![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fndmexd | Structured version Visualization version GIF version |
Description: If a function is a set, its domain is a set. (Contributed by Rohan Ridenour, 13-May-2024.) |
Ref | Expression |
---|---|
fndmexd.1 | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
fndmexd.2 | ⊢ (𝜑 → 𝐹 Fn 𝐷) |
Ref | Expression |
---|---|
fndmexd | ⊢ (𝜑 → 𝐷 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fndmexd.2 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐷) | |
2 | 1 | fndmd 6684 | . 2 ⊢ (𝜑 → dom 𝐹 = 𝐷) |
3 | fndmexd.1 | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
4 | 3 | dmexd 7943 | . 2 ⊢ (𝜑 → dom 𝐹 ∈ V) |
5 | 2, 4 | eqeltrrd 2845 | 1 ⊢ (𝜑 → 𝐷 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3488 dom cdm 5700 Fn wfn 6568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-cnv 5708 df-dm 5710 df-rn 5711 df-fn 6576 |
This theorem is referenced by: fndmexb 7946 fsetdmprc0 8913 psrbagfsupp 21962 psrbaglecl 21966 psrbagaddcl 21967 psrbagcon 21968 psrbagleadd1 21971 psrbagconf1o 21972 gsumbagdiaglem 21973 psrass1lem 21975 psrbagev1 22124 psrbagev2 22125 tdeglem1 26117 tdeglem3 26118 tdeglem4 26119 gsumhashmul 33040 mhphf 42552 finnzfsuppd 44171 |
Copyright terms: Public domain | W3C validator |