| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resfifsupp | Structured version Visualization version GIF version | ||
| Description: The restriction of a function to a finite set is finitely supported. (Contributed by AV, 12-Dec-2019.) |
| Ref | Expression |
|---|---|
| resfifsupp.f | ⊢ (𝜑 → Fun 𝐹) |
| resfifsupp.x | ⊢ (𝜑 → 𝑋 ∈ Fin) |
| resfifsupp.z | ⊢ (𝜑 → 𝑍 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| resfifsupp | ⊢ (𝜑 → (𝐹 ↾ 𝑋) finSupp 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resfifsupp.f | . . . 4 ⊢ (𝜑 → Fun 𝐹) | |
| 2 | funrel 6503 | . . . 4 ⊢ (Fun 𝐹 → Rel 𝐹) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → Rel 𝐹) |
| 4 | resindm 5985 | . . 3 ⊢ (Rel 𝐹 → (𝐹 ↾ (𝑋 ∩ dom 𝐹)) = (𝐹 ↾ 𝑋)) | |
| 5 | 3, 4 | syl 17 | . 2 ⊢ (𝜑 → (𝐹 ↾ (𝑋 ∩ dom 𝐹)) = (𝐹 ↾ 𝑋)) |
| 6 | 1 | funfnd 6517 | . . . 4 ⊢ (𝜑 → 𝐹 Fn dom 𝐹) |
| 7 | fnresin2 6612 | . . . 4 ⊢ (𝐹 Fn dom 𝐹 → (𝐹 ↾ (𝑋 ∩ dom 𝐹)) Fn (𝑋 ∩ dom 𝐹)) | |
| 8 | 6, 7 | syl 17 | . . 3 ⊢ (𝜑 → (𝐹 ↾ (𝑋 ∩ dom 𝐹)) Fn (𝑋 ∩ dom 𝐹)) |
| 9 | resfifsupp.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
| 10 | infi 9171 | . . . 4 ⊢ (𝑋 ∈ Fin → (𝑋 ∩ dom 𝐹) ∈ Fin) | |
| 11 | 9, 10 | syl 17 | . . 3 ⊢ (𝜑 → (𝑋 ∩ dom 𝐹) ∈ Fin) |
| 12 | resfifsupp.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝑉) | |
| 13 | 8, 11, 12 | fndmfifsupp 9287 | . 2 ⊢ (𝜑 → (𝐹 ↾ (𝑋 ∩ dom 𝐹)) finSupp 𝑍) |
| 14 | 5, 13 | eqbrtrrd 5119 | 1 ⊢ (𝜑 → (𝐹 ↾ 𝑋) finSupp 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∩ cin 3904 class class class wbr 5095 dom cdm 5623 ↾ cres 5625 Rel wrel 5628 Fun wfun 6480 Fn wfn 6481 Fincfn 8879 finSupp cfsupp 9270 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-supp 8101 df-1o 8395 df-en 8880 df-fin 8883 df-fsupp 9271 |
| This theorem is referenced by: xrge0tsmsd 33028 ply1degltdimlem 33597 |
| Copyright terms: Public domain | W3C validator |