| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resfnfinfin | Structured version Visualization version GIF version | ||
| Description: The restriction of a function to a finite set is finite. (Contributed by Alexander van der Vekens, 3-Feb-2018.) |
| Ref | Expression |
|---|---|
| resfnfinfin | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ Fin) → (𝐹 ↾ 𝐵) ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnrel 6583 | . . . 4 ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) | |
| 2 | 1 | adantr 480 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ Fin) → Rel 𝐹) |
| 3 | resindm 5978 | . . . 4 ⊢ (Rel 𝐹 → (𝐹 ↾ (𝐵 ∩ dom 𝐹)) = (𝐹 ↾ 𝐵)) | |
| 4 | 3 | eqcomd 2737 | . . 3 ⊢ (Rel 𝐹 → (𝐹 ↾ 𝐵) = (𝐹 ↾ (𝐵 ∩ dom 𝐹))) |
| 5 | 2, 4 | syl 17 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ Fin) → (𝐹 ↾ 𝐵) = (𝐹 ↾ (𝐵 ∩ dom 𝐹))) |
| 6 | fnfun 6581 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
| 7 | 6 | funfnd 6512 | . . . 4 ⊢ (𝐹 Fn 𝐴 → 𝐹 Fn dom 𝐹) |
| 8 | fnresin2 6607 | . . . 4 ⊢ (𝐹 Fn dom 𝐹 → (𝐹 ↾ (𝐵 ∩ dom 𝐹)) Fn (𝐵 ∩ dom 𝐹)) | |
| 9 | infi 9154 | . . . . . 6 ⊢ (𝐵 ∈ Fin → (𝐵 ∩ dom 𝐹) ∈ Fin) | |
| 10 | fnfi 9087 | . . . . . 6 ⊢ (((𝐹 ↾ (𝐵 ∩ dom 𝐹)) Fn (𝐵 ∩ dom 𝐹) ∧ (𝐵 ∩ dom 𝐹) ∈ Fin) → (𝐹 ↾ (𝐵 ∩ dom 𝐹)) ∈ Fin) | |
| 11 | 9, 10 | sylan2 593 | . . . . 5 ⊢ (((𝐹 ↾ (𝐵 ∩ dom 𝐹)) Fn (𝐵 ∩ dom 𝐹) ∧ 𝐵 ∈ Fin) → (𝐹 ↾ (𝐵 ∩ dom 𝐹)) ∈ Fin) |
| 12 | 11 | ex 412 | . . . 4 ⊢ ((𝐹 ↾ (𝐵 ∩ dom 𝐹)) Fn (𝐵 ∩ dom 𝐹) → (𝐵 ∈ Fin → (𝐹 ↾ (𝐵 ∩ dom 𝐹)) ∈ Fin)) |
| 13 | 7, 8, 12 | 3syl 18 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝐵 ∈ Fin → (𝐹 ↾ (𝐵 ∩ dom 𝐹)) ∈ Fin)) |
| 14 | 13 | imp 406 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ Fin) → (𝐹 ↾ (𝐵 ∩ dom 𝐹)) ∈ Fin) |
| 15 | 5, 14 | eqeltrd 2831 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ Fin) → (𝐹 ↾ 𝐵) ∈ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∩ cin 3896 dom cdm 5614 ↾ cres 5616 Rel wrel 5619 Fn wfn 6476 Fincfn 8869 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-om 7797 df-1o 8385 df-en 8870 df-fin 8873 |
| This theorem is referenced by: residfi 9222 itg1addlem4 25627 gsumhashmul 33041 pthhashvtx 35172 imadomfi 42043 |
| Copyright terms: Public domain | W3C validator |