MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fset0 Structured version   Visualization version   GIF version

Theorem fset0 8873
Description: The set of functions from the empty set is the singleton containing the empty set. (Contributed by AV, 13-Sep-2024.)
Assertion
Ref Expression
fset0 {𝑓𝑓:∅⟶𝐵} = {∅}

Proof of Theorem fset0
StepHypRef Expression
1 f0bi 6780 . . 3 (𝑓:∅⟶𝐵𝑓 = ∅)
21abbii 2795 . 2 {𝑓𝑓:∅⟶𝐵} = {𝑓𝑓 = ∅}
3 df-sn 4631 . 2 {∅} = {𝑓𝑓 = ∅}
42, 3eqtr4i 2756 1 {𝑓𝑓:∅⟶𝐵} = {∅}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  {cab 2702  c0 4322  {csn 4630  wf 6545
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-clab 2703  df-cleq 2717  df-clel 2802  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-br 5150  df-opab 5212  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-fun 6551  df-fn 6552  df-f 6553
This theorem is referenced by:  fsetexb  8883
  Copyright terms: Public domain W3C validator