| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resfifsupp | Structured version Visualization version GIF version | ||
| Description: The restriction of a function to a finite set is finitely supported. (Contributed by AV, 12-Dec-2019.) |
| Ref | Expression |
|---|---|
| resfifsupp.f | ⊢ (𝜑 → Fun 𝐹) |
| resfifsupp.x | ⊢ (𝜑 → 𝑋 ∈ Fin) |
| resfifsupp.z | ⊢ (𝜑 → 𝑍 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| resfifsupp | ⊢ (𝜑 → (𝐹 ↾ 𝑋) finSupp 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resfifsupp.f | . . . 4 ⊢ (𝜑 → Fun 𝐹) | |
| 2 | funrel 6536 | . . . 4 ⊢ (Fun 𝐹 → Rel 𝐹) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → Rel 𝐹) |
| 4 | resindm 6004 | . . 3 ⊢ (Rel 𝐹 → (𝐹 ↾ (𝑋 ∩ dom 𝐹)) = (𝐹 ↾ 𝑋)) | |
| 5 | 3, 4 | syl 17 | . 2 ⊢ (𝜑 → (𝐹 ↾ (𝑋 ∩ dom 𝐹)) = (𝐹 ↾ 𝑋)) |
| 6 | 1 | funfnd 6550 | . . . 4 ⊢ (𝜑 → 𝐹 Fn dom 𝐹) |
| 7 | fnresin2 6647 | . . . 4 ⊢ (𝐹 Fn dom 𝐹 → (𝐹 ↾ (𝑋 ∩ dom 𝐹)) Fn (𝑋 ∩ dom 𝐹)) | |
| 8 | 6, 7 | syl 17 | . . 3 ⊢ (𝜑 → (𝐹 ↾ (𝑋 ∩ dom 𝐹)) Fn (𝑋 ∩ dom 𝐹)) |
| 9 | resfifsupp.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
| 10 | infi 9220 | . . . 4 ⊢ (𝑋 ∈ Fin → (𝑋 ∩ dom 𝐹) ∈ Fin) | |
| 11 | 9, 10 | syl 17 | . . 3 ⊢ (𝜑 → (𝑋 ∩ dom 𝐹) ∈ Fin) |
| 12 | resfifsupp.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝑉) | |
| 13 | 8, 11, 12 | fndmfifsupp 9336 | . 2 ⊢ (𝜑 → (𝐹 ↾ (𝑋 ∩ dom 𝐹)) finSupp 𝑍) |
| 14 | 5, 13 | eqbrtrrd 5134 | 1 ⊢ (𝜑 → (𝐹 ↾ 𝑋) finSupp 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∩ cin 3916 class class class wbr 5110 dom cdm 5641 ↾ cres 5643 Rel wrel 5646 Fun wfun 6508 Fn wfn 6509 Fincfn 8921 finSupp cfsupp 9319 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-supp 8143 df-1o 8437 df-en 8922 df-fin 8925 df-fsupp 9320 |
| This theorem is referenced by: xrge0tsmsd 33009 ply1degltdimlem 33625 |
| Copyright terms: Public domain | W3C validator |