| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resfnfinfin | Structured version Visualization version GIF version | ||
| Description: The restriction of a function to a finite set is finite. (Contributed by Alexander van der Vekens, 3-Feb-2018.) |
| Ref | Expression |
|---|---|
| resfnfinfin | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ Fin) → (𝐹 ↾ 𝐵) ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnrel 6602 | . . . 4 ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) | |
| 2 | 1 | adantr 480 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ Fin) → Rel 𝐹) |
| 3 | resindm 5990 | . . . 4 ⊢ (Rel 𝐹 → (𝐹 ↾ (𝐵 ∩ dom 𝐹)) = (𝐹 ↾ 𝐵)) | |
| 4 | 3 | eqcomd 2735 | . . 3 ⊢ (Rel 𝐹 → (𝐹 ↾ 𝐵) = (𝐹 ↾ (𝐵 ∩ dom 𝐹))) |
| 5 | 2, 4 | syl 17 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ Fin) → (𝐹 ↾ 𝐵) = (𝐹 ↾ (𝐵 ∩ dom 𝐹))) |
| 6 | fnfun 6600 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
| 7 | 6 | funfnd 6531 | . . . 4 ⊢ (𝐹 Fn 𝐴 → 𝐹 Fn dom 𝐹) |
| 8 | fnresin2 6626 | . . . 4 ⊢ (𝐹 Fn dom 𝐹 → (𝐹 ↾ (𝐵 ∩ dom 𝐹)) Fn (𝐵 ∩ dom 𝐹)) | |
| 9 | infi 9189 | . . . . . 6 ⊢ (𝐵 ∈ Fin → (𝐵 ∩ dom 𝐹) ∈ Fin) | |
| 10 | fnfi 9119 | . . . . . 6 ⊢ (((𝐹 ↾ (𝐵 ∩ dom 𝐹)) Fn (𝐵 ∩ dom 𝐹) ∧ (𝐵 ∩ dom 𝐹) ∈ Fin) → (𝐹 ↾ (𝐵 ∩ dom 𝐹)) ∈ Fin) | |
| 11 | 9, 10 | sylan2 593 | . . . . 5 ⊢ (((𝐹 ↾ (𝐵 ∩ dom 𝐹)) Fn (𝐵 ∩ dom 𝐹) ∧ 𝐵 ∈ Fin) → (𝐹 ↾ (𝐵 ∩ dom 𝐹)) ∈ Fin) |
| 12 | 11 | ex 412 | . . . 4 ⊢ ((𝐹 ↾ (𝐵 ∩ dom 𝐹)) Fn (𝐵 ∩ dom 𝐹) → (𝐵 ∈ Fin → (𝐹 ↾ (𝐵 ∩ dom 𝐹)) ∈ Fin)) |
| 13 | 7, 8, 12 | 3syl 18 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝐵 ∈ Fin → (𝐹 ↾ (𝐵 ∩ dom 𝐹)) ∈ Fin)) |
| 14 | 13 | imp 406 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ Fin) → (𝐹 ↾ (𝐵 ∩ dom 𝐹)) ∈ Fin) |
| 15 | 5, 14 | eqeltrd 2828 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ Fin) → (𝐹 ↾ 𝐵) ∈ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∩ cin 3910 dom cdm 5631 ↾ cres 5633 Rel wrel 5636 Fn wfn 6494 Fincfn 8895 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-om 7823 df-1o 8411 df-en 8896 df-fin 8899 |
| This theorem is referenced by: residfi 9265 itg1addlem4 25576 gsumhashmul 32974 pthhashvtx 35088 imadomfi 41963 |
| Copyright terms: Public domain | W3C validator |