Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnresdmss Structured version   Visualization version   GIF version

Theorem fnresdmss 44535
Description: A function does not change when restricted to a set that contains its domain. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
fnresdmss ((𝐹 Fn 𝐴𝐴𝐵) → (𝐹𝐵) = 𝐹)

Proof of Theorem fnresdmss
StepHypRef Expression
1 fnrel 6650 . 2 (𝐹 Fn 𝐴 → Rel 𝐹)
2 fndm 6651 . . . 4 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
32adantr 480 . . 3 ((𝐹 Fn 𝐴𝐴𝐵) → dom 𝐹 = 𝐴)
4 simpr 484 . . 3 ((𝐹 Fn 𝐴𝐴𝐵) → 𝐴𝐵)
53, 4eqsstrd 4016 . 2 ((𝐹 Fn 𝐴𝐴𝐵) → dom 𝐹𝐵)
6 relssres 6020 . 2 ((Rel 𝐹 ∧ dom 𝐹𝐵) → (𝐹𝐵) = 𝐹)
71, 5, 6syl2an2r 684 1 ((𝐹 Fn 𝐴𝐴𝐵) → (𝐹𝐵) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wss 3945  dom cdm 5672  cres 5674  Rel wrel 5677   Fn wfn 6537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2699  ax-sep 5293  ax-nul 5300  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3472  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-br 5143  df-opab 5205  df-xp 5678  df-rel 5679  df-dm 5682  df-res 5684  df-fun 6544  df-fn 6545
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator