Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > frnvafv2v | Structured version Visualization version GIF version |
Description: If the codomain of a function is a set, the alternate function value is always also a set. (Contributed by AV, 4-Sep-2022.) |
Ref | Expression |
---|---|
frnvafv2v | ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐵 ∈ 𝑉) → (𝐹''''𝐶) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-f 6422 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
2 | ssexg 5242 | . . . . 5 ⊢ ((ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → ran 𝐹 ∈ V) | |
3 | 2 | ex 412 | . . . 4 ⊢ (ran 𝐹 ⊆ 𝐵 → (𝐵 ∈ 𝑉 → ran 𝐹 ∈ V)) |
4 | 1, 3 | simplbiim 504 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → (𝐵 ∈ 𝑉 → ran 𝐹 ∈ V)) |
5 | 4 | imp 406 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐵 ∈ 𝑉) → ran 𝐹 ∈ V) |
6 | afv2ex 44593 | . 2 ⊢ (ran 𝐹 ∈ V → (𝐹''''𝐶) ∈ V) | |
7 | 5, 6 | syl 17 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐵 ∈ 𝑉) → (𝐹''''𝐶) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 Vcvv 3422 ⊆ wss 3883 ran crn 5581 Fn wfn 6413 ⟶wf 6414 ''''cafv2 44587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-uni 4837 df-iota 6376 df-f 6422 df-afv2 44588 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |