Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > funeqi | Structured version Visualization version GIF version |
Description: Equality inference for the function predicate. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
funeqi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
funeqi | ⊢ (Fun 𝐴 ↔ Fun 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funeqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | funeq 6450 | . 2 ⊢ (𝐴 = 𝐵 → (Fun 𝐴 ↔ Fun 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (Fun 𝐴 ↔ Fun 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1541 Fun wfun 6424 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1544 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-v 3432 df-in 3898 df-ss 3908 df-br 5079 df-opab 5141 df-rel 5595 df-cnv 5596 df-co 5597 df-fun 6432 |
This theorem is referenced by: funmpt 6468 funmpt2 6469 funco 6470 funresfunco 6471 fununfun 6478 funprg 6484 funtpg 6485 funtp 6487 funcnvpr 6492 funcnvtp 6493 funcnvqp 6494 funcnv0 6496 f1cnvcnv 6676 f1cof1 6677 f1coOLD 6679 opabiotafun 6843 fvn0ssdmfun 6946 funopdmsn 7016 fpropnf1 7134 funoprabg 7386 mpofun 7389 mpofunOLD 7390 ovidig 7406 funcnvuni 7765 fiun 7772 f1iun 7773 tposfun 8042 tfr1a 8209 tz7.44lem1 8220 tz7.48-2 8257 ssdomg 8757 sbthlem7 8845 sbthlem8 8846 1sdom 8987 hartogslem1 9262 r1funlim 9508 zorn2lem4 10239 axaddf 10885 axmulf 10886 fundmge2nop0 14187 funcnvs1 14606 strleun 16839 fthoppc 17620 cnfldfun 20590 cnfldfunOLD 20591 cnfldfunALT 20592 volf 24674 dfrelog 25702 usgredg3 27564 ushgredgedg 27577 ushgredgedgloop 27579 2trld 28282 0pth 28468 1pthdlem1 28478 1trld 28485 3trld 28515 ajfuni 29200 hlimf 29578 funadj 30227 funcnvadj 30234 rinvf1o 30944 bnj97 32825 bnj150 32835 bnj1384 32991 bnj1421 33001 bnj60 33021 satffunlem2lem2 33347 satfv0fvfmla0 33354 funpartfun 34224 funtransport 34312 funray 34421 funline 34423 xlimfun 43350 funcoressn 44487 |
Copyright terms: Public domain | W3C validator |