MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fndmexd Structured version   Visualization version   GIF version

Theorem fndmexd 7944
Description: If a function is a set, its domain is a set. (Contributed by Rohan Ridenour, 13-May-2024.)
Hypotheses
Ref Expression
fndmexd.1 (𝜑𝐹𝑉)
fndmexd.2 (𝜑𝐹 Fn 𝐷)
Assertion
Ref Expression
fndmexd (𝜑𝐷 ∈ V)

Proof of Theorem fndmexd
StepHypRef Expression
1 fndmexd.2 . . 3 (𝜑𝐹 Fn 𝐷)
21fndmd 6684 . 2 (𝜑 → dom 𝐹 = 𝐷)
3 fndmexd.1 . . 3 (𝜑𝐹𝑉)
43dmexd 7943 . 2 (𝜑 → dom 𝐹 ∈ V)
52, 4eqeltrrd 2845 1 (𝜑𝐷 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  Vcvv 3488  dom cdm 5700   Fn wfn 6568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-cnv 5708  df-dm 5710  df-rn 5711  df-fn 6576
This theorem is referenced by:  fndmexb  7946  fsetdmprc0  8913  psrbagfsupp  21962  psrbaglecl  21966  psrbagaddcl  21967  psrbagcon  21968  psrbagleadd1  21971  psrbagconf1o  21972  gsumbagdiaglem  21973  psrass1lem  21975  psrbagev1  22124  psrbagev2  22125  tdeglem1  26117  tdeglem3  26118  tdeglem4  26119  gsumhashmul  33040  mhphf  42552  finnzfsuppd  44171
  Copyright terms: Public domain W3C validator