MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fndmexd Structured version   Visualization version   GIF version

Theorem fndmexd 7927
Description: If a function is a set, its domain is a set. (Contributed by Rohan Ridenour, 13-May-2024.)
Hypotheses
Ref Expression
fndmexd.1 (𝜑𝐹𝑉)
fndmexd.2 (𝜑𝐹 Fn 𝐷)
Assertion
Ref Expression
fndmexd (𝜑𝐷 ∈ V)

Proof of Theorem fndmexd
StepHypRef Expression
1 fndmexd.2 . . 3 (𝜑𝐹 Fn 𝐷)
21fndmd 6672 . 2 (𝜑 → dom 𝐹 = 𝐷)
3 fndmexd.1 . . 3 (𝜑𝐹𝑉)
43dmexd 7926 . 2 (𝜑 → dom 𝐹 ∈ V)
52, 4eqeltrrd 2841 1 (𝜑𝐷 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  Vcvv 3479  dom cdm 5684   Fn wfn 6555
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-cnv 5692  df-dm 5694  df-rn 5695  df-fn 6563
This theorem is referenced by:  fndmexb  7929  fsetdmprc0  8896  finnzfsuppd  9414  psrbagfsupp  21940  psrbaglecl  21944  psrbagaddcl  21945  psrbagcon  21946  psrbagleadd1  21949  psrbagconf1o  21950  gsumbagdiaglem  21951  psrass1lem  21953  psrbagev1  22102  psrbagev2  22103  tdeglem1  26098  tdeglem3  26099  tdeglem4  26100  gsumhashmul  33065  mhphf  42612
  Copyright terms: Public domain W3C validator