![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0pth | Structured version Visualization version GIF version |
Description: A pair of an empty set (of edges) and a second set (of vertices) is a path iff the second set contains exactly one vertex. (Contributed by Alexander van der Vekens, 30-Oct-2017.) (Revised by AV, 19-Jan-2021.) (Revised by AV, 30-Oct-2021.) |
Ref | Expression |
---|---|
0pth.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
0pth | ⊢ (𝐺 ∈ 𝑊 → (∅(Paths‘𝐺)𝑃 ↔ 𝑃:(0...0)⟶𝑉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ispth 27026 | . . 3 ⊢ (∅(Paths‘𝐺)𝑃 ↔ (∅(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1..^(♯‘∅))) ∧ ((𝑃 “ {0, (♯‘∅)}) ∩ (𝑃 “ (1..^(♯‘∅)))) = ∅)) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝐺 ∈ 𝑊 → (∅(Paths‘𝐺)𝑃 ↔ (∅(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1..^(♯‘∅))) ∧ ((𝑃 “ {0, (♯‘∅)}) ∩ (𝑃 “ (1..^(♯‘∅)))) = ∅))) |
3 | 3anass 1122 | . . . 4 ⊢ ((∅(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1..^(♯‘∅))) ∧ ((𝑃 “ {0, (♯‘∅)}) ∩ (𝑃 “ (1..^(♯‘∅)))) = ∅) ↔ (∅(Trails‘𝐺)𝑃 ∧ (Fun ◡(𝑃 ↾ (1..^(♯‘∅))) ∧ ((𝑃 “ {0, (♯‘∅)}) ∩ (𝑃 “ (1..^(♯‘∅)))) = ∅))) | |
4 | 3 | a1i 11 | . . 3 ⊢ (𝐺 ∈ 𝑊 → ((∅(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1..^(♯‘∅))) ∧ ((𝑃 “ {0, (♯‘∅)}) ∩ (𝑃 “ (1..^(♯‘∅)))) = ∅) ↔ (∅(Trails‘𝐺)𝑃 ∧ (Fun ◡(𝑃 ↾ (1..^(♯‘∅))) ∧ ((𝑃 “ {0, (♯‘∅)}) ∩ (𝑃 “ (1..^(♯‘∅)))) = ∅)))) |
5 | funcnv0 6189 | . . . . . 6 ⊢ Fun ◡∅ | |
6 | hash0 13449 | . . . . . . . . . . . 12 ⊢ (♯‘∅) = 0 | |
7 | 0le1 10876 | . . . . . . . . . . . 12 ⊢ 0 ≤ 1 | |
8 | 6, 7 | eqbrtri 4895 | . . . . . . . . . . 11 ⊢ (♯‘∅) ≤ 1 |
9 | 1z 11736 | . . . . . . . . . . . 12 ⊢ 1 ∈ ℤ | |
10 | 0z 11716 | . . . . . . . . . . . . 13 ⊢ 0 ∈ ℤ | |
11 | 6, 10 | eqeltri 2903 | . . . . . . . . . . . 12 ⊢ (♯‘∅) ∈ ℤ |
12 | fzon 12785 | . . . . . . . . . . . 12 ⊢ ((1 ∈ ℤ ∧ (♯‘∅) ∈ ℤ) → ((♯‘∅) ≤ 1 ↔ (1..^(♯‘∅)) = ∅)) | |
13 | 9, 11, 12 | mp2an 685 | . . . . . . . . . . 11 ⊢ ((♯‘∅) ≤ 1 ↔ (1..^(♯‘∅)) = ∅) |
14 | 8, 13 | mpbi 222 | . . . . . . . . . 10 ⊢ (1..^(♯‘∅)) = ∅ |
15 | 14 | reseq2i 5627 | . . . . . . . . 9 ⊢ (𝑃 ↾ (1..^(♯‘∅))) = (𝑃 ↾ ∅) |
16 | res0 5634 | . . . . . . . . 9 ⊢ (𝑃 ↾ ∅) = ∅ | |
17 | 15, 16 | eqtri 2850 | . . . . . . . 8 ⊢ (𝑃 ↾ (1..^(♯‘∅))) = ∅ |
18 | 17 | cnveqi 5530 | . . . . . . 7 ⊢ ◡(𝑃 ↾ (1..^(♯‘∅))) = ◡∅ |
19 | 18 | funeqi 6145 | . . . . . 6 ⊢ (Fun ◡(𝑃 ↾ (1..^(♯‘∅))) ↔ Fun ◡∅) |
20 | 5, 19 | mpbir 223 | . . . . 5 ⊢ Fun ◡(𝑃 ↾ (1..^(♯‘∅))) |
21 | 14 | imaeq2i 5706 | . . . . . . . 8 ⊢ (𝑃 “ (1..^(♯‘∅))) = (𝑃 “ ∅) |
22 | ima0 5723 | . . . . . . . 8 ⊢ (𝑃 “ ∅) = ∅ | |
23 | 21, 22 | eqtri 2850 | . . . . . . 7 ⊢ (𝑃 “ (1..^(♯‘∅))) = ∅ |
24 | 23 | ineq2i 4039 | . . . . . 6 ⊢ ((𝑃 “ {0, (♯‘∅)}) ∩ (𝑃 “ (1..^(♯‘∅)))) = ((𝑃 “ {0, (♯‘∅)}) ∩ ∅) |
25 | in0 4194 | . . . . . 6 ⊢ ((𝑃 “ {0, (♯‘∅)}) ∩ ∅) = ∅ | |
26 | 24, 25 | eqtri 2850 | . . . . 5 ⊢ ((𝑃 “ {0, (♯‘∅)}) ∩ (𝑃 “ (1..^(♯‘∅)))) = ∅ |
27 | 20, 26 | pm3.2i 464 | . . . 4 ⊢ (Fun ◡(𝑃 ↾ (1..^(♯‘∅))) ∧ ((𝑃 “ {0, (♯‘∅)}) ∩ (𝑃 “ (1..^(♯‘∅)))) = ∅) |
28 | 27 | biantru 527 | . . 3 ⊢ (∅(Trails‘𝐺)𝑃 ↔ (∅(Trails‘𝐺)𝑃 ∧ (Fun ◡(𝑃 ↾ (1..^(♯‘∅))) ∧ ((𝑃 “ {0, (♯‘∅)}) ∩ (𝑃 “ (1..^(♯‘∅)))) = ∅))) |
29 | 4, 28 | syl6bbr 281 | . 2 ⊢ (𝐺 ∈ 𝑊 → ((∅(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1..^(♯‘∅))) ∧ ((𝑃 “ {0, (♯‘∅)}) ∩ (𝑃 “ (1..^(♯‘∅)))) = ∅) ↔ ∅(Trails‘𝐺)𝑃)) |
30 | 0pth.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
31 | 30 | 0trl 27499 | . 2 ⊢ (𝐺 ∈ 𝑊 → (∅(Trails‘𝐺)𝑃 ↔ 𝑃:(0...0)⟶𝑉)) |
32 | 2, 29, 31 | 3bitrd 297 | 1 ⊢ (𝐺 ∈ 𝑊 → (∅(Paths‘𝐺)𝑃 ↔ 𝑃:(0...0)⟶𝑉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 ∧ w3a 1113 = wceq 1658 ∈ wcel 2166 ∩ cin 3798 ∅c0 4145 {cpr 4400 class class class wbr 4874 ◡ccnv 5342 ↾ cres 5345 “ cima 5346 Fun wfun 6118 ⟶wf 6120 ‘cfv 6124 (class class class)co 6906 0cc0 10253 1c1 10254 ≤ cle 10393 ℤcz 11705 ...cfz 12620 ..^cfzo 12761 ♯chash 13411 Vtxcvtx 26295 Trailsctrls 26992 Pathscpths 27015 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2804 ax-rep 4995 ax-sep 5006 ax-nul 5014 ax-pow 5066 ax-pr 5128 ax-un 7210 ax-cnex 10309 ax-resscn 10310 ax-1cn 10311 ax-icn 10312 ax-addcl 10313 ax-addrcl 10314 ax-mulcl 10315 ax-mulrcl 10316 ax-mulcom 10317 ax-addass 10318 ax-mulass 10319 ax-distr 10320 ax-i2m1 10321 ax-1ne0 10322 ax-1rid 10323 ax-rnegex 10324 ax-rrecex 10325 ax-cnre 10326 ax-pre-lttri 10327 ax-pre-lttrn 10328 ax-pre-ltadd 10329 ax-pre-mulgt0 10330 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-ifp 1092 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2606 df-eu 2641 df-clab 2813 df-cleq 2819 df-clel 2822 df-nfc 2959 df-ne 3001 df-nel 3104 df-ral 3123 df-rex 3124 df-reu 3125 df-rab 3127 df-v 3417 df-sbc 3664 df-csb 3759 df-dif 3802 df-un 3804 df-in 3806 df-ss 3813 df-pss 3815 df-nul 4146 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4660 df-int 4699 df-iun 4743 df-br 4875 df-opab 4937 df-mpt 4954 df-tr 4977 df-id 5251 df-eprel 5256 df-po 5264 df-so 5265 df-fr 5302 df-we 5304 df-xp 5349 df-rel 5350 df-cnv 5351 df-co 5352 df-dm 5353 df-rn 5354 df-res 5355 df-ima 5356 df-pred 5921 df-ord 5967 df-on 5968 df-lim 5969 df-suc 5970 df-iota 6087 df-fun 6126 df-fn 6127 df-f 6128 df-f1 6129 df-fo 6130 df-f1o 6131 df-fv 6132 df-riota 6867 df-ov 6909 df-oprab 6910 df-mpt2 6911 df-om 7328 df-1st 7429 df-2nd 7430 df-wrecs 7673 df-recs 7735 df-rdg 7773 df-1o 7827 df-er 8010 df-map 8125 df-pm 8126 df-en 8224 df-dom 8225 df-sdom 8226 df-fin 8227 df-card 9079 df-pnf 10394 df-mnf 10395 df-xr 10396 df-ltxr 10397 df-le 10398 df-sub 10588 df-neg 10589 df-nn 11352 df-n0 11620 df-z 11706 df-uz 11970 df-fz 12621 df-fzo 12762 df-hash 13412 df-word 13576 df-wlks 26898 df-trls 26994 df-pths 27019 |
This theorem is referenced by: 0pthon 27504 0cycl 27511 |
Copyright terms: Public domain | W3C validator |