Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > funcnv0 | Structured version Visualization version GIF version |
Description: The converse of the empty set is a function. (Contributed by AV, 7-Jan-2021.) |
Ref | Expression |
---|---|
funcnv0 | ⊢ Fun ◡∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fun0 6533 | . 2 ⊢ Fun ∅ | |
2 | cnv0 6064 | . . 3 ⊢ ◡∅ = ∅ | |
3 | 2 | funeqi 6489 | . 2 ⊢ (Fun ◡∅ ↔ Fun ∅) |
4 | 1, 3 | mpbir 230 | 1 ⊢ Fun ◡∅ |
Colors of variables: wff setvar class |
Syntax hints: ∅c0 4266 ◡ccnv 5604 Fun wfun 6457 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-12 2170 ax-ext 2708 ax-sep 5236 ax-nul 5243 ax-pr 5365 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-mo 2539 df-clab 2715 df-cleq 2729 df-clel 2815 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3443 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4470 df-sn 4570 df-pr 4572 df-op 4576 df-br 5086 df-opab 5148 df-id 5505 df-xp 5611 df-rel 5612 df-cnv 5613 df-co 5614 df-fun 6465 |
This theorem is referenced by: f10 6784 pthdlem1 28242 0trl 28594 0pth 28597 |
Copyright terms: Public domain | W3C validator |