MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f10 Structured version   Visualization version   GIF version

Theorem f10 6478
Description: The empty set maps one-to-one into any class. (Contributed by NM, 7-Apr-1998.)
Assertion
Ref Expression
f10 ∅:∅–1-1𝐴

Proof of Theorem f10
StepHypRef Expression
1 f0 6391 . 2 ∅:∅⟶𝐴
2 funcnv0 6255 . 2 Fun
3 df-f1 6195 . 2 (∅:∅–1-1𝐴 ↔ (∅:∅⟶𝐴 ∧ Fun ∅))
41, 2, 3mpbir2an 698 1 ∅:∅–1-1𝐴
Colors of variables: wff setvar class
Syntax hints:  c0 4180  ccnv 5407  Fun wfun 6184  wf 6186  1-1wf1 6187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-sep 5061  ax-nul 5068  ax-pr 5187
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2583  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ral 3093  df-rex 3094  df-rab 3097  df-v 3417  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-nul 4181  df-if 4352  df-sn 4443  df-pr 4445  df-op 4449  df-br 4931  df-opab 4993  df-id 5313  df-xp 5414  df-rel 5415  df-cnv 5416  df-co 5417  df-dm 5418  df-rn 5419  df-fun 6192  df-fn 6193  df-f 6194  df-f1 6195
This theorem is referenced by:  f10d  6479  fo00  6481  marypha1lem  8694  hashf1  13631  usgr0  26731
  Copyright terms: Public domain W3C validator