 funcrngcsetcALT 43702 funcringcsetcALTV2lem6 43744 funcringcsetcALTV2lem7 43745 funcringcsetcALTV2lem9 43747 funcringcsetclem6ALTV 43767 funcringcsetclem7ALTV 43768 funcringcsetclem9ALTV 43770 dflinc2 43899 |
Copyright terms: Public domain | W3C validator |