| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f10 | Structured version Visualization version GIF version | ||
| Description: The empty set maps one-to-one into any class. (Contributed by NM, 7-Apr-1998.) |
| Ref | Expression |
|---|---|
| f10 | ⊢ ∅:∅–1-1→𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f0 6744 | . 2 ⊢ ∅:∅⟶𝐴 | |
| 2 | funcnv0 6585 | . 2 ⊢ Fun ◡∅ | |
| 3 | df-f1 6519 | . 2 ⊢ (∅:∅–1-1→𝐴 ↔ (∅:∅⟶𝐴 ∧ Fun ◡∅)) | |
| 4 | 1, 2, 3 | mpbir2an 711 | 1 ⊢ ∅:∅–1-1→𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∅c0 4299 ◡ccnv 5640 Fun wfun 6508 ⟶wf 6510 –1-1→wf1 6511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 |
| This theorem is referenced by: f10d 6837 fo00 6839 0domg 9074 marypha1lem 9391 hashf1 14429 usgr0 29177 f102g 48844 |
| Copyright terms: Public domain | W3C validator |