Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnresdmss Structured version   Visualization version   GIF version

Theorem fnresdmss 45162
Description: A function does not change when restricted to a set that contains its domain. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
fnresdmss ((𝐹 Fn 𝐴𝐴𝐵) → (𝐹𝐵) = 𝐹)

Proof of Theorem fnresdmss
StepHypRef Expression
1 fnrel 6620 . 2 (𝐹 Fn 𝐴 → Rel 𝐹)
2 fndm 6621 . . . 4 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
32adantr 480 . . 3 ((𝐹 Fn 𝐴𝐴𝐵) → dom 𝐹 = 𝐴)
4 simpr 484 . . 3 ((𝐹 Fn 𝐴𝐴𝐵) → 𝐴𝐵)
53, 4eqsstrd 3981 . 2 ((𝐹 Fn 𝐴𝐴𝐵) → dom 𝐹𝐵)
6 relssres 5993 . 2 ((Rel 𝐹 ∧ dom 𝐹𝐵) → (𝐹𝐵) = 𝐹)
71, 5, 6syl2an2r 685 1 ((𝐹 Fn 𝐴𝐴𝐵) → (𝐹𝐵) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wss 3914  dom cdm 5638  cres 5640  Rel wrel 5643   Fn wfn 6506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-xp 5644  df-rel 5645  df-dm 5648  df-res 5650  df-fun 6513  df-fn 6514
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator