| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fun0 | Structured version Visualization version GIF version | ||
| Description: The empty set is a function. Theorem 10.3 of [Quine] p. 65. (Contributed by NM, 7-Apr-1998.) |
| Ref | Expression |
|---|---|
| fun0 | ⊢ Fun ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ss 4363 | . 2 ⊢ ∅ ⊆ {〈∅, ∅〉} | |
| 2 | 0ex 5262 | . . 3 ⊢ ∅ ∈ V | |
| 3 | 2, 2 | funsn 6569 | . 2 ⊢ Fun {〈∅, ∅〉} |
| 4 | funss 6535 | . 2 ⊢ (∅ ⊆ {〈∅, ∅〉} → (Fun {〈∅, ∅〉} → Fun ∅)) | |
| 5 | 1, 3, 4 | mp2 9 | 1 ⊢ Fun ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3914 ∅c0 4296 {csn 4589 〈cop 4595 Fun wfun 6505 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2533 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-fun 6513 |
| This theorem is referenced by: funcnv0 6582 fn0 6649 0fsupp 9341 strle1 17128 lubfun 18311 glbfun 18324 1pthdlem1 30064 fineqvac 35087 |
| Copyright terms: Public domain | W3C validator |