Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fndmexd | Structured version Visualization version GIF version |
Description: If a function is a set, its domain is a set. (Contributed by Rohan Ridenour, 13-May-2024.) |
Ref | Expression |
---|---|
fndmexd.1 | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
fndmexd.2 | ⊢ (𝜑 → 𝐹 Fn 𝐷) |
Ref | Expression |
---|---|
fndmexd | ⊢ (𝜑 → 𝐷 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fndmexd.2 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐷) | |
2 | 1 | fndmd 6538 | . 2 ⊢ (𝜑 → dom 𝐹 = 𝐷) |
3 | fndmexd.1 | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
4 | 3 | dmexd 7752 | . 2 ⊢ (𝜑 → dom 𝐹 ∈ V) |
5 | 2, 4 | eqeltrrd 2840 | 1 ⊢ (𝜑 → 𝐷 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 Vcvv 3432 dom cdm 5589 Fn wfn 6428 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-cnv 5597 df-dm 5599 df-rn 5600 df-fn 6436 |
This theorem is referenced by: fndmexb 7755 fsetdmprc0 8643 psrbagfsupp 21123 psrbaglecl 21129 psrbagaddcl 21131 psrbagcon 21133 psrbagconf1o 21139 gsumbagdiaglem 21144 psrass1lem 21146 psrbagev1 21285 psrbagev2 21287 tdeglem1 25220 tdeglem3 25222 tdeglem4 25224 gsumhashmul 31316 finnzfsuppd 41820 |
Copyright terms: Public domain | W3C validator |