MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fun0 Structured version   Visualization version   GIF version

Theorem fun0 6395
Description: The empty set is a function. Theorem 10.3 of [Quine] p. 65. (Contributed by NM, 7-Apr-1998.)
Assertion
Ref Expression
fun0 Fun ∅

Proof of Theorem fun0
StepHypRef Expression
1 0ss 4326 . 2 ∅ ⊆ {⟨∅, ∅⟩}
2 0ex 5187 . . 3 ∅ ∈ V
32, 2funsn 6383 . 2 Fun {⟨∅, ∅⟩}
4 funss 6350 . 2 (∅ ⊆ {⟨∅, ∅⟩} → (Fun {⟨∅, ∅⟩} → Fun ∅))
51, 3, 4mp2 9 1 Fun ∅
Colors of variables: wff setvar class
Syntax hints:  wss 3913  c0 4269  {csn 4543  cop 4549  Fun wfun 6325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-sep 5179  ax-nul 5186  ax-pr 5306
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ral 3130  df-rex 3131  df-rab 3134  df-v 3475  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-nul 4270  df-if 4444  df-sn 4544  df-pr 4546  df-op 4550  df-br 5043  df-opab 5105  df-id 5436  df-xp 5537  df-rel 5538  df-cnv 5539  df-co 5540  df-fun 6333
This theorem is referenced by:  funcnv0  6396  fn0  6455  0fsupp  8833  strle1  16571  lubfun  17569  glbfun  17582  1pthdlem1  27899
  Copyright terms: Public domain W3C validator