Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnresdmss Structured version   Visualization version   GIF version

Theorem fnresdmss 45106
Description: A function does not change when restricted to a set that contains its domain. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
fnresdmss ((𝐹 Fn 𝐴𝐴𝐵) → (𝐹𝐵) = 𝐹)

Proof of Theorem fnresdmss
StepHypRef Expression
1 fnrel 6649 . 2 (𝐹 Fn 𝐴 → Rel 𝐹)
2 fndm 6650 . . . 4 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
32adantr 480 . . 3 ((𝐹 Fn 𝐴𝐴𝐵) → dom 𝐹 = 𝐴)
4 simpr 484 . . 3 ((𝐹 Fn 𝐴𝐴𝐵) → 𝐴𝐵)
53, 4eqsstrd 3998 . 2 ((𝐹 Fn 𝐴𝐴𝐵) → dom 𝐹𝐵)
6 relssres 6020 . 2 ((Rel 𝐹 ∧ dom 𝐹𝐵) → (𝐹𝐵) = 𝐹)
71, 5, 6syl2an2r 685 1 ((𝐹 Fn 𝐴𝐴𝐵) → (𝐹𝐵) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wss 3931  dom cdm 5665  cres 5667  Rel wrel 5670   Fn wfn 6535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5124  df-opab 5186  df-xp 5671  df-rel 5672  df-dm 5675  df-res 5677  df-fun 6542  df-fn 6543
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator