| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funeqi | Structured version Visualization version GIF version | ||
| Description: Equality inference for the function predicate. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| funeqi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| funeqi | ⊢ (Fun 𝐴 ↔ Fun 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funeqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | funeq 6502 | . 2 ⊢ (𝐴 = 𝐵 → (Fun 𝐴 ↔ Fun 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (Fun 𝐴 ↔ Fun 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 Fun wfun 6476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ss 3920 df-br 5093 df-opab 5155 df-rel 5626 df-cnv 5627 df-co 5628 df-fun 6484 |
| This theorem is referenced by: funmpt 6520 funmpt2 6521 funco 6522 funresfunco 6523 fununfun 6530 funprg 6536 funtpg 6537 funtp 6539 funcnvpr 6544 funcnvtp 6545 funcnvqp 6546 funcnv0 6548 f1cnvcnv 6729 f1cof1 6730 opabiotafun 6903 fvn0ssdmfun 7008 funopdmsn 7084 fpropnf1 7204 funoprabg 7470 mpofun 7473 ovidig 7491 funcnvuni 7865 resf1extb 7867 fiun 7878 f1iun 7879 tposfun 8175 tfr1a 8316 tz7.44lem1 8327 tz7.48-2 8364 ssdomg 8925 sbthlem7 9010 sbthlem8 9011 hartogslem1 9434 r1funlim 9662 zorn2lem4 10393 axaddf 11039 axmulf 11040 fundmge2nop0 14409 funcnvs1 14819 strleun 17068 fthoppc 17832 cnfldfun 21275 cnfldfunALT 21276 cnfldfunOLD 21288 cnfldfunALTOLD 21289 volf 25428 dfrelog 26472 precsexlem10 28123 precsexlem11 28124 usgredg3 29161 ushgredgedg 29174 ushgredgedgloop 29176 2trld 29883 0pth 30069 1pthdlem1 30079 1trld 30086 3trld 30116 ajfuni 30803 hlimf 31181 funadj 31830 funcnvadj 31837 rinvf1o 32574 isconstr 33709 bnj97 34839 bnj150 34849 bnj1384 35005 bnj1421 35015 bnj60 35035 satffunlem2lem2 35389 satfv0fvfmla0 35396 funpartfun 35927 funtransport 36015 funray 36124 funline 36126 modelaxreplem2 44963 xlimfun 45846 funcoressn 47036 upgrimpthslem1 47901 upgrimspths 47904 |
| Copyright terms: Public domain | W3C validator |