Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > f10 | Structured version Visualization version GIF version |
Description: The empty set maps one-to-one into any class. (Contributed by NM, 7-Apr-1998.) |
Ref | Expression |
---|---|
f10 | ⊢ ∅:∅–1-1→𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f0 6655 | . 2 ⊢ ∅:∅⟶𝐴 | |
2 | funcnv0 6500 | . 2 ⊢ Fun ◡∅ | |
3 | df-f1 6438 | . 2 ⊢ (∅:∅–1-1→𝐴 ↔ (∅:∅⟶𝐴 ∧ Fun ◡∅)) | |
4 | 1, 2, 3 | mpbir2an 708 | 1 ⊢ ∅:∅–1-1→𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∅c0 4256 ◡ccnv 5588 Fun wfun 6427 ⟶wf 6429 –1-1→wf1 6430 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 |
This theorem is referenced by: f10d 6750 fo00 6752 0domg 8887 marypha1lem 9192 hashf1 14171 usgr0 27610 f102g 46179 |
Copyright terms: Public domain | W3C validator |