| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resfifsupp | Structured version Visualization version GIF version | ||
| Description: The restriction of a function to a finite set is finitely supported. (Contributed by AV, 12-Dec-2019.) |
| Ref | Expression |
|---|---|
| resfifsupp.f | ⊢ (𝜑 → Fun 𝐹) |
| resfifsupp.x | ⊢ (𝜑 → 𝑋 ∈ Fin) |
| resfifsupp.z | ⊢ (𝜑 → 𝑍 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| resfifsupp | ⊢ (𝜑 → (𝐹 ↾ 𝑋) finSupp 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resfifsupp.f | . . . 4 ⊢ (𝜑 → Fun 𝐹) | |
| 2 | funrel 6503 | . . . 4 ⊢ (Fun 𝐹 → Rel 𝐹) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → Rel 𝐹) |
| 4 | resindm 5983 | . . 3 ⊢ (Rel 𝐹 → (𝐹 ↾ (𝑋 ∩ dom 𝐹)) = (𝐹 ↾ 𝑋)) | |
| 5 | 3, 4 | syl 17 | . 2 ⊢ (𝜑 → (𝐹 ↾ (𝑋 ∩ dom 𝐹)) = (𝐹 ↾ 𝑋)) |
| 6 | 1 | funfnd 6517 | . . . 4 ⊢ (𝜑 → 𝐹 Fn dom 𝐹) |
| 7 | fnresin2 6612 | . . . 4 ⊢ (𝐹 Fn dom 𝐹 → (𝐹 ↾ (𝑋 ∩ dom 𝐹)) Fn (𝑋 ∩ dom 𝐹)) | |
| 8 | 6, 7 | syl 17 | . . 3 ⊢ (𝜑 → (𝐹 ↾ (𝑋 ∩ dom 𝐹)) Fn (𝑋 ∩ dom 𝐹)) |
| 9 | resfifsupp.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
| 10 | infi 9161 | . . . 4 ⊢ (𝑋 ∈ Fin → (𝑋 ∩ dom 𝐹) ∈ Fin) | |
| 11 | 9, 10 | syl 17 | . . 3 ⊢ (𝜑 → (𝑋 ∩ dom 𝐹) ∈ Fin) |
| 12 | resfifsupp.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝑉) | |
| 13 | 8, 11, 12 | fndmfifsupp 9269 | . 2 ⊢ (𝜑 → (𝐹 ↾ (𝑋 ∩ dom 𝐹)) finSupp 𝑍) |
| 14 | 5, 13 | eqbrtrrd 5117 | 1 ⊢ (𝜑 → (𝐹 ↾ 𝑋) finSupp 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ∩ cin 3897 class class class wbr 5093 dom cdm 5619 ↾ cres 5621 Rel wrel 5624 Fun wfun 6480 Fn wfn 6481 Fincfn 8875 finSupp cfsupp 9252 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-supp 8097 df-1o 8391 df-en 8876 df-fin 8879 df-fsupp 9253 |
| This theorem is referenced by: xrge0tsmsd 33049 ply1degltdimlem 33656 |
| Copyright terms: Public domain | W3C validator |