| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fndmexd | Structured version Visualization version GIF version | ||
| Description: If a function is a set, its domain is a set. (Contributed by Rohan Ridenour, 13-May-2024.) |
| Ref | Expression |
|---|---|
| fndmexd.1 | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
| fndmexd.2 | ⊢ (𝜑 → 𝐹 Fn 𝐷) |
| Ref | Expression |
|---|---|
| fndmexd | ⊢ (𝜑 → 𝐷 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fndmexd.2 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐷) | |
| 2 | 1 | fndmd 6648 | . 2 ⊢ (𝜑 → dom 𝐹 = 𝐷) |
| 3 | fndmexd.1 | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
| 4 | 3 | dmexd 7904 | . 2 ⊢ (𝜑 → dom 𝐹 ∈ V) |
| 5 | 2, 4 | eqeltrrd 2836 | 1 ⊢ (𝜑 → 𝐷 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3464 dom cdm 5659 Fn wfn 6531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-cnv 5667 df-dm 5669 df-rn 5670 df-fn 6539 |
| This theorem is referenced by: fndmexb 7907 fsetdmprc0 8874 finnzfsuppd 9390 psrbagfsupp 21884 psrbaglecl 21888 psrbagaddcl 21889 psrbagcon 21890 psrbagleadd1 21893 psrbagconf1o 21894 gsumbagdiaglem 21895 psrass1lem 21897 psrbagev1 22040 psrbagev2 22041 tdeglem1 26020 tdeglem3 26021 tdeglem4 26022 gsumhashmul 33060 mhphf 42595 |
| Copyright terms: Public domain | W3C validator |