| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fndmexd | Structured version Visualization version GIF version | ||
| Description: If a function is a set, its domain is a set. (Contributed by Rohan Ridenour, 13-May-2024.) |
| Ref | Expression |
|---|---|
| fndmexd.1 | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
| fndmexd.2 | ⊢ (𝜑 → 𝐹 Fn 𝐷) |
| Ref | Expression |
|---|---|
| fndmexd | ⊢ (𝜑 → 𝐷 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fndmexd.2 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐷) | |
| 2 | 1 | fndmd 6592 | . 2 ⊢ (𝜑 → dom 𝐹 = 𝐷) |
| 3 | fndmexd.1 | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
| 4 | 3 | dmexd 7839 | . 2 ⊢ (𝜑 → dom 𝐹 ∈ V) |
| 5 | 2, 4 | eqeltrrd 2832 | 1 ⊢ (𝜑 → 𝐷 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 Vcvv 3436 dom cdm 5619 Fn wfn 6482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-cnv 5627 df-dm 5629 df-rn 5630 df-fn 6490 |
| This theorem is referenced by: fndmexb 7842 fsetdmprc0 8785 finnzfsuppd 9263 psrbagfsupp 21862 psrbaglecl 21866 psrbagaddcl 21867 psrbagcon 21868 psrbagleadd1 21871 psrbagconf1o 21872 gsumbagdiaglem 21873 psrass1lem 21875 psrbagev1 22018 psrbagev2 22019 tdeglem1 25996 tdeglem3 25997 tdeglem4 25998 gsumhashmul 33048 mhphf 42696 |
| Copyright terms: Public domain | W3C validator |