![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f10 | Structured version Visualization version GIF version |
Description: The empty set maps one-to-one into any class. (Contributed by NM, 7-Apr-1998.) |
Ref | Expression |
---|---|
f10 | ⊢ ∅:∅–1-1→𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f0 6391 | . 2 ⊢ ∅:∅⟶𝐴 | |
2 | funcnv0 6255 | . 2 ⊢ Fun ◡∅ | |
3 | df-f1 6195 | . 2 ⊢ (∅:∅–1-1→𝐴 ↔ (∅:∅⟶𝐴 ∧ Fun ◡∅)) | |
4 | 1, 2, 3 | mpbir2an 698 | 1 ⊢ ∅:∅–1-1→𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∅c0 4180 ◡ccnv 5407 Fun wfun 6184 ⟶wf 6186 –1-1→wf1 6187 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-sep 5061 ax-nul 5068 ax-pr 5187 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2583 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ral 3093 df-rex 3094 df-rab 3097 df-v 3417 df-dif 3834 df-un 3836 df-in 3838 df-ss 3845 df-nul 4181 df-if 4352 df-sn 4443 df-pr 4445 df-op 4449 df-br 4931 df-opab 4993 df-id 5313 df-xp 5414 df-rel 5415 df-cnv 5416 df-co 5417 df-dm 5418 df-rn 5419 df-fun 6192 df-fn 6193 df-f 6194 df-f1 6195 |
This theorem is referenced by: f10d 6479 fo00 6481 marypha1lem 8694 hashf1 13631 usgr0 26731 |
Copyright terms: Public domain | W3C validator |