Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  0pth Structured version   Visualization version   GIF version

Theorem 0pth 27502
 Description: A pair of an empty set (of edges) and a second set (of vertices) is a path iff the second set contains exactly one vertex. (Contributed by Alexander van der Vekens, 30-Oct-2017.) (Revised by AV, 19-Jan-2021.) (Revised by AV, 30-Oct-2021.)
Hypothesis
Ref Expression
0pth.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
0pth (𝐺𝑊 → (∅(Paths‘𝐺)𝑃𝑃:(0...0)⟶𝑉))

Proof of Theorem 0pth
StepHypRef Expression
1 ispth 27026 . . 3 (∅(Paths‘𝐺)𝑃 ↔ (∅(Trails‘𝐺)𝑃 ∧ Fun (𝑃 ↾ (1..^(♯‘∅))) ∧ ((𝑃 “ {0, (♯‘∅)}) ∩ (𝑃 “ (1..^(♯‘∅)))) = ∅))
21a1i 11 . 2 (𝐺𝑊 → (∅(Paths‘𝐺)𝑃 ↔ (∅(Trails‘𝐺)𝑃 ∧ Fun (𝑃 ↾ (1..^(♯‘∅))) ∧ ((𝑃 “ {0, (♯‘∅)}) ∩ (𝑃 “ (1..^(♯‘∅)))) = ∅)))
3 3anass 1122 . . . 4 ((∅(Trails‘𝐺)𝑃 ∧ Fun (𝑃 ↾ (1..^(♯‘∅))) ∧ ((𝑃 “ {0, (♯‘∅)}) ∩ (𝑃 “ (1..^(♯‘∅)))) = ∅) ↔ (∅(Trails‘𝐺)𝑃 ∧ (Fun (𝑃 ↾ (1..^(♯‘∅))) ∧ ((𝑃 “ {0, (♯‘∅)}) ∩ (𝑃 “ (1..^(♯‘∅)))) = ∅)))
43a1i 11 . . 3 (𝐺𝑊 → ((∅(Trails‘𝐺)𝑃 ∧ Fun (𝑃 ↾ (1..^(♯‘∅))) ∧ ((𝑃 “ {0, (♯‘∅)}) ∩ (𝑃 “ (1..^(♯‘∅)))) = ∅) ↔ (∅(Trails‘𝐺)𝑃 ∧ (Fun (𝑃 ↾ (1..^(♯‘∅))) ∧ ((𝑃 “ {0, (♯‘∅)}) ∩ (𝑃 “ (1..^(♯‘∅)))) = ∅))))
5 funcnv0 6189 . . . . . 6 Fun
6 hash0 13449 . . . . . . . . . . . 12 (♯‘∅) = 0
7 0le1 10876 . . . . . . . . . . . 12 0 ≤ 1
86, 7eqbrtri 4895 . . . . . . . . . . 11 (♯‘∅) ≤ 1
9 1z 11736 . . . . . . . . . . . 12 1 ∈ ℤ
10 0z 11716 . . . . . . . . . . . . 13 0 ∈ ℤ
116, 10eqeltri 2903 . . . . . . . . . . . 12 (♯‘∅) ∈ ℤ
12 fzon 12785 . . . . . . . . . . . 12 ((1 ∈ ℤ ∧ (♯‘∅) ∈ ℤ) → ((♯‘∅) ≤ 1 ↔ (1..^(♯‘∅)) = ∅))
139, 11, 12mp2an 685 . . . . . . . . . . 11 ((♯‘∅) ≤ 1 ↔ (1..^(♯‘∅)) = ∅)
148, 13mpbi 222 . . . . . . . . . 10 (1..^(♯‘∅)) = ∅
1514reseq2i 5627 . . . . . . . . 9 (𝑃 ↾ (1..^(♯‘∅))) = (𝑃 ↾ ∅)
16 res0 5634 . . . . . . . . 9 (𝑃 ↾ ∅) = ∅
1715, 16eqtri 2850 . . . . . . . 8 (𝑃 ↾ (1..^(♯‘∅))) = ∅
1817cnveqi 5530 . . . . . . 7 (𝑃 ↾ (1..^(♯‘∅))) =
1918funeqi 6145 . . . . . 6 (Fun (𝑃 ↾ (1..^(♯‘∅))) ↔ Fun ∅)
205, 19mpbir 223 . . . . 5 Fun (𝑃 ↾ (1..^(♯‘∅)))
2114imaeq2i 5706 . . . . . . . 8 (𝑃 “ (1..^(♯‘∅))) = (𝑃 “ ∅)
22 ima0 5723 . . . . . . . 8 (𝑃 “ ∅) = ∅
2321, 22eqtri 2850 . . . . . . 7 (𝑃 “ (1..^(♯‘∅))) = ∅
2423ineq2i 4039 . . . . . 6 ((𝑃 “ {0, (♯‘∅)}) ∩ (𝑃 “ (1..^(♯‘∅)))) = ((𝑃 “ {0, (♯‘∅)}) ∩ ∅)
25 in0 4194 . . . . . 6 ((𝑃 “ {0, (♯‘∅)}) ∩ ∅) = ∅
2624, 25eqtri 2850 . . . . 5 ((𝑃 “ {0, (♯‘∅)}) ∩ (𝑃 “ (1..^(♯‘∅)))) = ∅
2720, 26pm3.2i 464 . . . 4 (Fun (𝑃 ↾ (1..^(♯‘∅))) ∧ ((𝑃 “ {0, (♯‘∅)}) ∩ (𝑃 “ (1..^(♯‘∅)))) = ∅)
2827biantru 527 . . 3 (∅(Trails‘𝐺)𝑃 ↔ (∅(Trails‘𝐺)𝑃 ∧ (Fun (𝑃 ↾ (1..^(♯‘∅))) ∧ ((𝑃 “ {0, (♯‘∅)}) ∩ (𝑃 “ (1..^(♯‘∅)))) = ∅)))
294, 28syl6bbr 281 . 2 (𝐺𝑊 → ((∅(Trails‘𝐺)𝑃 ∧ Fun (𝑃 ↾ (1..^(♯‘∅))) ∧ ((𝑃 “ {0, (♯‘∅)}) ∩ (𝑃 “ (1..^(♯‘∅)))) = ∅) ↔ ∅(Trails‘𝐺)𝑃))
30 0pth.v . . 3 𝑉 = (Vtx‘𝐺)
31300trl 27499 . 2 (𝐺𝑊 → (∅(Trails‘𝐺)𝑃𝑃:(0...0)⟶𝑉))
322, 29, 313bitrd 297 1 (𝐺𝑊 → (∅(Paths‘𝐺)𝑃𝑃:(0...0)⟶𝑉))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 198   ∧ wa 386   ∧ w3a 1113   = wceq 1658   ∈ wcel 2166   ∩ cin 3798  ∅c0 4145  {cpr 4400   class class class wbr 4874  ◡ccnv 5342   ↾ cres 5345   “ cima 5346  Fun wfun 6118  ⟶wf 6120  ‘cfv 6124  (class class class)co 6906  0cc0 10253  1c1 10254   ≤ cle 10393  ℤcz 11705  ...cfz 12620  ..^cfzo 12761  ♯chash 13411  Vtxcvtx 26295  Trailsctrls 26992  Pathscpths 27015 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2804  ax-rep 4995  ax-sep 5006  ax-nul 5014  ax-pow 5066  ax-pr 5128  ax-un 7210  ax-cnex 10309  ax-resscn 10310  ax-1cn 10311  ax-icn 10312  ax-addcl 10313  ax-addrcl 10314  ax-mulcl 10315  ax-mulrcl 10316  ax-mulcom 10317  ax-addass 10318  ax-mulass 10319  ax-distr 10320  ax-i2m1 10321  ax-1ne0 10322  ax-1rid 10323  ax-rnegex 10324  ax-rrecex 10325  ax-cnre 10326  ax-pre-lttri 10327  ax-pre-lttrn 10328  ax-pre-ltadd 10329  ax-pre-mulgt0 10330 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-ifp 1092  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2606  df-eu 2641  df-clab 2813  df-cleq 2819  df-clel 2822  df-nfc 2959  df-ne 3001  df-nel 3104  df-ral 3123  df-rex 3124  df-reu 3125  df-rab 3127  df-v 3417  df-sbc 3664  df-csb 3759  df-dif 3802  df-un 3804  df-in 3806  df-ss 3813  df-pss 3815  df-nul 4146  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4660  df-int 4699  df-iun 4743  df-br 4875  df-opab 4937  df-mpt 4954  df-tr 4977  df-id 5251  df-eprel 5256  df-po 5264  df-so 5265  df-fr 5302  df-we 5304  df-xp 5349  df-rel 5350  df-cnv 5351  df-co 5352  df-dm 5353  df-rn 5354  df-res 5355  df-ima 5356  df-pred 5921  df-ord 5967  df-on 5968  df-lim 5969  df-suc 5970  df-iota 6087  df-fun 6126  df-fn 6127  df-f 6128  df-f1 6129  df-fo 6130  df-f1o 6131  df-fv 6132  df-riota 6867  df-ov 6909  df-oprab 6910  df-mpt2 6911  df-om 7328  df-1st 7429  df-2nd 7430  df-wrecs 7673  df-recs 7735  df-rdg 7773  df-1o 7827  df-er 8010  df-map 8125  df-pm 8126  df-en 8224  df-dom 8225  df-sdom 8226  df-fin 8227  df-card 9079  df-pnf 10394  df-mnf 10395  df-xr 10396  df-ltxr 10397  df-le 10398  df-sub 10588  df-neg 10589  df-nn 11352  df-n0 11620  df-z 11706  df-uz 11970  df-fz 12621  df-fzo 12762  df-hash 13412  df-word 13576  df-wlks 26898  df-trls 26994  df-pths 27019 This theorem is referenced by:  0pthon  27504  0cycl  27511
 Copyright terms: Public domain W3C validator