Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > resfnfinfin | Structured version Visualization version GIF version |
Description: The restriction of a function to a finite set is finite. (Contributed by Alexander van der Vekens, 3-Feb-2018.) |
Ref | Expression |
---|---|
resfnfinfin | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ Fin) → (𝐹 ↾ 𝐵) ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnrel 6480 | . . . 4 ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) | |
2 | 1 | adantr 484 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ Fin) → Rel 𝐹) |
3 | resindm 5900 | . . . 4 ⊢ (Rel 𝐹 → (𝐹 ↾ (𝐵 ∩ dom 𝐹)) = (𝐹 ↾ 𝐵)) | |
4 | 3 | eqcomd 2743 | . . 3 ⊢ (Rel 𝐹 → (𝐹 ↾ 𝐵) = (𝐹 ↾ (𝐵 ∩ dom 𝐹))) |
5 | 2, 4 | syl 17 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ Fin) → (𝐹 ↾ 𝐵) = (𝐹 ↾ (𝐵 ∩ dom 𝐹))) |
6 | fnfun 6479 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
7 | 6 | funfnd 6411 | . . . 4 ⊢ (𝐹 Fn 𝐴 → 𝐹 Fn dom 𝐹) |
8 | fnresin2 6503 | . . . 4 ⊢ (𝐹 Fn dom 𝐹 → (𝐹 ↾ (𝐵 ∩ dom 𝐹)) Fn (𝐵 ∩ dom 𝐹)) | |
9 | infi 8899 | . . . . . 6 ⊢ (𝐵 ∈ Fin → (𝐵 ∩ dom 𝐹) ∈ Fin) | |
10 | fnfi 8858 | . . . . . 6 ⊢ (((𝐹 ↾ (𝐵 ∩ dom 𝐹)) Fn (𝐵 ∩ dom 𝐹) ∧ (𝐵 ∩ dom 𝐹) ∈ Fin) → (𝐹 ↾ (𝐵 ∩ dom 𝐹)) ∈ Fin) | |
11 | 9, 10 | sylan2 596 | . . . . 5 ⊢ (((𝐹 ↾ (𝐵 ∩ dom 𝐹)) Fn (𝐵 ∩ dom 𝐹) ∧ 𝐵 ∈ Fin) → (𝐹 ↾ (𝐵 ∩ dom 𝐹)) ∈ Fin) |
12 | 11 | ex 416 | . . . 4 ⊢ ((𝐹 ↾ (𝐵 ∩ dom 𝐹)) Fn (𝐵 ∩ dom 𝐹) → (𝐵 ∈ Fin → (𝐹 ↾ (𝐵 ∩ dom 𝐹)) ∈ Fin)) |
13 | 7, 8, 12 | 3syl 18 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝐵 ∈ Fin → (𝐹 ↾ (𝐵 ∩ dom 𝐹)) ∈ Fin)) |
14 | 13 | imp 410 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ Fin) → (𝐹 ↾ (𝐵 ∩ dom 𝐹)) ∈ Fin) |
15 | 5, 14 | eqeltrd 2838 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ Fin) → (𝐹 ↾ 𝐵) ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ∩ cin 3865 dom cdm 5551 ↾ cres 5553 Rel wrel 5556 Fn wfn 6375 Fincfn 8626 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-om 7645 df-1o 8202 df-en 8627 df-fin 8630 |
This theorem is referenced by: residfi 8957 itg1addlem4 24596 gsumhashmul 31035 pthhashvtx 32802 |
Copyright terms: Public domain | W3C validator |