![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funeqi | Structured version Visualization version GIF version |
Description: Equality inference for the function predicate. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
funeqi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
funeqi | ⊢ (Fun 𝐴 ↔ Fun 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funeqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | funeq 6598 | . 2 ⊢ (𝐴 = 𝐵 → (Fun 𝐴 ↔ Fun 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (Fun 𝐴 ↔ Fun 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 Fun wfun 6567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ss 3993 df-br 5167 df-opab 5229 df-rel 5707 df-cnv 5708 df-co 5709 df-fun 6575 |
This theorem is referenced by: funmpt 6616 funmpt2 6617 funco 6618 funresfunco 6619 fununfun 6626 funprg 6632 funtpg 6633 funtp 6635 funcnvpr 6640 funcnvtp 6641 funcnvqp 6642 funcnv0 6644 f1cnvcnv 6826 f1cof1 6827 f1coOLD 6829 opabiotafun 7002 fvn0ssdmfun 7108 funopdmsn 7184 fpropnf1 7304 funoprabg 7571 mpofun 7574 ovidig 7592 funcnvuni 7972 fiun 7983 f1iun 7984 tposfun 8283 tfr1a 8450 tz7.44lem1 8461 tz7.48-2 8498 ssdomg 9060 sbthlem7 9155 sbthlem8 9156 1sdomOLD 9312 hartogslem1 9611 r1funlim 9835 zorn2lem4 10568 axaddf 11214 axmulf 11215 fundmge2nop0 14551 funcnvs1 14961 strleun 17204 fthoppc 17990 cnfldfun 21401 cnfldfunALT 21402 cnfldfunOLD 21414 cnfldfunALTOLD 21415 cnfldfunALTOLDOLD 21416 volf 25583 dfrelog 26625 precsexlem10 28258 precsexlem11 28259 usgredg3 29251 ushgredgedg 29264 ushgredgedgloop 29266 2trld 29971 0pth 30157 1pthdlem1 30167 1trld 30174 3trld 30204 ajfuni 30891 hlimf 31269 funadj 31918 funcnvadj 31925 rinvf1o 32649 bnj97 34842 bnj150 34852 bnj1384 35008 bnj1421 35018 bnj60 35038 satffunlem2lem2 35374 satfv0fvfmla0 35381 funpartfun 35907 funtransport 35995 funray 36104 funline 36106 xlimfun 45776 funcoressn 46957 |
Copyright terms: Public domain | W3C validator |