MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f10 Structured version   Visualization version   GIF version

Theorem f10 6836
Description: The empty set maps one-to-one into any class. (Contributed by NM, 7-Apr-1998.)
Assertion
Ref Expression
f10 ∅:∅–1-1𝐴

Proof of Theorem f10
StepHypRef Expression
1 f0 6744 . 2 ∅:∅⟶𝐴
2 funcnv0 6585 . 2 Fun
3 df-f1 6519 . 2 (∅:∅–1-1𝐴 ↔ (∅:∅⟶𝐴 ∧ Fun ∅))
41, 2, 3mpbir2an 711 1 ∅:∅–1-1𝐴
Colors of variables: wff setvar class
Syntax hints:  c0 4299  ccnv 5640  Fun wfun 6508  wf 6510  1-1wf1 6511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519
This theorem is referenced by:  f10d  6837  fo00  6839  0domg  9074  marypha1lem  9391  hashf1  14429  usgr0  29177  f102g  48844
  Copyright terms: Public domain W3C validator