| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funeqi | Structured version Visualization version GIF version | ||
| Description: Equality inference for the function predicate. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| funeqi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| funeqi | ⊢ (Fun 𝐴 ↔ Fun 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funeqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | funeq 6556 | . 2 ⊢ (𝐴 = 𝐵 → (Fun 𝐴 ↔ Fun 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (Fun 𝐴 ↔ Fun 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 Fun wfun 6525 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ss 3943 df-br 5120 df-opab 5182 df-rel 5661 df-cnv 5662 df-co 5663 df-fun 6533 |
| This theorem is referenced by: funmpt 6574 funmpt2 6575 funco 6576 funresfunco 6577 fununfun 6584 funprg 6590 funtpg 6591 funtp 6593 funcnvpr 6598 funcnvtp 6599 funcnvqp 6600 funcnv0 6602 f1cnvcnv 6783 f1cof1 6784 opabiotafun 6959 fvn0ssdmfun 7064 funopdmsn 7140 fpropnf1 7260 funoprabg 7528 mpofun 7531 ovidig 7549 funcnvuni 7928 resf1extb 7930 fiun 7941 f1iun 7942 tposfun 8241 tfr1a 8408 tz7.44lem1 8419 tz7.48-2 8456 ssdomg 9014 sbthlem7 9103 sbthlem8 9104 1sdomOLD 9257 hartogslem1 9556 r1funlim 9780 zorn2lem4 10513 axaddf 11159 axmulf 11160 fundmge2nop0 14520 funcnvs1 14931 strleun 17176 fthoppc 17938 cnfldfun 21329 cnfldfunALT 21330 cnfldfunOLD 21342 cnfldfunALTOLD 21343 volf 25482 dfrelog 26526 precsexlem10 28170 precsexlem11 28171 usgredg3 29195 ushgredgedg 29208 ushgredgedgloop 29210 2trld 29920 0pth 30106 1pthdlem1 30116 1trld 30123 3trld 30153 ajfuni 30840 hlimf 31218 funadj 31867 funcnvadj 31874 rinvf1o 32608 isconstr 33770 bnj97 34897 bnj150 34907 bnj1384 35063 bnj1421 35073 bnj60 35093 satffunlem2lem2 35428 satfv0fvfmla0 35435 funpartfun 35961 funtransport 36049 funray 36158 funline 36160 modelaxreplem2 45004 xlimfun 45884 funcoressn 47071 upgrimpthslem1 47920 upgrimspths 47923 |
| Copyright terms: Public domain | W3C validator |