Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0pth | Structured version Visualization version GIF version |
Description: A pair of an empty set (of edges) and a second set (of vertices) is a path iff the second set contains exactly one vertex. (Contributed by Alexander van der Vekens, 30-Oct-2017.) (Revised by AV, 19-Jan-2021.) (Revised by AV, 30-Oct-2021.) |
Ref | Expression |
---|---|
0pth.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
0pth | ⊢ (𝐺 ∈ 𝑊 → (∅(Paths‘𝐺)𝑃 ↔ 𝑃:(0...0)⟶𝑉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ispth 28091 | . . 3 ⊢ (∅(Paths‘𝐺)𝑃 ↔ (∅(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1..^(♯‘∅))) ∧ ((𝑃 “ {0, (♯‘∅)}) ∩ (𝑃 “ (1..^(♯‘∅)))) = ∅)) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝐺 ∈ 𝑊 → (∅(Paths‘𝐺)𝑃 ↔ (∅(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1..^(♯‘∅))) ∧ ((𝑃 “ {0, (♯‘∅)}) ∩ (𝑃 “ (1..^(♯‘∅)))) = ∅))) |
3 | 3anass 1094 | . . . 4 ⊢ ((∅(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1..^(♯‘∅))) ∧ ((𝑃 “ {0, (♯‘∅)}) ∩ (𝑃 “ (1..^(♯‘∅)))) = ∅) ↔ (∅(Trails‘𝐺)𝑃 ∧ (Fun ◡(𝑃 ↾ (1..^(♯‘∅))) ∧ ((𝑃 “ {0, (♯‘∅)}) ∩ (𝑃 “ (1..^(♯‘∅)))) = ∅))) | |
4 | 3 | a1i 11 | . . 3 ⊢ (𝐺 ∈ 𝑊 → ((∅(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1..^(♯‘∅))) ∧ ((𝑃 “ {0, (♯‘∅)}) ∩ (𝑃 “ (1..^(♯‘∅)))) = ∅) ↔ (∅(Trails‘𝐺)𝑃 ∧ (Fun ◡(𝑃 ↾ (1..^(♯‘∅))) ∧ ((𝑃 “ {0, (♯‘∅)}) ∩ (𝑃 “ (1..^(♯‘∅)))) = ∅)))) |
5 | funcnv0 6500 | . . . . . 6 ⊢ Fun ◡∅ | |
6 | hash0 14082 | . . . . . . . . . . . 12 ⊢ (♯‘∅) = 0 | |
7 | 0le1 11498 | . . . . . . . . . . . 12 ⊢ 0 ≤ 1 | |
8 | 6, 7 | eqbrtri 5095 | . . . . . . . . . . 11 ⊢ (♯‘∅) ≤ 1 |
9 | 1z 12350 | . . . . . . . . . . . 12 ⊢ 1 ∈ ℤ | |
10 | 0z 12330 | . . . . . . . . . . . . 13 ⊢ 0 ∈ ℤ | |
11 | 6, 10 | eqeltri 2835 | . . . . . . . . . . . 12 ⊢ (♯‘∅) ∈ ℤ |
12 | fzon 13408 | . . . . . . . . . . . 12 ⊢ ((1 ∈ ℤ ∧ (♯‘∅) ∈ ℤ) → ((♯‘∅) ≤ 1 ↔ (1..^(♯‘∅)) = ∅)) | |
13 | 9, 11, 12 | mp2an 689 | . . . . . . . . . . 11 ⊢ ((♯‘∅) ≤ 1 ↔ (1..^(♯‘∅)) = ∅) |
14 | 8, 13 | mpbi 229 | . . . . . . . . . 10 ⊢ (1..^(♯‘∅)) = ∅ |
15 | 14 | reseq2i 5888 | . . . . . . . . 9 ⊢ (𝑃 ↾ (1..^(♯‘∅))) = (𝑃 ↾ ∅) |
16 | res0 5895 | . . . . . . . . 9 ⊢ (𝑃 ↾ ∅) = ∅ | |
17 | 15, 16 | eqtri 2766 | . . . . . . . 8 ⊢ (𝑃 ↾ (1..^(♯‘∅))) = ∅ |
18 | 17 | cnveqi 5783 | . . . . . . 7 ⊢ ◡(𝑃 ↾ (1..^(♯‘∅))) = ◡∅ |
19 | 18 | funeqi 6455 | . . . . . 6 ⊢ (Fun ◡(𝑃 ↾ (1..^(♯‘∅))) ↔ Fun ◡∅) |
20 | 5, 19 | mpbir 230 | . . . . 5 ⊢ Fun ◡(𝑃 ↾ (1..^(♯‘∅))) |
21 | 14 | imaeq2i 5967 | . . . . . . . 8 ⊢ (𝑃 “ (1..^(♯‘∅))) = (𝑃 “ ∅) |
22 | ima0 5985 | . . . . . . . 8 ⊢ (𝑃 “ ∅) = ∅ | |
23 | 21, 22 | eqtri 2766 | . . . . . . 7 ⊢ (𝑃 “ (1..^(♯‘∅))) = ∅ |
24 | 23 | ineq2i 4143 | . . . . . 6 ⊢ ((𝑃 “ {0, (♯‘∅)}) ∩ (𝑃 “ (1..^(♯‘∅)))) = ((𝑃 “ {0, (♯‘∅)}) ∩ ∅) |
25 | in0 4325 | . . . . . 6 ⊢ ((𝑃 “ {0, (♯‘∅)}) ∩ ∅) = ∅ | |
26 | 24, 25 | eqtri 2766 | . . . . 5 ⊢ ((𝑃 “ {0, (♯‘∅)}) ∩ (𝑃 “ (1..^(♯‘∅)))) = ∅ |
27 | 20, 26 | pm3.2i 471 | . . . 4 ⊢ (Fun ◡(𝑃 ↾ (1..^(♯‘∅))) ∧ ((𝑃 “ {0, (♯‘∅)}) ∩ (𝑃 “ (1..^(♯‘∅)))) = ∅) |
28 | 27 | biantru 530 | . . 3 ⊢ (∅(Trails‘𝐺)𝑃 ↔ (∅(Trails‘𝐺)𝑃 ∧ (Fun ◡(𝑃 ↾ (1..^(♯‘∅))) ∧ ((𝑃 “ {0, (♯‘∅)}) ∩ (𝑃 “ (1..^(♯‘∅)))) = ∅))) |
29 | 4, 28 | bitr4di 289 | . 2 ⊢ (𝐺 ∈ 𝑊 → ((∅(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1..^(♯‘∅))) ∧ ((𝑃 “ {0, (♯‘∅)}) ∩ (𝑃 “ (1..^(♯‘∅)))) = ∅) ↔ ∅(Trails‘𝐺)𝑃)) |
30 | 0pth.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
31 | 30 | 0trl 28486 | . 2 ⊢ (𝐺 ∈ 𝑊 → (∅(Trails‘𝐺)𝑃 ↔ 𝑃:(0...0)⟶𝑉)) |
32 | 2, 29, 31 | 3bitrd 305 | 1 ⊢ (𝐺 ∈ 𝑊 → (∅(Paths‘𝐺)𝑃 ↔ 𝑃:(0...0)⟶𝑉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ∩ cin 3886 ∅c0 4256 {cpr 4563 class class class wbr 5074 ◡ccnv 5588 ↾ cres 5591 “ cima 5592 Fun wfun 6427 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 0cc0 10871 1c1 10872 ≤ cle 11010 ℤcz 12319 ...cfz 13239 ..^cfzo 13382 ♯chash 14044 Vtxcvtx 27366 Trailsctrls 28058 Pathscpths 28080 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ifp 1061 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-pm 8618 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-n0 12234 df-z 12320 df-uz 12583 df-fz 13240 df-fzo 13383 df-hash 14045 df-word 14218 df-wlks 27966 df-trls 28060 df-pths 28084 |
This theorem is referenced by: 0pthon 28491 0cycl 28498 |
Copyright terms: Public domain | W3C validator |