Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0pth | Structured version Visualization version GIF version |
Description: A pair of an empty set (of edges) and a second set (of vertices) is a path iff the second set contains exactly one vertex. (Contributed by Alexander van der Vekens, 30-Oct-2017.) (Revised by AV, 19-Jan-2021.) (Revised by AV, 30-Oct-2021.) |
Ref | Expression |
---|---|
0pth.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
0pth | ⊢ (𝐺 ∈ 𝑊 → (∅(Paths‘𝐺)𝑃 ↔ 𝑃:(0...0)⟶𝑉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ispth 27992 | . . 3 ⊢ (∅(Paths‘𝐺)𝑃 ↔ (∅(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1..^(♯‘∅))) ∧ ((𝑃 “ {0, (♯‘∅)}) ∩ (𝑃 “ (1..^(♯‘∅)))) = ∅)) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝐺 ∈ 𝑊 → (∅(Paths‘𝐺)𝑃 ↔ (∅(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1..^(♯‘∅))) ∧ ((𝑃 “ {0, (♯‘∅)}) ∩ (𝑃 “ (1..^(♯‘∅)))) = ∅))) |
3 | 3anass 1093 | . . . 4 ⊢ ((∅(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1..^(♯‘∅))) ∧ ((𝑃 “ {0, (♯‘∅)}) ∩ (𝑃 “ (1..^(♯‘∅)))) = ∅) ↔ (∅(Trails‘𝐺)𝑃 ∧ (Fun ◡(𝑃 ↾ (1..^(♯‘∅))) ∧ ((𝑃 “ {0, (♯‘∅)}) ∩ (𝑃 “ (1..^(♯‘∅)))) = ∅))) | |
4 | 3 | a1i 11 | . . 3 ⊢ (𝐺 ∈ 𝑊 → ((∅(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1..^(♯‘∅))) ∧ ((𝑃 “ {0, (♯‘∅)}) ∩ (𝑃 “ (1..^(♯‘∅)))) = ∅) ↔ (∅(Trails‘𝐺)𝑃 ∧ (Fun ◡(𝑃 ↾ (1..^(♯‘∅))) ∧ ((𝑃 “ {0, (♯‘∅)}) ∩ (𝑃 “ (1..^(♯‘∅)))) = ∅)))) |
5 | funcnv0 6484 | . . . . . 6 ⊢ Fun ◡∅ | |
6 | hash0 14010 | . . . . . . . . . . . 12 ⊢ (♯‘∅) = 0 | |
7 | 0le1 11428 | . . . . . . . . . . . 12 ⊢ 0 ≤ 1 | |
8 | 6, 7 | eqbrtri 5091 | . . . . . . . . . . 11 ⊢ (♯‘∅) ≤ 1 |
9 | 1z 12280 | . . . . . . . . . . . 12 ⊢ 1 ∈ ℤ | |
10 | 0z 12260 | . . . . . . . . . . . . 13 ⊢ 0 ∈ ℤ | |
11 | 6, 10 | eqeltri 2835 | . . . . . . . . . . . 12 ⊢ (♯‘∅) ∈ ℤ |
12 | fzon 13336 | . . . . . . . . . . . 12 ⊢ ((1 ∈ ℤ ∧ (♯‘∅) ∈ ℤ) → ((♯‘∅) ≤ 1 ↔ (1..^(♯‘∅)) = ∅)) | |
13 | 9, 11, 12 | mp2an 688 | . . . . . . . . . . 11 ⊢ ((♯‘∅) ≤ 1 ↔ (1..^(♯‘∅)) = ∅) |
14 | 8, 13 | mpbi 229 | . . . . . . . . . 10 ⊢ (1..^(♯‘∅)) = ∅ |
15 | 14 | reseq2i 5877 | . . . . . . . . 9 ⊢ (𝑃 ↾ (1..^(♯‘∅))) = (𝑃 ↾ ∅) |
16 | res0 5884 | . . . . . . . . 9 ⊢ (𝑃 ↾ ∅) = ∅ | |
17 | 15, 16 | eqtri 2766 | . . . . . . . 8 ⊢ (𝑃 ↾ (1..^(♯‘∅))) = ∅ |
18 | 17 | cnveqi 5772 | . . . . . . 7 ⊢ ◡(𝑃 ↾ (1..^(♯‘∅))) = ◡∅ |
19 | 18 | funeqi 6439 | . . . . . 6 ⊢ (Fun ◡(𝑃 ↾ (1..^(♯‘∅))) ↔ Fun ◡∅) |
20 | 5, 19 | mpbir 230 | . . . . 5 ⊢ Fun ◡(𝑃 ↾ (1..^(♯‘∅))) |
21 | 14 | imaeq2i 5956 | . . . . . . . 8 ⊢ (𝑃 “ (1..^(♯‘∅))) = (𝑃 “ ∅) |
22 | ima0 5974 | . . . . . . . 8 ⊢ (𝑃 “ ∅) = ∅ | |
23 | 21, 22 | eqtri 2766 | . . . . . . 7 ⊢ (𝑃 “ (1..^(♯‘∅))) = ∅ |
24 | 23 | ineq2i 4140 | . . . . . 6 ⊢ ((𝑃 “ {0, (♯‘∅)}) ∩ (𝑃 “ (1..^(♯‘∅)))) = ((𝑃 “ {0, (♯‘∅)}) ∩ ∅) |
25 | in0 4322 | . . . . . 6 ⊢ ((𝑃 “ {0, (♯‘∅)}) ∩ ∅) = ∅ | |
26 | 24, 25 | eqtri 2766 | . . . . 5 ⊢ ((𝑃 “ {0, (♯‘∅)}) ∩ (𝑃 “ (1..^(♯‘∅)))) = ∅ |
27 | 20, 26 | pm3.2i 470 | . . . 4 ⊢ (Fun ◡(𝑃 ↾ (1..^(♯‘∅))) ∧ ((𝑃 “ {0, (♯‘∅)}) ∩ (𝑃 “ (1..^(♯‘∅)))) = ∅) |
28 | 27 | biantru 529 | . . 3 ⊢ (∅(Trails‘𝐺)𝑃 ↔ (∅(Trails‘𝐺)𝑃 ∧ (Fun ◡(𝑃 ↾ (1..^(♯‘∅))) ∧ ((𝑃 “ {0, (♯‘∅)}) ∩ (𝑃 “ (1..^(♯‘∅)))) = ∅))) |
29 | 4, 28 | bitr4di 288 | . 2 ⊢ (𝐺 ∈ 𝑊 → ((∅(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1..^(♯‘∅))) ∧ ((𝑃 “ {0, (♯‘∅)}) ∩ (𝑃 “ (1..^(♯‘∅)))) = ∅) ↔ ∅(Trails‘𝐺)𝑃)) |
30 | 0pth.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
31 | 30 | 0trl 28387 | . 2 ⊢ (𝐺 ∈ 𝑊 → (∅(Trails‘𝐺)𝑃 ↔ 𝑃:(0...0)⟶𝑉)) |
32 | 2, 29, 31 | 3bitrd 304 | 1 ⊢ (𝐺 ∈ 𝑊 → (∅(Paths‘𝐺)𝑃 ↔ 𝑃:(0...0)⟶𝑉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∩ cin 3882 ∅c0 4253 {cpr 4560 class class class wbr 5070 ◡ccnv 5579 ↾ cres 5582 “ cima 5583 Fun wfun 6412 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 0cc0 10802 1c1 10803 ≤ cle 10941 ℤcz 12249 ...cfz 13168 ..^cfzo 13311 ♯chash 13972 Vtxcvtx 27269 Trailsctrls 27960 Pathscpths 27981 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ifp 1060 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-pm 8576 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-fzo 13312 df-hash 13973 df-word 14146 df-wlks 27869 df-trls 27962 df-pths 27985 |
This theorem is referenced by: 0pthon 28392 0cycl 28399 |
Copyright terms: Public domain | W3C validator |