MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcnv0 Structured version   Visualization version   GIF version

Theorem funcnv0 6534
Description: The converse of the empty set is a function. (Contributed by AV, 7-Jan-2021.)
Assertion
Ref Expression
funcnv0 Fun

Proof of Theorem funcnv0
StepHypRef Expression
1 fun0 6533 . 2 Fun ∅
2 cnv0 6064 . . 3 ∅ = ∅
32funeqi 6489 . 2 (Fun ∅ ↔ Fun ∅)
41, 3mpbir 230 1 Fun
Colors of variables: wff setvar class
Syntax hints:  c0 4266  ccnv 5604  Fun wfun 6457
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-12 2170  ax-ext 2708  ax-sep 5236  ax-nul 5243  ax-pr 5365
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-mo 2539  df-clab 2715  df-cleq 2729  df-clel 2815  df-ral 3063  df-rex 3072  df-rab 3405  df-v 3443  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-nul 4267  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-br 5086  df-opab 5148  df-id 5505  df-xp 5611  df-rel 5612  df-cnv 5613  df-co 5614  df-fun 6465
This theorem is referenced by:  f10  6784  pthdlem1  28242  0trl  28594  0pth  28597
  Copyright terms: Public domain W3C validator