| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fnresdmss | Structured version Visualization version GIF version | ||
| Description: A function does not change when restricted to a set that contains its domain. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| fnresdmss | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ⊆ 𝐵) → (𝐹 ↾ 𝐵) = 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnrel 6649 | . 2 ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) | |
| 2 | fndm 6650 | . . . 4 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
| 3 | 2 | adantr 480 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ⊆ 𝐵) → dom 𝐹 = 𝐴) |
| 4 | simpr 484 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ⊆ 𝐵) → 𝐴 ⊆ 𝐵) | |
| 5 | 3, 4 | eqsstrd 3998 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ⊆ 𝐵) → dom 𝐹 ⊆ 𝐵) |
| 6 | relssres 6020 | . 2 ⊢ ((Rel 𝐹 ∧ dom 𝐹 ⊆ 𝐵) → (𝐹 ↾ 𝐵) = 𝐹) | |
| 7 | 1, 5, 6 | syl2an2r 685 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ⊆ 𝐵) → (𝐹 ↾ 𝐵) = 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ⊆ wss 3931 dom cdm 5665 ↾ cres 5667 Rel wrel 5670 Fn wfn 6535 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5124 df-opab 5186 df-xp 5671 df-rel 5672 df-dm 5675 df-res 5677 df-fun 6542 df-fn 6543 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |