Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > funeqi | Structured version Visualization version GIF version |
Description: Equality inference for the function predicate. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
funeqi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
funeqi | ⊢ (Fun 𝐴 ↔ Fun 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funeqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | funeq 6483 | . 2 ⊢ (𝐴 = 𝐵 → (Fun 𝐴 ↔ Fun 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (Fun 𝐴 ↔ Fun 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 Fun wfun 6452 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1542 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-v 3439 df-in 3899 df-ss 3909 df-br 5082 df-opab 5144 df-rel 5607 df-cnv 5608 df-co 5609 df-fun 6460 |
This theorem is referenced by: funmpt 6501 funmpt2 6502 funco 6503 funresfunco 6504 fununfun 6511 funprg 6517 funtpg 6518 funtp 6520 funcnvpr 6525 funcnvtp 6526 funcnvqp 6527 funcnv0 6529 f1cnvcnv 6710 f1cof1 6711 f1coOLD 6713 opabiotafun 6881 fvn0ssdmfun 6984 funopdmsn 7054 fpropnf1 7172 funoprabg 7427 mpofun 7430 mpofunOLD 7431 ovidig 7447 funcnvuni 7810 fiun 7817 f1iun 7818 tposfun 8089 tfr1a 8256 tz7.44lem1 8267 tz7.48-2 8304 ssdomg 8821 sbthlem7 8914 sbthlem8 8915 1sdomOLD 9070 hartogslem1 9349 r1funlim 9572 zorn2lem4 10305 axaddf 10951 axmulf 10952 fundmge2nop0 14255 funcnvs1 14674 strleun 16907 fthoppc 17688 cnfldfun 20658 cnfldfunALT 20659 cnfldfunALTOLD 20660 volf 24742 dfrelog 25770 usgredg3 27632 ushgredgedg 27645 ushgredgedgloop 27647 2trld 28352 0pth 28538 1pthdlem1 28548 1trld 28555 3trld 28585 ajfuni 29270 hlimf 29648 funadj 30297 funcnvadj 30304 rinvf1o 31014 bnj97 32895 bnj150 32905 bnj1384 33061 bnj1421 33071 bnj60 33091 satffunlem2lem2 33417 satfv0fvfmla0 33424 funpartfun 34294 funtransport 34382 funray 34491 funline 34493 xlimfun 43625 funcoressn 44780 |
Copyright terms: Public domain | W3C validator |