Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  resfnfinfin Structured version   Visualization version   GIF version

Theorem resfnfinfin 8803
 Description: The restriction of a function to a finite set is finite. (Contributed by Alexander van der Vekens, 3-Feb-2018.)
Assertion
Ref Expression
resfnfinfin ((𝐹 Fn 𝐴𝐵 ∈ Fin) → (𝐹𝐵) ∈ Fin)

Proof of Theorem resfnfinfin
StepHypRef Expression
1 fnrel 6429 . . . 4 (𝐹 Fn 𝐴 → Rel 𝐹)
21adantr 484 . . 3 ((𝐹 Fn 𝐴𝐵 ∈ Fin) → Rel 𝐹)
3 resindm 5870 . . . 4 (Rel 𝐹 → (𝐹 ↾ (𝐵 ∩ dom 𝐹)) = (𝐹𝐵))
43eqcomd 2804 . . 3 (Rel 𝐹 → (𝐹𝐵) = (𝐹 ↾ (𝐵 ∩ dom 𝐹)))
52, 4syl 17 . 2 ((𝐹 Fn 𝐴𝐵 ∈ Fin) → (𝐹𝐵) = (𝐹 ↾ (𝐵 ∩ dom 𝐹)))
6 fnfun 6428 . . . . 5 (𝐹 Fn 𝐴 → Fun 𝐹)
76funfnd 6360 . . . 4 (𝐹 Fn 𝐴𝐹 Fn dom 𝐹)
8 fnresin2 6450 . . . 4 (𝐹 Fn dom 𝐹 → (𝐹 ↾ (𝐵 ∩ dom 𝐹)) Fn (𝐵 ∩ dom 𝐹))
9 infi 8741 . . . . . 6 (𝐵 ∈ Fin → (𝐵 ∩ dom 𝐹) ∈ Fin)
10 fnfi 8795 . . . . . 6 (((𝐹 ↾ (𝐵 ∩ dom 𝐹)) Fn (𝐵 ∩ dom 𝐹) ∧ (𝐵 ∩ dom 𝐹) ∈ Fin) → (𝐹 ↾ (𝐵 ∩ dom 𝐹)) ∈ Fin)
119, 10sylan2 595 . . . . 5 (((𝐹 ↾ (𝐵 ∩ dom 𝐹)) Fn (𝐵 ∩ dom 𝐹) ∧ 𝐵 ∈ Fin) → (𝐹 ↾ (𝐵 ∩ dom 𝐹)) ∈ Fin)
1211ex 416 . . . 4 ((𝐹 ↾ (𝐵 ∩ dom 𝐹)) Fn (𝐵 ∩ dom 𝐹) → (𝐵 ∈ Fin → (𝐹 ↾ (𝐵 ∩ dom 𝐹)) ∈ Fin))
137, 8, 123syl 18 . . 3 (𝐹 Fn 𝐴 → (𝐵 ∈ Fin → (𝐹 ↾ (𝐵 ∩ dom 𝐹)) ∈ Fin))
1413imp 410 . 2 ((𝐹 Fn 𝐴𝐵 ∈ Fin) → (𝐹 ↾ (𝐵 ∩ dom 𝐹)) ∈ Fin)
155, 14eqeltrd 2890 1 ((𝐹 Fn 𝐴𝐵 ∈ Fin) → (𝐹𝐵) ∈ Fin)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2111   ∩ cin 3881  dom cdm 5522   ↾ cres 5524  Rel wrel 5527   Fn wfn 6324  Fincfn 8507 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7451 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3722  df-csb 3830  df-dif 3885  df-un 3887  df-in 3889  df-ss 3899  df-pss 3901  df-nul 4246  df-if 4428  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5441  df-so 5442  df-fr 5481  df-we 5483  df-xp 5528  df-rel 5529  df-cnv 5530  df-co 5531  df-dm 5532  df-rn 5533  df-res 5534  df-ima 5535  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6288  df-fun 6331  df-fn 6332  df-f 6333  df-f1 6334  df-fo 6335  df-f1o 6336  df-fv 6337  df-ov 7145  df-oprab 7146  df-mpo 7147  df-om 7571  df-wrecs 7945  df-recs 8006  df-rdg 8044  df-1o 8100  df-oadd 8104  df-er 8287  df-en 8508  df-fin 8511 This theorem is referenced by:  residfi  8804  gsumhashmul  30787  pthhashvtx  32550
 Copyright terms: Public domain W3C validator