MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcnv0 Structured version   Visualization version   GIF version

Theorem funcnv0 6614
Description: The converse of the empty set is a function. (Contributed by AV, 7-Jan-2021.)
Assertion
Ref Expression
funcnv0 Fun

Proof of Theorem funcnv0
StepHypRef Expression
1 fun0 6613 . 2 Fun ∅
2 cnv0 6140 . . 3 ∅ = ∅
32funeqi 6569 . 2 (Fun ∅ ↔ Fun ∅)
41, 3mpbir 230 1 Fun
Colors of variables: wff setvar class
Syntax hints:  c0 4322  ccnv 5675  Fun wfun 6537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-mo 2534  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-fun 6545
This theorem is referenced by:  f10  6866  pthdlem1  29020  0trl  29372  0pth  29375
  Copyright terms: Public domain W3C validator