| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f10 | Structured version Visualization version GIF version | ||
| Description: The empty set maps one-to-one into any class. (Contributed by NM, 7-Apr-1998.) |
| Ref | Expression |
|---|---|
| f10 | ⊢ ∅:∅–1-1→𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f0 6699 | . 2 ⊢ ∅:∅⟶𝐴 | |
| 2 | funcnv0 6542 | . 2 ⊢ Fun ◡∅ | |
| 3 | df-f1 6481 | . 2 ⊢ (∅:∅–1-1→𝐴 ↔ (∅:∅⟶𝐴 ∧ Fun ◡∅)) | |
| 4 | 1, 2, 3 | mpbir2an 711 | 1 ⊢ ∅:∅–1-1→𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∅c0 4278 ◡ccnv 5610 Fun wfun 6470 ⟶wf 6472 –1-1→wf1 6473 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2535 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-br 5087 df-opab 5149 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 |
| This theorem is referenced by: f10d 6792 fo00 6794 0domg 9012 marypha1lem 9312 hashf1 14359 usgr0 29216 f102g 48883 |
| Copyright terms: Public domain | W3C validator |