![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f10 | Structured version Visualization version GIF version |
Description: The empty set maps one-to-one into any class. (Contributed by NM, 7-Apr-1998.) |
Ref | Expression |
---|---|
f10 | ⊢ ∅:∅–1-1→𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f0 6802 | . 2 ⊢ ∅:∅⟶𝐴 | |
2 | funcnv0 6644 | . 2 ⊢ Fun ◡∅ | |
3 | df-f1 6578 | . 2 ⊢ (∅:∅–1-1→𝐴 ↔ (∅:∅⟶𝐴 ∧ Fun ◡∅)) | |
4 | 1, 2, 3 | mpbir2an 710 | 1 ⊢ ∅:∅–1-1→𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∅c0 4352 ◡ccnv 5699 Fun wfun 6567 ⟶wf 6569 –1-1→wf1 6570 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 |
This theorem is referenced by: f10d 6896 fo00 6898 0domg 9166 marypha1lem 9502 hashf1 14506 usgr0 29278 f102g 48565 |
Copyright terms: Public domain | W3C validator |