MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fun0 Structured version   Visualization version   GIF version

Theorem fun0 6601
Description: The empty set is a function. Theorem 10.3 of [Quine] p. 65. (Contributed by NM, 7-Apr-1998.)
Assertion
Ref Expression
fun0 Fun ∅

Proof of Theorem fun0
StepHypRef Expression
1 0ss 4375 . 2 ∅ ⊆ {⟨∅, ∅⟩}
2 0ex 5277 . . 3 ∅ ∈ V
32, 2funsn 6589 . 2 Fun {⟨∅, ∅⟩}
4 funss 6555 . 2 (∅ ⊆ {⟨∅, ∅⟩} → (Fun {⟨∅, ∅⟩} → Fun ∅))
51, 3, 4mp2 9 1 Fun ∅
Colors of variables: wff setvar class
Syntax hints:  wss 3926  c0 4308  {csn 4601  cop 4607  Fun wfun 6525
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-mo 2539  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-opab 5182  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-fun 6533
This theorem is referenced by:  funcnv0  6602  fn0  6669  0fsupp  9402  strle1  17177  lubfun  18362  glbfun  18375  1pthdlem1  30116  fineqvac  35128
  Copyright terms: Public domain W3C validator