MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f10 Structured version   Visualization version   GIF version

Theorem f10 6751
Description: The empty set maps one-to-one into any class. (Contributed by NM, 7-Apr-1998.)
Assertion
Ref Expression
f10 ∅:∅–1-1𝐴

Proof of Theorem f10
StepHypRef Expression
1 f0 6657 . 2 ∅:∅⟶𝐴
2 funcnv0 6502 . 2 Fun
3 df-f1 6440 . 2 (∅:∅–1-1𝐴 ↔ (∅:∅⟶𝐴 ∧ Fun ∅))
41, 2, 3mpbir2an 708 1 ∅:∅–1-1𝐴
Colors of variables: wff setvar class
Syntax hints:  c0 4258  ccnv 5590  Fun wfun 6429  wf 6431  1-1wf1 6432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5225  ax-nul 5232  ax-pr 5354
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3433  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-nul 4259  df-if 4462  df-sn 4564  df-pr 4566  df-op 4570  df-br 5077  df-opab 5139  df-id 5491  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-fun 6437  df-fn 6438  df-f 6439  df-f1 6440
This theorem is referenced by:  f10d  6752  fo00  6754  0domg  8885  marypha1lem  9190  hashf1  14169  usgr0  27608  f102g  46146
  Copyright terms: Public domain W3C validator