MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fndmexd Structured version   Visualization version   GIF version

Theorem fndmexd 7899
Description: If a function is a set, its domain is a set. (Contributed by Rohan Ridenour, 13-May-2024.)
Hypotheses
Ref Expression
fndmexd.1 (𝜑𝐹𝑉)
fndmexd.2 (𝜑𝐹 Fn 𝐷)
Assertion
Ref Expression
fndmexd (𝜑𝐷 ∈ V)

Proof of Theorem fndmexd
StepHypRef Expression
1 fndmexd.2 . . 3 (𝜑𝐹 Fn 𝐷)
21fndmd 6653 . 2 (𝜑 → dom 𝐹 = 𝐷)
3 fndmexd.1 . . 3 (𝜑𝐹𝑉)
43dmexd 7898 . 2 (𝜑 → dom 𝐹 ∈ V)
52, 4eqeltrrd 2832 1 (𝜑𝐷 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2104  Vcvv 3472  dom cdm 5675   Fn wfn 6537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-rab 3431  df-v 3474  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-cnv 5683  df-dm 5685  df-rn 5686  df-fn 6545
This theorem is referenced by:  fndmexb  7901  fsetdmprc0  8851  psrbagfsupp  21692  psrbaglecl  21698  psrbagaddcl  21700  psrbagcon  21702  psrbagconf1o  21708  gsumbagdiaglem  21713  psrass1lem  21715  psrbagev1  21857  psrbagev2  21859  tdeglem1  25808  tdeglem3  25810  tdeglem4  25812  gsumhashmul  32478  finnzfsuppd  43263
  Copyright terms: Public domain W3C validator