![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fndmexd | Structured version Visualization version GIF version |
Description: If a function is a set, its domain is a set. (Contributed by Rohan Ridenour, 13-May-2024.) |
Ref | Expression |
---|---|
fndmexd.1 | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
fndmexd.2 | ⊢ (𝜑 → 𝐹 Fn 𝐷) |
Ref | Expression |
---|---|
fndmexd | ⊢ (𝜑 → 𝐷 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fndmexd.2 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐷) | |
2 | 1 | fndmd 6660 | . 2 ⊢ (𝜑 → dom 𝐹 = 𝐷) |
3 | fndmexd.1 | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
4 | 3 | dmexd 7911 | . 2 ⊢ (𝜑 → dom 𝐹 ∈ V) |
5 | 2, 4 | eqeltrrd 2826 | 1 ⊢ (𝜑 → 𝐷 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2098 Vcvv 3461 dom cdm 5678 Fn wfn 6544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pr 5429 ax-un 7741 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-opab 5212 df-cnv 5686 df-dm 5688 df-rn 5689 df-fn 6552 |
This theorem is referenced by: fndmexb 7914 fsetdmprc0 8874 psrbagfsupp 21870 psrbaglecl 21876 psrbagaddcl 21878 psrbagcon 21880 psrbagleadd1 21886 psrbagconf1o 21887 gsumbagdiaglem 21892 psrass1lem 21894 psrbagev1 22043 psrbagev2 22045 tdeglem1 26035 tdeglem3 26037 tdeglem4 26039 gsumhashmul 32860 finnzfsuppd 43778 |
Copyright terms: Public domain | W3C validator |