MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resfifsupp Structured version   Visualization version   GIF version

Theorem resfifsupp 9420
Description: The restriction of a function to a finite set is finitely supported. (Contributed by AV, 12-Dec-2019.)
Hypotheses
Ref Expression
resfifsupp.f (𝜑 → Fun 𝐹)
resfifsupp.x (𝜑𝑋 ∈ Fin)
resfifsupp.z (𝜑𝑍𝑉)
Assertion
Ref Expression
resfifsupp (𝜑 → (𝐹𝑋) finSupp 𝑍)

Proof of Theorem resfifsupp
StepHypRef Expression
1 resfifsupp.f . . . 4 (𝜑 → Fun 𝐹)
2 funrel 6565 . . . 4 (Fun 𝐹 → Rel 𝐹)
31, 2syl 17 . . 3 (𝜑 → Rel 𝐹)
4 resindm 6029 . . 3 (Rel 𝐹 → (𝐹 ↾ (𝑋 ∩ dom 𝐹)) = (𝐹𝑋))
53, 4syl 17 . 2 (𝜑 → (𝐹 ↾ (𝑋 ∩ dom 𝐹)) = (𝐹𝑋))
61funfnd 6579 . . . 4 (𝜑𝐹 Fn dom 𝐹)
7 fnresin2 6676 . . . 4 (𝐹 Fn dom 𝐹 → (𝐹 ↾ (𝑋 ∩ dom 𝐹)) Fn (𝑋 ∩ dom 𝐹))
86, 7syl 17 . . 3 (𝜑 → (𝐹 ↾ (𝑋 ∩ dom 𝐹)) Fn (𝑋 ∩ dom 𝐹))
9 resfifsupp.x . . . 4 (𝜑𝑋 ∈ Fin)
10 infi 9291 . . . 4 (𝑋 ∈ Fin → (𝑋 ∩ dom 𝐹) ∈ Fin)
119, 10syl 17 . . 3 (𝜑 → (𝑋 ∩ dom 𝐹) ∈ Fin)
12 resfifsupp.z . . 3 (𝜑𝑍𝑉)
138, 11, 12fndmfifsupp 9401 . 2 (𝜑 → (𝐹 ↾ (𝑋 ∩ dom 𝐹)) finSupp 𝑍)
145, 13eqbrtrrd 5167 1 (𝜑 → (𝐹𝑋) finSupp 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  cin 3938   class class class wbr 5143  dom cdm 5672  cres 5674  Rel wrel 5677  Fun wfun 6537   Fn wfn 6538  Fincfn 8962   finSupp cfsupp 9385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pr 5423  ax-un 7738
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-pss 3959  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7419  df-oprab 7420  df-mpo 7421  df-om 7869  df-supp 8164  df-1o 8485  df-en 8963  df-fin 8966  df-fsupp 9386
This theorem is referenced by:  xrge0tsmsd  32816  ply1degltdimlem  33377
  Copyright terms: Public domain W3C validator