MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsetex Structured version   Visualization version   GIF version

Theorem fsetex 8664
Description: The set of functions between two classes exists if the codomain exists. Generalization of mapex 8641 to arbitrary domains. (Contributed by AV, 14-Aug-2024.)
Assertion
Ref Expression
fsetex (𝐵𝑉 → {𝑓𝑓:𝐴𝐵} ∈ V)
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓
Allowed substitution hint:   𝑉(𝑓)

Proof of Theorem fsetex
StepHypRef Expression
1 mapfset 8658 . 2 (𝐵𝑉 → {𝑓𝑓:𝐴𝐵} = (𝐵m 𝐴))
2 ovex 7328 . 2 (𝐵m 𝐴) ∈ V
31, 2eqeltrdi 2842 1 (𝐵𝑉 → {𝑓𝑓:𝐴𝐵} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2101  {cab 2710  Vcvv 3434  wf 6443  (class class class)co 7295  m cmap 8635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2103  ax-9 2111  ax-10 2132  ax-11 2149  ax-12 2166  ax-ext 2704  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7608
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2063  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2884  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3224  df-v 3436  df-sbc 3719  df-csb 3835  df-dif 3892  df-un 3894  df-in 3896  df-ss 3906  df-nul 4260  df-if 4463  df-pw 4538  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4842  df-iun 4929  df-br 5078  df-opab 5140  df-mpt 5161  df-id 5491  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-iota 6399  df-fun 6449  df-fn 6450  df-f 6451  df-fv 6455  df-ov 7298  df-oprab 7299  df-mpo 7300  df-1st 7851  df-2nd 7852  df-map 8637
This theorem is referenced by:  f1setex  8665  fsetcdmex  8671  fsetexb  8672
  Copyright terms: Public domain W3C validator