| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fset0 | Structured version Visualization version GIF version | ||
| Description: The set of functions from the empty set is the singleton containing the empty set. (Contributed by AV, 13-Sep-2024.) |
| Ref | Expression |
|---|---|
| fset0 | ⊢ {𝑓 ∣ 𝑓:∅⟶𝐵} = {∅} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f0bi 6711 | . . 3 ⊢ (𝑓:∅⟶𝐵 ↔ 𝑓 = ∅) | |
| 2 | 1 | abbii 2796 | . 2 ⊢ {𝑓 ∣ 𝑓:∅⟶𝐵} = {𝑓 ∣ 𝑓 = ∅} |
| 3 | df-sn 4580 | . 2 ⊢ {∅} = {𝑓 ∣ 𝑓 = ∅} | |
| 4 | 2, 3 | eqtr4i 2755 | 1 ⊢ {𝑓 ∣ 𝑓:∅⟶𝐵} = {∅} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 {cab 2707 ∅c0 4286 {csn 4579 ⟶wf 6482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-fun 6488 df-fn 6489 df-f 6490 |
| This theorem is referenced by: fsetexb 8798 |
| Copyright terms: Public domain | W3C validator |