![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > frnvafv2v | Structured version Visualization version GIF version |
Description: If the codomain of a function is a set, the alternate function value is always also a set. (Contributed by AV, 4-Sep-2022.) |
Ref | Expression |
---|---|
frnvafv2v | ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐵 ∈ 𝑉) → (𝐹''''𝐶) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-f 6139 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
2 | ssexg 5041 | . . . . 5 ⊢ ((ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → ran 𝐹 ∈ V) | |
3 | 2 | ex 403 | . . . 4 ⊢ (ran 𝐹 ⊆ 𝐵 → (𝐵 ∈ 𝑉 → ran 𝐹 ∈ V)) |
4 | 1, 3 | simplbiim 500 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → (𝐵 ∈ 𝑉 → ran 𝐹 ∈ V)) |
5 | 4 | imp 397 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐵 ∈ 𝑉) → ran 𝐹 ∈ V) |
6 | afv2ex 42247 | . 2 ⊢ (ran 𝐹 ∈ V → (𝐹''''𝐶) ∈ V) | |
7 | 5, 6 | syl 17 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐵 ∈ 𝑉) → (𝐹''''𝐶) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∈ wcel 2106 Vcvv 3397 ⊆ wss 3791 ran crn 5356 Fn wfn 6130 ⟶wf 6131 ''''cafv2 42241 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-8 2108 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-un 7226 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ral 3094 df-rex 3095 df-v 3399 df-sbc 3652 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-nul 4141 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-uni 4672 df-iota 6099 df-f 6139 df-afv2 42242 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |