MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f10 Structured version   Visualization version   GIF version

Theorem f10 6851
Description: The empty set maps one-to-one into any class. (Contributed by NM, 7-Apr-1998.)
Assertion
Ref Expression
f10 ∅:∅–1-1𝐴

Proof of Theorem f10
StepHypRef Expression
1 f0 6759 . 2 ∅:∅⟶𝐴
2 funcnv0 6602 . 2 Fun
3 df-f1 6536 . 2 (∅:∅–1-1𝐴 ↔ (∅:∅⟶𝐴 ∧ Fun ∅))
41, 2, 3mpbir2an 711 1 ∅:∅–1-1𝐴
Colors of variables: wff setvar class
Syntax hints:  c0 4308  ccnv 5653  Fun wfun 6525  wf 6527  1-1wf1 6528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-opab 5182  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536
This theorem is referenced by:  f10d  6852  fo00  6854  0domg  9114  marypha1lem  9445  hashf1  14475  usgr0  29222  f102g  48830
  Copyright terms: Public domain W3C validator