| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0pth | Structured version Visualization version GIF version | ||
| Description: A pair of an empty set (of edges) and a second set (of vertices) is a path iff the second set contains exactly one vertex. (Contributed by Alexander van der Vekens, 30-Oct-2017.) (Revised by AV, 19-Jan-2021.) (Revised by AV, 30-Oct-2021.) |
| Ref | Expression |
|---|---|
| 0pth.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| 0pth | ⊢ (𝐺 ∈ 𝑊 → (∅(Paths‘𝐺)𝑃 ↔ 𝑃:(0...0)⟶𝑉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ispth 29651 | . . 3 ⊢ (∅(Paths‘𝐺)𝑃 ↔ (∅(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1..^(♯‘∅))) ∧ ((𝑃 “ {0, (♯‘∅)}) ∩ (𝑃 “ (1..^(♯‘∅)))) = ∅)) | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝐺 ∈ 𝑊 → (∅(Paths‘𝐺)𝑃 ↔ (∅(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1..^(♯‘∅))) ∧ ((𝑃 “ {0, (♯‘∅)}) ∩ (𝑃 “ (1..^(♯‘∅)))) = ∅))) |
| 3 | 3anass 1094 | . . . 4 ⊢ ((∅(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1..^(♯‘∅))) ∧ ((𝑃 “ {0, (♯‘∅)}) ∩ (𝑃 “ (1..^(♯‘∅)))) = ∅) ↔ (∅(Trails‘𝐺)𝑃 ∧ (Fun ◡(𝑃 ↾ (1..^(♯‘∅))) ∧ ((𝑃 “ {0, (♯‘∅)}) ∩ (𝑃 “ (1..^(♯‘∅)))) = ∅))) | |
| 4 | 3 | a1i 11 | . . 3 ⊢ (𝐺 ∈ 𝑊 → ((∅(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1..^(♯‘∅))) ∧ ((𝑃 “ {0, (♯‘∅)}) ∩ (𝑃 “ (1..^(♯‘∅)))) = ∅) ↔ (∅(Trails‘𝐺)𝑃 ∧ (Fun ◡(𝑃 ↾ (1..^(♯‘∅))) ∧ ((𝑃 “ {0, (♯‘∅)}) ∩ (𝑃 “ (1..^(♯‘∅)))) = ∅)))) |
| 5 | funcnv0 6582 | . . . . . 6 ⊢ Fun ◡∅ | |
| 6 | hash0 14332 | . . . . . . . . . . . 12 ⊢ (♯‘∅) = 0 | |
| 7 | 0le1 11701 | . . . . . . . . . . . 12 ⊢ 0 ≤ 1 | |
| 8 | 6, 7 | eqbrtri 5128 | . . . . . . . . . . 11 ⊢ (♯‘∅) ≤ 1 |
| 9 | 1z 12563 | . . . . . . . . . . . 12 ⊢ 1 ∈ ℤ | |
| 10 | 0z 12540 | . . . . . . . . . . . . 13 ⊢ 0 ∈ ℤ | |
| 11 | 6, 10 | eqeltri 2824 | . . . . . . . . . . . 12 ⊢ (♯‘∅) ∈ ℤ |
| 12 | fzon 13641 | . . . . . . . . . . . 12 ⊢ ((1 ∈ ℤ ∧ (♯‘∅) ∈ ℤ) → ((♯‘∅) ≤ 1 ↔ (1..^(♯‘∅)) = ∅)) | |
| 13 | 9, 11, 12 | mp2an 692 | . . . . . . . . . . 11 ⊢ ((♯‘∅) ≤ 1 ↔ (1..^(♯‘∅)) = ∅) |
| 14 | 8, 13 | mpbi 230 | . . . . . . . . . 10 ⊢ (1..^(♯‘∅)) = ∅ |
| 15 | 14 | reseq2i 5947 | . . . . . . . . 9 ⊢ (𝑃 ↾ (1..^(♯‘∅))) = (𝑃 ↾ ∅) |
| 16 | res0 5954 | . . . . . . . . 9 ⊢ (𝑃 ↾ ∅) = ∅ | |
| 17 | 15, 16 | eqtri 2752 | . . . . . . . 8 ⊢ (𝑃 ↾ (1..^(♯‘∅))) = ∅ |
| 18 | 17 | cnveqi 5838 | . . . . . . 7 ⊢ ◡(𝑃 ↾ (1..^(♯‘∅))) = ◡∅ |
| 19 | 18 | funeqi 6537 | . . . . . 6 ⊢ (Fun ◡(𝑃 ↾ (1..^(♯‘∅))) ↔ Fun ◡∅) |
| 20 | 5, 19 | mpbir 231 | . . . . 5 ⊢ Fun ◡(𝑃 ↾ (1..^(♯‘∅))) |
| 21 | 14 | imaeq2i 6029 | . . . . . . . 8 ⊢ (𝑃 “ (1..^(♯‘∅))) = (𝑃 “ ∅) |
| 22 | ima0 6048 | . . . . . . . 8 ⊢ (𝑃 “ ∅) = ∅ | |
| 23 | 21, 22 | eqtri 2752 | . . . . . . 7 ⊢ (𝑃 “ (1..^(♯‘∅))) = ∅ |
| 24 | 23 | ineq2i 4180 | . . . . . 6 ⊢ ((𝑃 “ {0, (♯‘∅)}) ∩ (𝑃 “ (1..^(♯‘∅)))) = ((𝑃 “ {0, (♯‘∅)}) ∩ ∅) |
| 25 | in0 4358 | . . . . . 6 ⊢ ((𝑃 “ {0, (♯‘∅)}) ∩ ∅) = ∅ | |
| 26 | 24, 25 | eqtri 2752 | . . . . 5 ⊢ ((𝑃 “ {0, (♯‘∅)}) ∩ (𝑃 “ (1..^(♯‘∅)))) = ∅ |
| 27 | 20, 26 | pm3.2i 470 | . . . 4 ⊢ (Fun ◡(𝑃 ↾ (1..^(♯‘∅))) ∧ ((𝑃 “ {0, (♯‘∅)}) ∩ (𝑃 “ (1..^(♯‘∅)))) = ∅) |
| 28 | 27 | biantru 529 | . . 3 ⊢ (∅(Trails‘𝐺)𝑃 ↔ (∅(Trails‘𝐺)𝑃 ∧ (Fun ◡(𝑃 ↾ (1..^(♯‘∅))) ∧ ((𝑃 “ {0, (♯‘∅)}) ∩ (𝑃 “ (1..^(♯‘∅)))) = ∅))) |
| 29 | 4, 28 | bitr4di 289 | . 2 ⊢ (𝐺 ∈ 𝑊 → ((∅(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1..^(♯‘∅))) ∧ ((𝑃 “ {0, (♯‘∅)}) ∩ (𝑃 “ (1..^(♯‘∅)))) = ∅) ↔ ∅(Trails‘𝐺)𝑃)) |
| 30 | 0pth.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 31 | 30 | 0trl 30051 | . 2 ⊢ (𝐺 ∈ 𝑊 → (∅(Trails‘𝐺)𝑃 ↔ 𝑃:(0...0)⟶𝑉)) |
| 32 | 2, 29, 31 | 3bitrd 305 | 1 ⊢ (𝐺 ∈ 𝑊 → (∅(Paths‘𝐺)𝑃 ↔ 𝑃:(0...0)⟶𝑉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∩ cin 3913 ∅c0 4296 {cpr 4591 class class class wbr 5107 ◡ccnv 5637 ↾ cres 5640 “ cima 5641 Fun wfun 6505 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 0cc0 11068 1c1 11069 ≤ cle 11209 ℤcz 12529 ...cfz 13468 ..^cfzo 13615 ♯chash 14295 Vtxcvtx 28923 Trailsctrls 29618 Pathscpths 29640 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-map 8801 df-pm 8802 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-n0 12443 df-z 12530 df-uz 12794 df-fz 13469 df-fzo 13616 df-hash 14296 df-word 14479 df-wlks 29527 df-trls 29620 df-pths 29644 |
| This theorem is referenced by: 0pthon 30056 0cycl 30063 |
| Copyright terms: Public domain | W3C validator |