| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0pth | Structured version Visualization version GIF version | ||
| Description: A pair of an empty set (of edges) and a second set (of vertices) is a path iff the second set contains exactly one vertex. (Contributed by Alexander van der Vekens, 30-Oct-2017.) (Revised by AV, 19-Jan-2021.) (Revised by AV, 30-Oct-2021.) |
| Ref | Expression |
|---|---|
| 0pth.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| 0pth | ⊢ (𝐺 ∈ 𝑊 → (∅(Paths‘𝐺)𝑃 ↔ 𝑃:(0...0)⟶𝑉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ispth 29658 | . . 3 ⊢ (∅(Paths‘𝐺)𝑃 ↔ (∅(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1..^(♯‘∅))) ∧ ((𝑃 “ {0, (♯‘∅)}) ∩ (𝑃 “ (1..^(♯‘∅)))) = ∅)) | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝐺 ∈ 𝑊 → (∅(Paths‘𝐺)𝑃 ↔ (∅(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1..^(♯‘∅))) ∧ ((𝑃 “ {0, (♯‘∅)}) ∩ (𝑃 “ (1..^(♯‘∅)))) = ∅))) |
| 3 | 3anass 1094 | . . . 4 ⊢ ((∅(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1..^(♯‘∅))) ∧ ((𝑃 “ {0, (♯‘∅)}) ∩ (𝑃 “ (1..^(♯‘∅)))) = ∅) ↔ (∅(Trails‘𝐺)𝑃 ∧ (Fun ◡(𝑃 ↾ (1..^(♯‘∅))) ∧ ((𝑃 “ {0, (♯‘∅)}) ∩ (𝑃 “ (1..^(♯‘∅)))) = ∅))) | |
| 4 | 3 | a1i 11 | . . 3 ⊢ (𝐺 ∈ 𝑊 → ((∅(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1..^(♯‘∅))) ∧ ((𝑃 “ {0, (♯‘∅)}) ∩ (𝑃 “ (1..^(♯‘∅)))) = ∅) ↔ (∅(Trails‘𝐺)𝑃 ∧ (Fun ◡(𝑃 ↾ (1..^(♯‘∅))) ∧ ((𝑃 “ {0, (♯‘∅)}) ∩ (𝑃 “ (1..^(♯‘∅)))) = ∅)))) |
| 5 | funcnv0 6585 | . . . . . 6 ⊢ Fun ◡∅ | |
| 6 | hash0 14339 | . . . . . . . . . . . 12 ⊢ (♯‘∅) = 0 | |
| 7 | 0le1 11708 | . . . . . . . . . . . 12 ⊢ 0 ≤ 1 | |
| 8 | 6, 7 | eqbrtri 5131 | . . . . . . . . . . 11 ⊢ (♯‘∅) ≤ 1 |
| 9 | 1z 12570 | . . . . . . . . . . . 12 ⊢ 1 ∈ ℤ | |
| 10 | 0z 12547 | . . . . . . . . . . . . 13 ⊢ 0 ∈ ℤ | |
| 11 | 6, 10 | eqeltri 2825 | . . . . . . . . . . . 12 ⊢ (♯‘∅) ∈ ℤ |
| 12 | fzon 13648 | . . . . . . . . . . . 12 ⊢ ((1 ∈ ℤ ∧ (♯‘∅) ∈ ℤ) → ((♯‘∅) ≤ 1 ↔ (1..^(♯‘∅)) = ∅)) | |
| 13 | 9, 11, 12 | mp2an 692 | . . . . . . . . . . 11 ⊢ ((♯‘∅) ≤ 1 ↔ (1..^(♯‘∅)) = ∅) |
| 14 | 8, 13 | mpbi 230 | . . . . . . . . . 10 ⊢ (1..^(♯‘∅)) = ∅ |
| 15 | 14 | reseq2i 5950 | . . . . . . . . 9 ⊢ (𝑃 ↾ (1..^(♯‘∅))) = (𝑃 ↾ ∅) |
| 16 | res0 5957 | . . . . . . . . 9 ⊢ (𝑃 ↾ ∅) = ∅ | |
| 17 | 15, 16 | eqtri 2753 | . . . . . . . 8 ⊢ (𝑃 ↾ (1..^(♯‘∅))) = ∅ |
| 18 | 17 | cnveqi 5841 | . . . . . . 7 ⊢ ◡(𝑃 ↾ (1..^(♯‘∅))) = ◡∅ |
| 19 | 18 | funeqi 6540 | . . . . . 6 ⊢ (Fun ◡(𝑃 ↾ (1..^(♯‘∅))) ↔ Fun ◡∅) |
| 20 | 5, 19 | mpbir 231 | . . . . 5 ⊢ Fun ◡(𝑃 ↾ (1..^(♯‘∅))) |
| 21 | 14 | imaeq2i 6032 | . . . . . . . 8 ⊢ (𝑃 “ (1..^(♯‘∅))) = (𝑃 “ ∅) |
| 22 | ima0 6051 | . . . . . . . 8 ⊢ (𝑃 “ ∅) = ∅ | |
| 23 | 21, 22 | eqtri 2753 | . . . . . . 7 ⊢ (𝑃 “ (1..^(♯‘∅))) = ∅ |
| 24 | 23 | ineq2i 4183 | . . . . . 6 ⊢ ((𝑃 “ {0, (♯‘∅)}) ∩ (𝑃 “ (1..^(♯‘∅)))) = ((𝑃 “ {0, (♯‘∅)}) ∩ ∅) |
| 25 | in0 4361 | . . . . . 6 ⊢ ((𝑃 “ {0, (♯‘∅)}) ∩ ∅) = ∅ | |
| 26 | 24, 25 | eqtri 2753 | . . . . 5 ⊢ ((𝑃 “ {0, (♯‘∅)}) ∩ (𝑃 “ (1..^(♯‘∅)))) = ∅ |
| 27 | 20, 26 | pm3.2i 470 | . . . 4 ⊢ (Fun ◡(𝑃 ↾ (1..^(♯‘∅))) ∧ ((𝑃 “ {0, (♯‘∅)}) ∩ (𝑃 “ (1..^(♯‘∅)))) = ∅) |
| 28 | 27 | biantru 529 | . . 3 ⊢ (∅(Trails‘𝐺)𝑃 ↔ (∅(Trails‘𝐺)𝑃 ∧ (Fun ◡(𝑃 ↾ (1..^(♯‘∅))) ∧ ((𝑃 “ {0, (♯‘∅)}) ∩ (𝑃 “ (1..^(♯‘∅)))) = ∅))) |
| 29 | 4, 28 | bitr4di 289 | . 2 ⊢ (𝐺 ∈ 𝑊 → ((∅(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1..^(♯‘∅))) ∧ ((𝑃 “ {0, (♯‘∅)}) ∩ (𝑃 “ (1..^(♯‘∅)))) = ∅) ↔ ∅(Trails‘𝐺)𝑃)) |
| 30 | 0pth.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 31 | 30 | 0trl 30058 | . 2 ⊢ (𝐺 ∈ 𝑊 → (∅(Trails‘𝐺)𝑃 ↔ 𝑃:(0...0)⟶𝑉)) |
| 32 | 2, 29, 31 | 3bitrd 305 | 1 ⊢ (𝐺 ∈ 𝑊 → (∅(Paths‘𝐺)𝑃 ↔ 𝑃:(0...0)⟶𝑉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∩ cin 3916 ∅c0 4299 {cpr 4594 class class class wbr 5110 ◡ccnv 5640 ↾ cres 5643 “ cima 5644 Fun wfun 6508 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 0cc0 11075 1c1 11076 ≤ cle 11216 ℤcz 12536 ...cfz 13475 ..^cfzo 13622 ♯chash 14302 Vtxcvtx 28930 Trailsctrls 29625 Pathscpths 29647 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-map 8804 df-pm 8805 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-n0 12450 df-z 12537 df-uz 12801 df-fz 13476 df-fzo 13623 df-hash 14303 df-word 14486 df-wlks 29534 df-trls 29627 df-pths 29651 |
| This theorem is referenced by: 0pthon 30063 0cycl 30070 |
| Copyright terms: Public domain | W3C validator |