Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fun0 | Structured version Visualization version GIF version |
Description: The empty set is a function. Theorem 10.3 of [Quine] p. 65. (Contributed by NM, 7-Apr-1998.) |
Ref | Expression |
---|---|
fun0 | ⊢ Fun ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 4330 | . 2 ⊢ ∅ ⊆ {〈∅, ∅〉} | |
2 | 0ex 5231 | . . 3 ⊢ ∅ ∈ V | |
3 | 2, 2 | funsn 6487 | . 2 ⊢ Fun {〈∅, ∅〉} |
4 | funss 6453 | . 2 ⊢ (∅ ⊆ {〈∅, ∅〉} → (Fun {〈∅, ∅〉} → Fun ∅)) | |
5 | 1, 3, 4 | mp2 9 | 1 ⊢ Fun ∅ |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3887 ∅c0 4256 {csn 4561 〈cop 4567 Fun wfun 6427 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-fun 6435 |
This theorem is referenced by: funcnv0 6500 fn0 6564 0fsupp 9150 strle1 16859 lubfun 18070 glbfun 18083 1pthdlem1 28499 fineqvac 33066 |
Copyright terms: Public domain | W3C validator |