| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f10 | Structured version Visualization version GIF version | ||
| Description: The empty set maps one-to-one into any class. (Contributed by NM, 7-Apr-1998.) |
| Ref | Expression |
|---|---|
| f10 | ⊢ ∅:∅–1-1→𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f0 6712 | . 2 ⊢ ∅:∅⟶𝐴 | |
| 2 | funcnv0 6555 | . 2 ⊢ Fun ◡∅ | |
| 3 | df-f1 6494 | . 2 ⊢ (∅:∅–1-1→𝐴 ↔ (∅:∅⟶𝐴 ∧ Fun ◡∅)) | |
| 4 | 1, 2, 3 | mpbir2an 711 | 1 ⊢ ∅:∅–1-1→𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∅c0 4282 ◡ccnv 5620 Fun wfun 6483 ⟶wf 6485 –1-1→wf1 6486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2537 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 |
| This theorem is referenced by: f10d 6805 fo00 6807 0domg 9028 marypha1lem 9328 hashf1 14371 usgr0 29242 f102g 49013 |
| Copyright terms: Public domain | W3C validator |