Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnresdmss Structured version   Visualization version   GIF version

Theorem fnresdmss 45077
Description: A function does not change when restricted to a set that contains its domain. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
fnresdmss ((𝐹 Fn 𝐴𝐴𝐵) → (𝐹𝐵) = 𝐹)

Proof of Theorem fnresdmss
StepHypRef Expression
1 fnrel 6683 . 2 (𝐹 Fn 𝐴 → Rel 𝐹)
2 fndm 6684 . . . 4 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
32adantr 480 . . 3 ((𝐹 Fn 𝐴𝐴𝐵) → dom 𝐹 = 𝐴)
4 simpr 484 . . 3 ((𝐹 Fn 𝐴𝐴𝐵) → 𝐴𝐵)
53, 4eqsstrd 4047 . 2 ((𝐹 Fn 𝐴𝐴𝐵) → dom 𝐹𝐵)
6 relssres 6053 . 2 ((Rel 𝐹 ∧ dom 𝐹𝐵) → (𝐹𝐵) = 𝐹)
71, 5, 6syl2an2r 684 1 ((𝐹 Fn 𝐴𝐴𝐵) → (𝐹𝐵) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wss 3976  dom cdm 5700  cres 5702  Rel wrel 5705   Fn wfn 6570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-dm 5710  df-res 5712  df-fun 6577  df-fn 6578
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator