MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0pth Structured version   Visualization version   GIF version

Theorem 0pth 30111
Description: A pair of an empty set (of edges) and a second set (of vertices) is a path iff the second set contains exactly one vertex. (Contributed by Alexander van der Vekens, 30-Oct-2017.) (Revised by AV, 19-Jan-2021.) (Revised by AV, 30-Oct-2021.)
Hypothesis
Ref Expression
0pth.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
0pth (𝐺𝑊 → (∅(Paths‘𝐺)𝑃𝑃:(0...0)⟶𝑉))

Proof of Theorem 0pth
StepHypRef Expression
1 ispth 29708 . . 3 (∅(Paths‘𝐺)𝑃 ↔ (∅(Trails‘𝐺)𝑃 ∧ Fun (𝑃 ↾ (1..^(♯‘∅))) ∧ ((𝑃 “ {0, (♯‘∅)}) ∩ (𝑃 “ (1..^(♯‘∅)))) = ∅))
21a1i 11 . 2 (𝐺𝑊 → (∅(Paths‘𝐺)𝑃 ↔ (∅(Trails‘𝐺)𝑃 ∧ Fun (𝑃 ↾ (1..^(♯‘∅))) ∧ ((𝑃 “ {0, (♯‘∅)}) ∩ (𝑃 “ (1..^(♯‘∅)))) = ∅)))
3 3anass 1094 . . . 4 ((∅(Trails‘𝐺)𝑃 ∧ Fun (𝑃 ↾ (1..^(♯‘∅))) ∧ ((𝑃 “ {0, (♯‘∅)}) ∩ (𝑃 “ (1..^(♯‘∅)))) = ∅) ↔ (∅(Trails‘𝐺)𝑃 ∧ (Fun (𝑃 ↾ (1..^(♯‘∅))) ∧ ((𝑃 “ {0, (♯‘∅)}) ∩ (𝑃 “ (1..^(♯‘∅)))) = ∅)))
43a1i 11 . . 3 (𝐺𝑊 → ((∅(Trails‘𝐺)𝑃 ∧ Fun (𝑃 ↾ (1..^(♯‘∅))) ∧ ((𝑃 “ {0, (♯‘∅)}) ∩ (𝑃 “ (1..^(♯‘∅)))) = ∅) ↔ (∅(Trails‘𝐺)𝑃 ∧ (Fun (𝑃 ↾ (1..^(♯‘∅))) ∧ ((𝑃 “ {0, (♯‘∅)}) ∩ (𝑃 “ (1..^(♯‘∅)))) = ∅))))
5 funcnv0 6607 . . . . . 6 Fun
6 hash0 14390 . . . . . . . . . . . 12 (♯‘∅) = 0
7 0le1 11765 . . . . . . . . . . . 12 0 ≤ 1
86, 7eqbrtri 5145 . . . . . . . . . . 11 (♯‘∅) ≤ 1
9 1z 12627 . . . . . . . . . . . 12 1 ∈ ℤ
10 0z 12604 . . . . . . . . . . . . 13 0 ∈ ℤ
116, 10eqeltri 2831 . . . . . . . . . . . 12 (♯‘∅) ∈ ℤ
12 fzon 13702 . . . . . . . . . . . 12 ((1 ∈ ℤ ∧ (♯‘∅) ∈ ℤ) → ((♯‘∅) ≤ 1 ↔ (1..^(♯‘∅)) = ∅))
139, 11, 12mp2an 692 . . . . . . . . . . 11 ((♯‘∅) ≤ 1 ↔ (1..^(♯‘∅)) = ∅)
148, 13mpbi 230 . . . . . . . . . 10 (1..^(♯‘∅)) = ∅
1514reseq2i 5968 . . . . . . . . 9 (𝑃 ↾ (1..^(♯‘∅))) = (𝑃 ↾ ∅)
16 res0 5975 . . . . . . . . 9 (𝑃 ↾ ∅) = ∅
1715, 16eqtri 2759 . . . . . . . 8 (𝑃 ↾ (1..^(♯‘∅))) = ∅
1817cnveqi 5859 . . . . . . 7 (𝑃 ↾ (1..^(♯‘∅))) =
1918funeqi 6562 . . . . . 6 (Fun (𝑃 ↾ (1..^(♯‘∅))) ↔ Fun ∅)
205, 19mpbir 231 . . . . 5 Fun (𝑃 ↾ (1..^(♯‘∅)))
2114imaeq2i 6050 . . . . . . . 8 (𝑃 “ (1..^(♯‘∅))) = (𝑃 “ ∅)
22 ima0 6069 . . . . . . . 8 (𝑃 “ ∅) = ∅
2321, 22eqtri 2759 . . . . . . 7 (𝑃 “ (1..^(♯‘∅))) = ∅
2423ineq2i 4197 . . . . . 6 ((𝑃 “ {0, (♯‘∅)}) ∩ (𝑃 “ (1..^(♯‘∅)))) = ((𝑃 “ {0, (♯‘∅)}) ∩ ∅)
25 in0 4375 . . . . . 6 ((𝑃 “ {0, (♯‘∅)}) ∩ ∅) = ∅
2624, 25eqtri 2759 . . . . 5 ((𝑃 “ {0, (♯‘∅)}) ∩ (𝑃 “ (1..^(♯‘∅)))) = ∅
2720, 26pm3.2i 470 . . . 4 (Fun (𝑃 ↾ (1..^(♯‘∅))) ∧ ((𝑃 “ {0, (♯‘∅)}) ∩ (𝑃 “ (1..^(♯‘∅)))) = ∅)
2827biantru 529 . . 3 (∅(Trails‘𝐺)𝑃 ↔ (∅(Trails‘𝐺)𝑃 ∧ (Fun (𝑃 ↾ (1..^(♯‘∅))) ∧ ((𝑃 “ {0, (♯‘∅)}) ∩ (𝑃 “ (1..^(♯‘∅)))) = ∅)))
294, 28bitr4di 289 . 2 (𝐺𝑊 → ((∅(Trails‘𝐺)𝑃 ∧ Fun (𝑃 ↾ (1..^(♯‘∅))) ∧ ((𝑃 “ {0, (♯‘∅)}) ∩ (𝑃 “ (1..^(♯‘∅)))) = ∅) ↔ ∅(Trails‘𝐺)𝑃))
30 0pth.v . . 3 𝑉 = (Vtx‘𝐺)
31300trl 30108 . 2 (𝐺𝑊 → (∅(Trails‘𝐺)𝑃𝑃:(0...0)⟶𝑉))
322, 29, 313bitrd 305 1 (𝐺𝑊 → (∅(Paths‘𝐺)𝑃𝑃:(0...0)⟶𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  cin 3930  c0 4313  {cpr 4608   class class class wbr 5124  ccnv 5658  cres 5661  cima 5662  Fun wfun 6530  wf 6532  cfv 6536  (class class class)co 7410  0cc0 11134  1c1 11135  cle 11275  cz 12593  ...cfz 13529  ..^cfzo 13676  chash 14353  Vtxcvtx 28980  Trailsctrls 29675  Pathscpths 29697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-map 8847  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-n0 12507  df-z 12594  df-uz 12858  df-fz 13530  df-fzo 13677  df-hash 14354  df-word 14537  df-wlks 29584  df-trls 29677  df-pths 29701
This theorem is referenced by:  0pthon  30113  0cycl  30120
  Copyright terms: Public domain W3C validator