| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funcnv0 | Structured version Visualization version GIF version | ||
| Description: The converse of the empty set is a function. (Contributed by AV, 7-Jan-2021.) |
| Ref | Expression |
|---|---|
| funcnv0 | ⊢ Fun ◡∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fun0 6551 | . 2 ⊢ Fun ∅ | |
| 2 | cnv0 6091 | . . 3 ⊢ ◡∅ = ∅ | |
| 3 | 2 | funeqi 6507 | . 2 ⊢ (Fun ◡∅ ↔ Fun ∅) |
| 4 | 1, 3 | mpbir 231 | 1 ⊢ Fun ◡∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ∅c0 4282 ◡ccnv 5618 Fun wfun 6480 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2537 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-fun 6488 |
| This theorem is referenced by: f10 6801 pthdlem1 29746 0trl 30104 0pth 30107 |
| Copyright terms: Public domain | W3C validator |