Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frnvafv2v Structured version   Visualization version   GIF version

Theorem frnvafv2v 44615
Description: If the codomain of a function is a set, the alternate function value is always also a set. (Contributed by AV, 4-Sep-2022.)
Assertion
Ref Expression
frnvafv2v ((𝐹:𝐴𝐵𝐵𝑉) → (𝐹''''𝐶) ∈ V)

Proof of Theorem frnvafv2v
StepHypRef Expression
1 df-f 6422 . . . 4 (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐵))
2 ssexg 5242 . . . . 5 ((ran 𝐹𝐵𝐵𝑉) → ran 𝐹 ∈ V)
32ex 412 . . . 4 (ran 𝐹𝐵 → (𝐵𝑉 → ran 𝐹 ∈ V))
41, 3simplbiim 504 . . 3 (𝐹:𝐴𝐵 → (𝐵𝑉 → ran 𝐹 ∈ V))
54imp 406 . 2 ((𝐹:𝐴𝐵𝐵𝑉) → ran 𝐹 ∈ V)
6 afv2ex 44593 . 2 (ran 𝐹 ∈ V → (𝐹''''𝐶) ∈ V)
75, 6syl 17 1 ((𝐹:𝐴𝐵𝐵𝑉) → (𝐹''''𝐶) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  Vcvv 3422  wss 3883  ran crn 5581   Fn wfn 6413  wf 6414  ''''cafv2 44587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-uni 4837  df-iota 6376  df-f 6422  df-afv2 44588
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator