Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fndmexd | Structured version Visualization version GIF version |
Description: If a function is a set, its domain is a set. (Contributed by Rohan Ridenour, 13-May-2024.) |
Ref | Expression |
---|---|
fndmexd.1 | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
fndmexd.2 | ⊢ (𝜑 → 𝐹 Fn 𝐷) |
Ref | Expression |
---|---|
fndmexd | ⊢ (𝜑 → 𝐷 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fndmexd.2 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐷) | |
2 | 1 | fndmd 6576 | . 2 ⊢ (𝜑 → dom 𝐹 = 𝐷) |
3 | fndmexd.1 | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
4 | 3 | dmexd 7798 | . 2 ⊢ (𝜑 → dom 𝐹 ∈ V) |
5 | 2, 4 | eqeltrrd 2838 | 1 ⊢ (𝜑 → 𝐷 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 Vcvv 3440 dom cdm 5607 Fn wfn 6460 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 ax-sep 5237 ax-nul 5244 ax-pr 5366 ax-un 7629 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-rab 3404 df-v 3442 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4471 df-sn 4571 df-pr 4573 df-op 4577 df-uni 4850 df-br 5087 df-opab 5149 df-cnv 5615 df-dm 5617 df-rn 5618 df-fn 6468 |
This theorem is referenced by: fndmexb 7801 fsetdmprc0 8692 psrbagfsupp 21203 psrbaglecl 21209 psrbagaddcl 21211 psrbagcon 21213 psrbagconf1o 21219 gsumbagdiaglem 21224 psrass1lem 21226 psrbagev1 21365 psrbagev2 21367 tdeglem1 25300 tdeglem3 25302 tdeglem4 25304 gsumhashmul 31447 finnzfsuppd 42059 |
Copyright terms: Public domain | W3C validator |