| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fndmexd | Structured version Visualization version GIF version | ||
| Description: If a function is a set, its domain is a set. (Contributed by Rohan Ridenour, 13-May-2024.) |
| Ref | Expression |
|---|---|
| fndmexd.1 | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
| fndmexd.2 | ⊢ (𝜑 → 𝐹 Fn 𝐷) |
| Ref | Expression |
|---|---|
| fndmexd | ⊢ (𝜑 → 𝐷 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fndmexd.2 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐷) | |
| 2 | 1 | fndmd 6623 | . 2 ⊢ (𝜑 → dom 𝐹 = 𝐷) |
| 3 | fndmexd.1 | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
| 4 | 3 | dmexd 7879 | . 2 ⊢ (𝜑 → dom 𝐹 ∈ V) |
| 5 | 2, 4 | eqeltrrd 2829 | 1 ⊢ (𝜑 → 𝐷 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3447 dom cdm 5638 Fn wfn 6506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-cnv 5646 df-dm 5648 df-rn 5649 df-fn 6514 |
| This theorem is referenced by: fndmexb 7882 fsetdmprc0 8828 finnzfsuppd 9324 psrbagfsupp 21828 psrbaglecl 21832 psrbagaddcl 21833 psrbagcon 21834 psrbagleadd1 21837 psrbagconf1o 21838 gsumbagdiaglem 21839 psrass1lem 21841 psrbagev1 21984 psrbagev2 21985 tdeglem1 25963 tdeglem3 25964 tdeglem4 25965 gsumhashmul 33001 mhphf 42585 |
| Copyright terms: Public domain | W3C validator |