| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fndmexd | Structured version Visualization version GIF version | ||
| Description: If a function is a set, its domain is a set. (Contributed by Rohan Ridenour, 13-May-2024.) |
| Ref | Expression |
|---|---|
| fndmexd.1 | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
| fndmexd.2 | ⊢ (𝜑 → 𝐹 Fn 𝐷) |
| Ref | Expression |
|---|---|
| fndmexd | ⊢ (𝜑 → 𝐷 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fndmexd.2 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐷) | |
| 2 | 1 | fndmd 6582 | . 2 ⊢ (𝜑 → dom 𝐹 = 𝐷) |
| 3 | fndmexd.1 | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
| 4 | 3 | dmexd 7828 | . 2 ⊢ (𝜑 → dom 𝐹 ∈ V) |
| 5 | 2, 4 | eqeltrrd 2830 | 1 ⊢ (𝜑 → 𝐷 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2110 Vcvv 3434 dom cdm 5614 Fn wfn 6472 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-opab 5152 df-cnv 5622 df-dm 5624 df-rn 5625 df-fn 6480 |
| This theorem is referenced by: fndmexb 7831 fsetdmprc0 8774 finnzfsuppd 9252 psrbagfsupp 21849 psrbaglecl 21853 psrbagaddcl 21854 psrbagcon 21855 psrbagleadd1 21858 psrbagconf1o 21859 gsumbagdiaglem 21860 psrass1lem 21862 psrbagev1 22005 psrbagev2 22006 tdeglem1 25983 tdeglem3 25984 tdeglem4 25985 gsumhashmul 33031 mhphf 42609 |
| Copyright terms: Public domain | W3C validator |