MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resfnfinfin Structured version   Visualization version   GIF version

Theorem resfnfinfin 9029
Description: The restriction of a function to a finite set is finite. (Contributed by Alexander van der Vekens, 3-Feb-2018.)
Assertion
Ref Expression
resfnfinfin ((𝐹 Fn 𝐴𝐵 ∈ Fin) → (𝐹𝐵) ∈ Fin)

Proof of Theorem resfnfinfin
StepHypRef Expression
1 fnrel 6519 . . . 4 (𝐹 Fn 𝐴 → Rel 𝐹)
21adantr 480 . . 3 ((𝐹 Fn 𝐴𝐵 ∈ Fin) → Rel 𝐹)
3 resindm 5929 . . . 4 (Rel 𝐹 → (𝐹 ↾ (𝐵 ∩ dom 𝐹)) = (𝐹𝐵))
43eqcomd 2744 . . 3 (Rel 𝐹 → (𝐹𝐵) = (𝐹 ↾ (𝐵 ∩ dom 𝐹)))
52, 4syl 17 . 2 ((𝐹 Fn 𝐴𝐵 ∈ Fin) → (𝐹𝐵) = (𝐹 ↾ (𝐵 ∩ dom 𝐹)))
6 fnfun 6517 . . . . 5 (𝐹 Fn 𝐴 → Fun 𝐹)
76funfnd 6449 . . . 4 (𝐹 Fn 𝐴𝐹 Fn dom 𝐹)
8 fnresin2 6542 . . . 4 (𝐹 Fn dom 𝐹 → (𝐹 ↾ (𝐵 ∩ dom 𝐹)) Fn (𝐵 ∩ dom 𝐹))
9 infi 8972 . . . . . 6 (𝐵 ∈ Fin → (𝐵 ∩ dom 𝐹) ∈ Fin)
10 fnfi 8925 . . . . . 6 (((𝐹 ↾ (𝐵 ∩ dom 𝐹)) Fn (𝐵 ∩ dom 𝐹) ∧ (𝐵 ∩ dom 𝐹) ∈ Fin) → (𝐹 ↾ (𝐵 ∩ dom 𝐹)) ∈ Fin)
119, 10sylan2 592 . . . . 5 (((𝐹 ↾ (𝐵 ∩ dom 𝐹)) Fn (𝐵 ∩ dom 𝐹) ∧ 𝐵 ∈ Fin) → (𝐹 ↾ (𝐵 ∩ dom 𝐹)) ∈ Fin)
1211ex 412 . . . 4 ((𝐹 ↾ (𝐵 ∩ dom 𝐹)) Fn (𝐵 ∩ dom 𝐹) → (𝐵 ∈ Fin → (𝐹 ↾ (𝐵 ∩ dom 𝐹)) ∈ Fin))
137, 8, 123syl 18 . . 3 (𝐹 Fn 𝐴 → (𝐵 ∈ Fin → (𝐹 ↾ (𝐵 ∩ dom 𝐹)) ∈ Fin))
1413imp 406 . 2 ((𝐹 Fn 𝐴𝐵 ∈ Fin) → (𝐹 ↾ (𝐵 ∩ dom 𝐹)) ∈ Fin)
155, 14eqeltrd 2839 1 ((𝐹 Fn 𝐴𝐵 ∈ Fin) → (𝐹𝐵) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  cin 3882  dom cdm 5580  cres 5582  Rel wrel 5585   Fn wfn 6413  Fincfn 8691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-om 7688  df-1o 8267  df-en 8692  df-fin 8695
This theorem is referenced by:  residfi  9030  itg1addlem4  24768  gsumhashmul  31218  pthhashvtx  32989
  Copyright terms: Public domain W3C validator