| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funeqi | Structured version Visualization version GIF version | ||
| Description: Equality inference for the function predicate. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| funeqi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| funeqi | ⊢ (Fun 𝐴 ↔ Fun 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funeqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | funeq 6520 | . 2 ⊢ (𝐴 = 𝐵 → (Fun 𝐴 ↔ Fun 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (Fun 𝐴 ↔ Fun 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 Fun wfun 6493 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ss 3928 df-br 5103 df-opab 5165 df-rel 5638 df-cnv 5639 df-co 5640 df-fun 6501 |
| This theorem is referenced by: funmpt 6538 funmpt2 6539 funco 6540 funresfunco 6541 fununfun 6548 funprg 6554 funtpg 6555 funtp 6557 funcnvpr 6562 funcnvtp 6563 funcnvqp 6564 funcnv0 6566 f1cnvcnv 6747 f1cof1 6748 opabiotafun 6923 fvn0ssdmfun 7028 funopdmsn 7104 fpropnf1 7224 funoprabg 7490 mpofun 7493 ovidig 7511 funcnvuni 7888 resf1extb 7890 fiun 7901 f1iun 7902 tposfun 8198 tfr1a 8339 tz7.44lem1 8350 tz7.48-2 8387 ssdomg 8948 sbthlem7 9034 sbthlem8 9035 1sdomOLD 9172 hartogslem1 9471 r1funlim 9695 zorn2lem4 10428 axaddf 11074 axmulf 11075 fundmge2nop0 14443 funcnvs1 14854 strleun 17103 fthoppc 17867 cnfldfun 21310 cnfldfunALT 21311 cnfldfunOLD 21323 cnfldfunALTOLD 21324 volf 25463 dfrelog 26507 precsexlem10 28158 precsexlem11 28159 usgredg3 29196 ushgredgedg 29209 ushgredgedgloop 29211 2trld 29918 0pth 30104 1pthdlem1 30114 1trld 30121 3trld 30151 ajfuni 30838 hlimf 31216 funadj 31865 funcnvadj 31872 rinvf1o 32604 isconstr 33719 bnj97 34849 bnj150 34859 bnj1384 35015 bnj1421 35025 bnj60 35045 satffunlem2lem2 35386 satfv0fvfmla0 35393 funpartfun 35924 funtransport 36012 funray 36121 funline 36123 modelaxreplem2 44962 xlimfun 45846 funcoressn 47036 upgrimpthslem1 47900 upgrimspths 47903 |
| Copyright terms: Public domain | W3C validator |