| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fun0 | Structured version Visualization version GIF version | ||
| Description: The empty set is a function. Theorem 10.3 of [Quine] p. 65. (Contributed by NM, 7-Apr-1998.) |
| Ref | Expression |
|---|---|
| fun0 | ⊢ Fun ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ss 4375 | . 2 ⊢ ∅ ⊆ {〈∅, ∅〉} | |
| 2 | 0ex 5277 | . . 3 ⊢ ∅ ∈ V | |
| 3 | 2, 2 | funsn 6589 | . 2 ⊢ Fun {〈∅, ∅〉} |
| 4 | funss 6555 | . 2 ⊢ (∅ ⊆ {〈∅, ∅〉} → (Fun {〈∅, ∅〉} → Fun ∅)) | |
| 5 | 1, 3, 4 | mp2 9 | 1 ⊢ Fun ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3926 ∅c0 4308 {csn 4601 〈cop 4607 Fun wfun 6525 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-mo 2539 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-fun 6533 |
| This theorem is referenced by: funcnv0 6602 fn0 6669 0fsupp 9402 strle1 17177 lubfun 18362 glbfun 18375 1pthdlem1 30116 fineqvac 35128 |
| Copyright terms: Public domain | W3C validator |