| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fun0 | Structured version Visualization version GIF version | ||
| Description: The empty set is a function. Theorem 10.3 of [Quine] p. 65. (Contributed by NM, 7-Apr-1998.) |
| Ref | Expression |
|---|---|
| fun0 | ⊢ Fun ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ss 4349 | . 2 ⊢ ∅ ⊆ {〈∅, ∅〉} | |
| 2 | 0ex 5247 | . . 3 ⊢ ∅ ∈ V | |
| 3 | 2, 2 | funsn 6539 | . 2 ⊢ Fun {〈∅, ∅〉} |
| 4 | funss 6505 | . 2 ⊢ (∅ ⊆ {〈∅, ∅〉} → (Fun {〈∅, ∅〉} → Fun ∅)) | |
| 5 | 1, 3, 4 | mp2 9 | 1 ⊢ Fun ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3898 ∅c0 4282 {csn 4575 〈cop 4581 Fun wfun 6480 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2537 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-fun 6488 |
| This theorem is referenced by: funcnv0 6552 fn0 6617 0fsupp 9281 strle1 17071 lubfun 18258 glbfun 18271 1pthdlem1 30117 fineqvac 35160 |
| Copyright terms: Public domain | W3C validator |