| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funeqi | Structured version Visualization version GIF version | ||
| Description: Equality inference for the function predicate. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| funeqi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| funeqi | ⊢ (Fun 𝐴 ↔ Fun 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funeqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | funeq 6539 | . 2 ⊢ (𝐴 = 𝐵 → (Fun 𝐴 ↔ Fun 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (Fun 𝐴 ↔ Fun 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 Fun wfun 6508 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ss 3934 df-br 5111 df-opab 5173 df-rel 5648 df-cnv 5649 df-co 5650 df-fun 6516 |
| This theorem is referenced by: funmpt 6557 funmpt2 6558 funco 6559 funresfunco 6560 fununfun 6567 funprg 6573 funtpg 6574 funtp 6576 funcnvpr 6581 funcnvtp 6582 funcnvqp 6583 funcnv0 6585 f1cnvcnv 6768 f1cof1 6769 opabiotafun 6944 fvn0ssdmfun 7049 funopdmsn 7125 fpropnf1 7245 funoprabg 7513 mpofun 7516 ovidig 7534 funcnvuni 7911 resf1extb 7913 fiun 7924 f1iun 7925 tposfun 8224 tfr1a 8365 tz7.44lem1 8376 tz7.48-2 8413 ssdomg 8974 sbthlem7 9063 sbthlem8 9064 1sdomOLD 9203 hartogslem1 9502 r1funlim 9726 zorn2lem4 10459 axaddf 11105 axmulf 11106 fundmge2nop0 14474 funcnvs1 14885 strleun 17134 fthoppc 17894 cnfldfun 21285 cnfldfunALT 21286 cnfldfunOLD 21298 cnfldfunALTOLD 21299 volf 25437 dfrelog 26481 precsexlem10 28125 precsexlem11 28126 usgredg3 29150 ushgredgedg 29163 ushgredgedgloop 29165 2trld 29875 0pth 30061 1pthdlem1 30071 1trld 30078 3trld 30108 ajfuni 30795 hlimf 31173 funadj 31822 funcnvadj 31829 rinvf1o 32561 isconstr 33733 bnj97 34863 bnj150 34873 bnj1384 35029 bnj1421 35039 bnj60 35059 satffunlem2lem2 35400 satfv0fvfmla0 35407 funpartfun 35938 funtransport 36026 funray 36135 funline 36137 modelaxreplem2 44976 xlimfun 45860 funcoressn 47047 upgrimpthslem1 47911 upgrimspths 47914 |
| Copyright terms: Public domain | W3C validator |