Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnresdmss Structured version   Visualization version   GIF version

Theorem fnresdmss 42377
Description: A function does not change when restricted to a set that contains its domain. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
fnresdmss ((𝐹 Fn 𝐴𝐴𝐵) → (𝐹𝐵) = 𝐹)

Proof of Theorem fnresdmss
StepHypRef Expression
1 fnrel 6480 . 2 (𝐹 Fn 𝐴 → Rel 𝐹)
2 fndm 6481 . . . 4 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
32adantr 484 . . 3 ((𝐹 Fn 𝐴𝐴𝐵) → dom 𝐹 = 𝐴)
4 simpr 488 . . 3 ((𝐹 Fn 𝐴𝐴𝐵) → 𝐴𝐵)
53, 4eqsstrd 3939 . 2 ((𝐹 Fn 𝐴𝐴𝐵) → dom 𝐹𝐵)
6 relssres 5892 . 2 ((Rel 𝐹 ∧ dom 𝐹𝐵) → (𝐹𝐵) = 𝐹)
71, 5, 6syl2an2r 685 1 ((𝐹 Fn 𝐴𝐴𝐵) → (𝐹𝐵) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wss 3866  dom cdm 5551  cres 5553  Rel wrel 5556   Fn wfn 6375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pr 5322
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-br 5054  df-opab 5116  df-xp 5557  df-rel 5558  df-dm 5561  df-res 5563  df-fun 6382  df-fn 6383
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator