Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fndmexd | Structured version Visualization version GIF version |
Description: If a function is a set, its domain is a set. (Contributed by Rohan Ridenour, 13-May-2024.) |
Ref | Expression |
---|---|
fndmexd.1 | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
fndmexd.2 | ⊢ (𝜑 → 𝐹 Fn 𝐷) |
Ref | Expression |
---|---|
fndmexd | ⊢ (𝜑 → 𝐷 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fndmexd.2 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐷) | |
2 | 1 | fndmd 6522 | . 2 ⊢ (𝜑 → dom 𝐹 = 𝐷) |
3 | fndmexd.1 | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
4 | 3 | dmexd 7726 | . 2 ⊢ (𝜑 → dom 𝐹 ∈ V) |
5 | 2, 4 | eqeltrrd 2840 | 1 ⊢ (𝜑 → 𝐷 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3422 dom cdm 5580 Fn wfn 6413 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-cnv 5588 df-dm 5590 df-rn 5591 df-fn 6421 |
This theorem is referenced by: fndmexb 7729 fsetdmprc0 8601 psrbagfsupp 21033 psrbaglecl 21039 psrbagaddcl 21041 psrbagcon 21043 psrbagconf1o 21049 gsumbagdiaglem 21054 psrass1lem 21056 psrbagev1 21195 psrbagev2 21197 tdeglem1 25125 tdeglem3 25127 tdeglem4 25129 gsumhashmul 31218 finnzfsuppd 41709 |
Copyright terms: Public domain | W3C validator |