MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resfnfinfin Structured version   Visualization version   GIF version

Theorem resfnfinfin 8515
Description: The restriction of a function to a finite set is finite. (Contributed by Alexander van der Vekens, 3-Feb-2018.)
Assertion
Ref Expression
resfnfinfin ((𝐹 Fn 𝐴𝐵 ∈ Fin) → (𝐹𝐵) ∈ Fin)

Proof of Theorem resfnfinfin
StepHypRef Expression
1 fnrel 6222 . . . 4 (𝐹 Fn 𝐴 → Rel 𝐹)
21adantr 474 . . 3 ((𝐹 Fn 𝐴𝐵 ∈ Fin) → Rel 𝐹)
3 resindm 5681 . . . 4 (Rel 𝐹 → (𝐹 ↾ (𝐵 ∩ dom 𝐹)) = (𝐹𝐵))
43eqcomd 2831 . . 3 (Rel 𝐹 → (𝐹𝐵) = (𝐹 ↾ (𝐵 ∩ dom 𝐹)))
52, 4syl 17 . 2 ((𝐹 Fn 𝐴𝐵 ∈ Fin) → (𝐹𝐵) = (𝐹 ↾ (𝐵 ∩ dom 𝐹)))
6 fnfun 6221 . . . . 5 (𝐹 Fn 𝐴 → Fun 𝐹)
7 funfn 6153 . . . . 5 (Fun 𝐹𝐹 Fn dom 𝐹)
86, 7sylib 210 . . . 4 (𝐹 Fn 𝐴𝐹 Fn dom 𝐹)
9 fnresin2 6239 . . . 4 (𝐹 Fn dom 𝐹 → (𝐹 ↾ (𝐵 ∩ dom 𝐹)) Fn (𝐵 ∩ dom 𝐹))
10 infi 8453 . . . . . 6 (𝐵 ∈ Fin → (𝐵 ∩ dom 𝐹) ∈ Fin)
11 fnfi 8507 . . . . . 6 (((𝐹 ↾ (𝐵 ∩ dom 𝐹)) Fn (𝐵 ∩ dom 𝐹) ∧ (𝐵 ∩ dom 𝐹) ∈ Fin) → (𝐹 ↾ (𝐵 ∩ dom 𝐹)) ∈ Fin)
1210, 11sylan2 588 . . . . 5 (((𝐹 ↾ (𝐵 ∩ dom 𝐹)) Fn (𝐵 ∩ dom 𝐹) ∧ 𝐵 ∈ Fin) → (𝐹 ↾ (𝐵 ∩ dom 𝐹)) ∈ Fin)
1312ex 403 . . . 4 ((𝐹 ↾ (𝐵 ∩ dom 𝐹)) Fn (𝐵 ∩ dom 𝐹) → (𝐵 ∈ Fin → (𝐹 ↾ (𝐵 ∩ dom 𝐹)) ∈ Fin))
148, 9, 133syl 18 . . 3 (𝐹 Fn 𝐴 → (𝐵 ∈ Fin → (𝐹 ↾ (𝐵 ∩ dom 𝐹)) ∈ Fin))
1514imp 397 . 2 ((𝐹 Fn 𝐴𝐵 ∈ Fin) → (𝐹 ↾ (𝐵 ∩ dom 𝐹)) ∈ Fin)
165, 15eqeltrd 2906 1 ((𝐹 Fn 𝐴𝐵 ∈ Fin) → (𝐹𝐵) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1658  wcel 2166  cin 3797  dom cdm 5342  cres 5344  Rel wrel 5347  Fun wfun 6117   Fn wfn 6118  Fincfn 8222
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-1o 7826  df-oadd 7830  df-er 8009  df-en 8223  df-fin 8226
This theorem is referenced by:  residfi  8516
  Copyright terms: Public domain W3C validator