| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funeqi | Structured version Visualization version GIF version | ||
| Description: Equality inference for the function predicate. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| funeqi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| funeqi | ⊢ (Fun 𝐴 ↔ Fun 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funeqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | funeq 6536 | . 2 ⊢ (𝐴 = 𝐵 → (Fun 𝐴 ↔ Fun 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (Fun 𝐴 ↔ Fun 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 Fun wfun 6505 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ss 3931 df-br 5108 df-opab 5170 df-rel 5645 df-cnv 5646 df-co 5647 df-fun 6513 |
| This theorem is referenced by: funmpt 6554 funmpt2 6555 funco 6556 funresfunco 6557 fununfun 6564 funprg 6570 funtpg 6571 funtp 6573 funcnvpr 6578 funcnvtp 6579 funcnvqp 6580 funcnv0 6582 f1cnvcnv 6765 f1cof1 6766 opabiotafun 6941 fvn0ssdmfun 7046 funopdmsn 7122 fpropnf1 7242 funoprabg 7510 mpofun 7513 ovidig 7531 funcnvuni 7908 resf1extb 7910 fiun 7921 f1iun 7922 tposfun 8221 tfr1a 8362 tz7.44lem1 8373 tz7.48-2 8410 ssdomg 8971 sbthlem7 9057 sbthlem8 9058 1sdomOLD 9196 hartogslem1 9495 r1funlim 9719 zorn2lem4 10452 axaddf 11098 axmulf 11099 fundmge2nop0 14467 funcnvs1 14878 strleun 17127 fthoppc 17887 cnfldfun 21278 cnfldfunALT 21279 cnfldfunOLD 21291 cnfldfunALTOLD 21292 volf 25430 dfrelog 26474 precsexlem10 28118 precsexlem11 28119 usgredg3 29143 ushgredgedg 29156 ushgredgedgloop 29158 2trld 29868 0pth 30054 1pthdlem1 30064 1trld 30071 3trld 30101 ajfuni 30788 hlimf 31166 funadj 31815 funcnvadj 31822 rinvf1o 32554 isconstr 33726 bnj97 34856 bnj150 34866 bnj1384 35022 bnj1421 35032 bnj60 35052 satffunlem2lem2 35393 satfv0fvfmla0 35400 funpartfun 35931 funtransport 36019 funray 36128 funline 36130 modelaxreplem2 44969 xlimfun 45853 funcoressn 47043 upgrimpthslem1 47907 upgrimspths 47910 |
| Copyright terms: Public domain | W3C validator |