MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fset0 Structured version   Visualization version   GIF version

Theorem fset0 8642
Description: The set of functions from the empty set is the singleton containing the empty set. (Contributed by AV, 13-Sep-2024.)
Assertion
Ref Expression
fset0 {𝑓𝑓:∅⟶𝐵} = {∅}

Proof of Theorem fset0
StepHypRef Expression
1 f0bi 6657 . . 3 (𝑓:∅⟶𝐵𝑓 = ∅)
21abbii 2808 . 2 {𝑓𝑓:∅⟶𝐵} = {𝑓𝑓 = ∅}
3 df-sn 4562 . 2 {∅} = {𝑓𝑓 = ∅}
42, 3eqtr4i 2769 1 {𝑓𝑓:∅⟶𝐵} = {∅}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  {cab 2715  c0 4256  {csn 4561  wf 6429
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-fun 6435  df-fn 6436  df-f 6437
This theorem is referenced by:  fsetexb  8652
  Copyright terms: Public domain W3C validator