![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fun0 | Structured version Visualization version GIF version |
Description: The empty set is a function. Theorem 10.3 of [Quine] p. 65. (Contributed by NM, 7-Apr-1998.) |
Ref | Expression |
---|---|
fun0 | ⊢ Fun ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 4423 | . 2 ⊢ ∅ ⊆ {〈∅, ∅〉} | |
2 | 0ex 5325 | . . 3 ⊢ ∅ ∈ V | |
3 | 2, 2 | funsn 6631 | . 2 ⊢ Fun {〈∅, ∅〉} |
4 | funss 6597 | . 2 ⊢ (∅ ⊆ {〈∅, ∅〉} → (Fun {〈∅, ∅〉} → Fun ∅)) | |
5 | 1, 3, 4 | mp2 9 | 1 ⊢ Fun ∅ |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3976 ∅c0 4352 {csn 4648 〈cop 4654 Fun wfun 6567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-mo 2543 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-fun 6575 |
This theorem is referenced by: funcnv0 6644 fn0 6711 0fsupp 9459 strle1 17205 lubfun 18422 glbfun 18435 1pthdlem1 30167 fineqvac 35073 |
Copyright terms: Public domain | W3C validator |