| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funeqi | Structured version Visualization version GIF version | ||
| Description: Equality inference for the function predicate. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| funeqi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| funeqi | ⊢ (Fun 𝐴 ↔ Fun 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funeqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | funeq 6501 | . 2 ⊢ (𝐴 = 𝐵 → (Fun 𝐴 ↔ Fun 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (Fun 𝐴 ↔ Fun 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 Fun wfun 6475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ss 3914 df-br 5090 df-opab 5152 df-rel 5621 df-cnv 5622 df-co 5623 df-fun 6483 |
| This theorem is referenced by: funmpt 6519 funmpt2 6520 funco 6521 funresfunco 6522 fununfun 6529 funprg 6535 funtpg 6536 funtp 6538 funcnvpr 6543 funcnvtp 6544 funcnvqp 6545 funcnv0 6547 f1cnvcnv 6728 f1cof1 6729 opabiotafun 6902 fvn0ssdmfun 7007 funopdmsn 7083 fpropnf1 7201 funoprabg 7467 mpofun 7470 ovidig 7488 funcnvuni 7862 resf1extb 7864 fiun 7875 f1iun 7876 tposfun 8172 tfr1a 8313 tz7.44lem1 8324 tz7.48-2 8361 ssdomg 8922 sbthlem7 9006 sbthlem8 9007 hartogslem1 9428 r1funlim 9659 zorn2lem4 10390 axaddf 11036 axmulf 11037 fundmge2nop0 14409 funcnvs1 14819 strleun 17068 fthoppc 17832 cnfldfun 21305 cnfldfunALT 21306 cnfldfunOLD 21318 cnfldfunALTOLD 21319 volf 25457 dfrelog 26501 precsexlem10 28154 precsexlem11 28155 usgredg3 29194 ushgredgedg 29207 ushgredgedgloop 29209 2trld 29916 0pth 30105 1pthdlem1 30115 1trld 30122 3trld 30152 ajfuni 30839 hlimf 31217 funadj 31866 funcnvadj 31873 rinvf1o 32612 isconstr 33749 bnj97 34878 bnj150 34888 bnj1384 35044 bnj1421 35054 bnj60 35074 satffunlem2lem2 35450 satfv0fvfmla0 35457 funpartfun 35987 funtransport 36075 funray 36184 funline 36186 modelaxreplem2 45082 xlimfun 45963 funcoressn 47152 upgrimpthslem1 48017 upgrimspths 48020 |
| Copyright terms: Public domain | W3C validator |