| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fnresdmss | Structured version Visualization version GIF version | ||
| Description: A function does not change when restricted to a set that contains its domain. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| fnresdmss | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ⊆ 𝐵) → (𝐹 ↾ 𝐵) = 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnrel 6620 | . 2 ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) | |
| 2 | fndm 6621 | . . . 4 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
| 3 | 2 | adantr 480 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ⊆ 𝐵) → dom 𝐹 = 𝐴) |
| 4 | simpr 484 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ⊆ 𝐵) → 𝐴 ⊆ 𝐵) | |
| 5 | 3, 4 | eqsstrd 3981 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ⊆ 𝐵) → dom 𝐹 ⊆ 𝐵) |
| 6 | relssres 5993 | . 2 ⊢ ((Rel 𝐹 ∧ dom 𝐹 ⊆ 𝐵) → (𝐹 ↾ 𝐵) = 𝐹) | |
| 7 | 1, 5, 6 | syl2an2r 685 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ⊆ 𝐵) → (𝐹 ↾ 𝐵) = 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ⊆ wss 3914 dom cdm 5638 ↾ cres 5640 Rel wrel 5643 Fn wfn 6506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-dm 5648 df-res 5650 df-fun 6513 df-fn 6514 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |