MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fndmexd Structured version   Visualization version   GIF version

Theorem fndmexd 7896
Description: If a function is a set, its domain is a set. (Contributed by Rohan Ridenour, 13-May-2024.)
Hypotheses
Ref Expression
fndmexd.1 (𝜑𝐹𝑉)
fndmexd.2 (𝜑𝐹 Fn 𝐷)
Assertion
Ref Expression
fndmexd (𝜑𝐷 ∈ V)

Proof of Theorem fndmexd
StepHypRef Expression
1 fndmexd.2 . . 3 (𝜑𝐹 Fn 𝐷)
21fndmd 6654 . 2 (𝜑 → dom 𝐹 = 𝐷)
3 fndmexd.1 . . 3 (𝜑𝐹𝑉)
43dmexd 7895 . 2 (𝜑 → dom 𝐹 ∈ V)
52, 4eqeltrrd 2834 1 (𝜑𝐷 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  Vcvv 3474  dom cdm 5676   Fn wfn 6538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-cnv 5684  df-dm 5686  df-rn 5687  df-fn 6546
This theorem is referenced by:  fndmexb  7898  fsetdmprc0  8848  psrbagfsupp  21472  psrbaglecl  21478  psrbagaddcl  21480  psrbagcon  21482  psrbagconf1o  21488  gsumbagdiaglem  21493  psrass1lem  21495  psrbagev1  21637  psrbagev2  21639  tdeglem1  25572  tdeglem3  25574  tdeglem4  25576  gsumhashmul  32203  finnzfsuppd  42951
  Copyright terms: Public domain W3C validator