| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f10 | Structured version Visualization version GIF version | ||
| Description: The empty set maps one-to-one into any class. (Contributed by NM, 7-Apr-1998.) |
| Ref | Expression |
|---|---|
| f10 | ⊢ ∅:∅–1-1→𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f0 6759 | . 2 ⊢ ∅:∅⟶𝐴 | |
| 2 | funcnv0 6602 | . 2 ⊢ Fun ◡∅ | |
| 3 | df-f1 6536 | . 2 ⊢ (∅:∅–1-1→𝐴 ↔ (∅:∅⟶𝐴 ∧ Fun ◡∅)) | |
| 4 | 1, 2, 3 | mpbir2an 711 | 1 ⊢ ∅:∅–1-1→𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∅c0 4308 ◡ccnv 5653 Fun wfun 6525 ⟶wf 6527 –1-1→wf1 6528 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 |
| This theorem is referenced by: f10d 6852 fo00 6854 0domg 9114 marypha1lem 9445 hashf1 14475 usgr0 29222 f102g 48830 |
| Copyright terms: Public domain | W3C validator |