| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fnresdmss | Structured version Visualization version GIF version | ||
| Description: A function does not change when restricted to a set that contains its domain. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| fnresdmss | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ⊆ 𝐵) → (𝐹 ↾ 𝐵) = 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnrel 6583 | . 2 ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) | |
| 2 | fndm 6584 | . . . 4 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
| 3 | 2 | adantr 480 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ⊆ 𝐵) → dom 𝐹 = 𝐴) |
| 4 | simpr 484 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ⊆ 𝐵) → 𝐴 ⊆ 𝐵) | |
| 5 | 3, 4 | eqsstrd 3964 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ⊆ 𝐵) → dom 𝐹 ⊆ 𝐵) |
| 6 | relssres 5970 | . 2 ⊢ ((Rel 𝐹 ∧ dom 𝐹 ⊆ 𝐵) → (𝐹 ↾ 𝐵) = 𝐹) | |
| 7 | 1, 5, 6 | syl2an2r 685 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ⊆ 𝐵) → (𝐹 ↾ 𝐵) = 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ⊆ wss 3897 dom cdm 5614 ↾ cres 5616 Rel wrel 5619 Fn wfn 6476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-xp 5620 df-rel 5621 df-dm 5624 df-res 5626 df-fun 6483 df-fn 6484 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |