Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  resfifsupp Structured version   Visualization version   GIF version

Theorem resfifsupp 8593
 Description: The restriction of a function to a finite set is finitely supported. (Contributed by AV, 12-Dec-2019.)
Hypotheses
Ref Expression
resfifsupp.f (𝜑 → Fun 𝐹)
resfifsupp.x (𝜑𝑋 ∈ Fin)
resfifsupp.z (𝜑𝑍𝑉)
Assertion
Ref Expression
resfifsupp (𝜑 → (𝐹𝑋) finSupp 𝑍)

Proof of Theorem resfifsupp
StepHypRef Expression
1 resfifsupp.f . . . 4 (𝜑 → Fun 𝐹)
2 funrel 6154 . . . 4 (Fun 𝐹 → Rel 𝐹)
31, 2syl 17 . . 3 (𝜑 → Rel 𝐹)
4 resindm 5696 . . 3 (Rel 𝐹 → (𝐹 ↾ (𝑋 ∩ dom 𝐹)) = (𝐹𝑋))
53, 4syl 17 . 2 (𝜑 → (𝐹 ↾ (𝑋 ∩ dom 𝐹)) = (𝐹𝑋))
61funfnd 6168 . . . 4 (𝜑𝐹 Fn dom 𝐹)
7 fnresin2 6254 . . . 4 (𝐹 Fn dom 𝐹 → (𝐹 ↾ (𝑋 ∩ dom 𝐹)) Fn (𝑋 ∩ dom 𝐹))
86, 7syl 17 . . 3 (𝜑 → (𝐹 ↾ (𝑋 ∩ dom 𝐹)) Fn (𝑋 ∩ dom 𝐹))
9 resfifsupp.x . . . 4 (𝜑𝑋 ∈ Fin)
10 infi 8474 . . . 4 (𝑋 ∈ Fin → (𝑋 ∩ dom 𝐹) ∈ Fin)
119, 10syl 17 . . 3 (𝜑 → (𝑋 ∩ dom 𝐹) ∈ Fin)
12 resfifsupp.z . . 3 (𝜑𝑍𝑉)
138, 11, 12fndmfifsupp 8578 . 2 (𝜑 → (𝐹 ↾ (𝑋 ∩ dom 𝐹)) finSupp 𝑍)
145, 13eqbrtrrd 4912 1 (𝜑 → (𝐹𝑋) finSupp 𝑍)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1601   ∈ wcel 2107   ∩ cin 3791   class class class wbr 4888  dom cdm 5357   ↾ cres 5359  Rel wrel 5362  Fun wfun 6131   Fn wfn 6132  Fincfn 8243   finSupp cfsupp 8565 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-om 7346  df-supp 7579  df-er 8028  df-en 8244  df-fin 8247  df-fsupp 8566 This theorem is referenced by:  xrge0tsmsd  30351
 Copyright terms: Public domain W3C validator