Proof of Theorem pthdlem1
Step | Hyp | Ref
| Expression |
1 | | pthd.p |
. . . . . . . 8
⊢ (𝜑 → 𝑃 ∈ Word V) |
2 | | wrdf 14150 |
. . . . . . . 8
⊢ (𝑃 ∈ Word V → 𝑃:(0..^(♯‘𝑃))⟶V) |
3 | 1, 2 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑃:(0..^(♯‘𝑃))⟶V) |
4 | | fzo0ss1 13345 |
. . . . . . . . 9
⊢
(1..^𝑅) ⊆
(0..^𝑅) |
5 | | pthd.r |
. . . . . . . . . . 11
⊢ 𝑅 = ((♯‘𝑃) − 1) |
6 | 5 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑅 = ((♯‘𝑃) − 1)) |
7 | 6 | oveq2d 7271 |
. . . . . . . . 9
⊢ (𝜑 → (0..^𝑅) = (0..^((♯‘𝑃) − 1))) |
8 | 4, 7 | sseqtrid 3969 |
. . . . . . . 8
⊢ (𝜑 → (1..^𝑅) ⊆ (0..^((♯‘𝑃) − 1))) |
9 | | lencl 14164 |
. . . . . . . . . 10
⊢ (𝑃 ∈ Word V →
(♯‘𝑃) ∈
ℕ0) |
10 | | nn0z 12273 |
. . . . . . . . . 10
⊢
((♯‘𝑃)
∈ ℕ0 → (♯‘𝑃) ∈ ℤ) |
11 | 1, 9, 10 | 3syl 18 |
. . . . . . . . 9
⊢ (𝜑 → (♯‘𝑃) ∈
ℤ) |
12 | | fzossrbm1 13344 |
. . . . . . . . 9
⊢
((♯‘𝑃)
∈ ℤ → (0..^((♯‘𝑃) − 1)) ⊆
(0..^(♯‘𝑃))) |
13 | 11, 12 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (0..^((♯‘𝑃) − 1)) ⊆
(0..^(♯‘𝑃))) |
14 | 8, 13 | sstrd 3927 |
. . . . . . 7
⊢ (𝜑 → (1..^𝑅) ⊆ (0..^(♯‘𝑃))) |
15 | 3, 14 | fssresd 6625 |
. . . . . 6
⊢ (𝜑 → (𝑃 ↾ (1..^𝑅)):(1..^𝑅)⟶V) |
16 | 15 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 1 <
((♯‘𝑃) −
1)) → (𝑃 ↾
(1..^𝑅)):(1..^𝑅)⟶V) |
17 | | pthd.s |
. . . . . . 7
⊢ (𝜑 → ∀𝑖 ∈ (0..^(♯‘𝑃))∀𝑗 ∈ (1..^𝑅)(𝑖 ≠ 𝑗 → (𝑃‘𝑖) ≠ (𝑃‘𝑗))) |
18 | 17 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 1 <
((♯‘𝑃) −
1)) → ∀𝑖 ∈
(0..^(♯‘𝑃))∀𝑗 ∈ (1..^𝑅)(𝑖 ≠ 𝑗 → (𝑃‘𝑖) ≠ (𝑃‘𝑗))) |
19 | 1, 9 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (♯‘𝑃) ∈
ℕ0) |
20 | | nn0re 12172 |
. . . . . . . . . . . . . . . 16
⊢
((♯‘𝑃)
∈ ℕ0 → (♯‘𝑃) ∈ ℝ) |
21 | 20 | ltm1d 11837 |
. . . . . . . . . . . . . . 15
⊢
((♯‘𝑃)
∈ ℕ0 → ((♯‘𝑃) − 1) < (♯‘𝑃)) |
22 | | 1re 10906 |
. . . . . . . . . . . . . . . . 17
⊢ 1 ∈
ℝ |
23 | | peano2rem 11218 |
. . . . . . . . . . . . . . . . . 18
⊢
((♯‘𝑃)
∈ ℝ → ((♯‘𝑃) − 1) ∈
ℝ) |
24 | 20, 23 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢
((♯‘𝑃)
∈ ℕ0 → ((♯‘𝑃) − 1) ∈
ℝ) |
25 | | lttr 10982 |
. . . . . . . . . . . . . . . . 17
⊢ ((1
∈ ℝ ∧ ((♯‘𝑃) − 1) ∈ ℝ ∧
(♯‘𝑃) ∈
ℝ) → ((1 < ((♯‘𝑃) − 1) ∧ ((♯‘𝑃) − 1) <
(♯‘𝑃)) → 1
< (♯‘𝑃))) |
26 | 22, 24, 20, 25 | mp3an2i 1464 |
. . . . . . . . . . . . . . . 16
⊢
((♯‘𝑃)
∈ ℕ0 → ((1 < ((♯‘𝑃) − 1) ∧ ((♯‘𝑃) − 1) <
(♯‘𝑃)) → 1
< (♯‘𝑃))) |
27 | | 1red 10907 |
. . . . . . . . . . . . . . . . 17
⊢
((♯‘𝑃)
∈ ℕ0 → 1 ∈ ℝ) |
28 | | ltle 10994 |
. . . . . . . . . . . . . . . . 17
⊢ ((1
∈ ℝ ∧ (♯‘𝑃) ∈ ℝ) → (1 <
(♯‘𝑃) → 1
≤ (♯‘𝑃))) |
29 | 27, 20, 28 | syl2anc 583 |
. . . . . . . . . . . . . . . 16
⊢
((♯‘𝑃)
∈ ℕ0 → (1 < (♯‘𝑃) → 1 ≤ (♯‘𝑃))) |
30 | 26, 29 | syld 47 |
. . . . . . . . . . . . . . 15
⊢
((♯‘𝑃)
∈ ℕ0 → ((1 < ((♯‘𝑃) − 1) ∧ ((♯‘𝑃) − 1) <
(♯‘𝑃)) → 1
≤ (♯‘𝑃))) |
31 | 21, 30 | mpan2d 690 |
. . . . . . . . . . . . . 14
⊢
((♯‘𝑃)
∈ ℕ0 → (1 < ((♯‘𝑃) − 1) → 1 ≤
(♯‘𝑃))) |
32 | 31 | imdistani 568 |
. . . . . . . . . . . . 13
⊢
(((♯‘𝑃)
∈ ℕ0 ∧ 1 < ((♯‘𝑃) − 1)) → ((♯‘𝑃) ∈ ℕ0
∧ 1 ≤ (♯‘𝑃))) |
33 | | elnnnn0c 12208 |
. . . . . . . . . . . . 13
⊢
((♯‘𝑃)
∈ ℕ ↔ ((♯‘𝑃) ∈ ℕ0 ∧ 1 ≤
(♯‘𝑃))) |
34 | 32, 33 | sylibr 233 |
. . . . . . . . . . . 12
⊢
(((♯‘𝑃)
∈ ℕ0 ∧ 1 < ((♯‘𝑃) − 1)) → (♯‘𝑃) ∈
ℕ) |
35 | 19, 34 | sylan 579 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 1 <
((♯‘𝑃) −
1)) → (♯‘𝑃) ∈ ℕ) |
36 | | fzo0sn0fzo1 13404 |
. . . . . . . . . . 11
⊢
((♯‘𝑃)
∈ ℕ → (0..^(♯‘𝑃)) = ({0} ∪ (1..^(♯‘𝑃)))) |
37 | 35, 36 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 1 <
((♯‘𝑃) −
1)) → (0..^(♯‘𝑃)) = ({0} ∪ (1..^(♯‘𝑃)))) |
38 | | 1zzd 12281 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 1 <
((♯‘𝑃) −
1)) → 1 ∈ ℤ) |
39 | | 1p1e2 12028 |
. . . . . . . . . . . . . . . 16
⊢ (1 + 1) =
2 |
40 | | 2z 12282 |
. . . . . . . . . . . . . . . 16
⊢ 2 ∈
ℤ |
41 | 39, 40 | eqeltri 2835 |
. . . . . . . . . . . . . . 15
⊢ (1 + 1)
∈ ℤ |
42 | 41 | a1i 11 |
. . . . . . . . . . . . . 14
⊢
(((♯‘𝑃)
∈ ℕ0 ∧ 1 < ((♯‘𝑃) − 1)) → (1 + 1) ∈
ℤ) |
43 | 10 | adantr 480 |
. . . . . . . . . . . . . 14
⊢
(((♯‘𝑃)
∈ ℕ0 ∧ 1 < ((♯‘𝑃) − 1)) → (♯‘𝑃) ∈
ℤ) |
44 | | ltaddsub 11379 |
. . . . . . . . . . . . . . . . . 18
⊢ ((1
∈ ℝ ∧ 1 ∈ ℝ ∧ (♯‘𝑃) ∈ ℝ) → ((1 + 1) <
(♯‘𝑃) ↔ 1
< ((♯‘𝑃)
− 1))) |
45 | 44 | bicomd 222 |
. . . . . . . . . . . . . . . . 17
⊢ ((1
∈ ℝ ∧ 1 ∈ ℝ ∧ (♯‘𝑃) ∈ ℝ) → (1 <
((♯‘𝑃) −
1) ↔ (1 + 1) < (♯‘𝑃))) |
46 | 22, 27, 20, 45 | mp3an2i 1464 |
. . . . . . . . . . . . . . . 16
⊢
((♯‘𝑃)
∈ ℕ0 → (1 < ((♯‘𝑃) − 1) ↔ (1 + 1) <
(♯‘𝑃))) |
47 | | 2re 11977 |
. . . . . . . . . . . . . . . . . 18
⊢ 2 ∈
ℝ |
48 | 39, 47 | eqeltri 2835 |
. . . . . . . . . . . . . . . . 17
⊢ (1 + 1)
∈ ℝ |
49 | | ltle 10994 |
. . . . . . . . . . . . . . . . 17
⊢ (((1 + 1)
∈ ℝ ∧ (♯‘𝑃) ∈ ℝ) → ((1 + 1) <
(♯‘𝑃) → (1
+ 1) ≤ (♯‘𝑃))) |
50 | 48, 20, 49 | sylancr 586 |
. . . . . . . . . . . . . . . 16
⊢
((♯‘𝑃)
∈ ℕ0 → ((1 + 1) < (♯‘𝑃) → (1 + 1) ≤
(♯‘𝑃))) |
51 | 46, 50 | sylbid 239 |
. . . . . . . . . . . . . . 15
⊢
((♯‘𝑃)
∈ ℕ0 → (1 < ((♯‘𝑃) − 1) → (1 + 1) ≤
(♯‘𝑃))) |
52 | 51 | imp 406 |
. . . . . . . . . . . . . 14
⊢
(((♯‘𝑃)
∈ ℕ0 ∧ 1 < ((♯‘𝑃) − 1)) → (1 + 1) ≤
(♯‘𝑃)) |
53 | | eluz2 12517 |
. . . . . . . . . . . . . 14
⊢
((♯‘𝑃)
∈ (ℤ≥‘(1 + 1)) ↔ ((1 + 1) ∈ ℤ
∧ (♯‘𝑃)
∈ ℤ ∧ (1 + 1) ≤ (♯‘𝑃))) |
54 | 42, 43, 52, 53 | syl3anbrc 1341 |
. . . . . . . . . . . . 13
⊢
(((♯‘𝑃)
∈ ℕ0 ∧ 1 < ((♯‘𝑃) − 1)) → (♯‘𝑃) ∈
(ℤ≥‘(1 + 1))) |
55 | 19, 54 | sylan 579 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 1 <
((♯‘𝑃) −
1)) → (♯‘𝑃) ∈ (ℤ≥‘(1 +
1))) |
56 | | fzosplitsnm1 13390 |
. . . . . . . . . . . 12
⊢ ((1
∈ ℤ ∧ (♯‘𝑃) ∈ (ℤ≥‘(1 +
1))) → (1..^(♯‘𝑃)) = ((1..^((♯‘𝑃) − 1)) ∪ {((♯‘𝑃) − 1)})) |
57 | 38, 55, 56 | syl2anc 583 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 1 <
((♯‘𝑃) −
1)) → (1..^(♯‘𝑃)) = ((1..^((♯‘𝑃) − 1)) ∪ {((♯‘𝑃) − 1)})) |
58 | 57 | uneq2d 4093 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 1 <
((♯‘𝑃) −
1)) → ({0} ∪ (1..^(♯‘𝑃))) = ({0} ∪ ((1..^((♯‘𝑃) − 1)) ∪
{((♯‘𝑃) −
1)}))) |
59 | 37, 58 | eqtrd 2778 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 1 <
((♯‘𝑃) −
1)) → (0..^(♯‘𝑃)) = ({0} ∪ ((1..^((♯‘𝑃) − 1)) ∪
{((♯‘𝑃) −
1)}))) |
60 | 59 | raleqdv 3339 |
. . . . . . . 8
⊢ ((𝜑 ∧ 1 <
((♯‘𝑃) −
1)) → (∀𝑖
∈ (0..^(♯‘𝑃))∀𝑗 ∈ (1..^𝑅)(𝑖 ≠ 𝑗 → (𝑃‘𝑖) ≠ (𝑃‘𝑗)) ↔ ∀𝑖 ∈ ({0} ∪
((1..^((♯‘𝑃)
− 1)) ∪ {((♯‘𝑃) − 1)}))∀𝑗 ∈ (1..^𝑅)(𝑖 ≠ 𝑗 → (𝑃‘𝑖) ≠ (𝑃‘𝑗)))) |
61 | | ralunb 4121 |
. . . . . . . . 9
⊢
(∀𝑖 ∈
({0} ∪ ((1..^((♯‘𝑃) − 1)) ∪ {((♯‘𝑃) − 1)}))∀𝑗 ∈ (1..^𝑅)(𝑖 ≠ 𝑗 → (𝑃‘𝑖) ≠ (𝑃‘𝑗)) ↔ (∀𝑖 ∈ {0}∀𝑗 ∈ (1..^𝑅)(𝑖 ≠ 𝑗 → (𝑃‘𝑖) ≠ (𝑃‘𝑗)) ∧ ∀𝑖 ∈ ((1..^((♯‘𝑃) − 1)) ∪
{((♯‘𝑃) −
1)})∀𝑗 ∈
(1..^𝑅)(𝑖 ≠ 𝑗 → (𝑃‘𝑖) ≠ (𝑃‘𝑗)))) |
62 | | ralunb 4121 |
. . . . . . . . . 10
⊢
(∀𝑖 ∈
((1..^((♯‘𝑃)
− 1)) ∪ {((♯‘𝑃) − 1)})∀𝑗 ∈ (1..^𝑅)(𝑖 ≠ 𝑗 → (𝑃‘𝑖) ≠ (𝑃‘𝑗)) ↔ (∀𝑖 ∈ (1..^((♯‘𝑃) − 1))∀𝑗 ∈ (1..^𝑅)(𝑖 ≠ 𝑗 → (𝑃‘𝑖) ≠ (𝑃‘𝑗)) ∧ ∀𝑖 ∈ {((♯‘𝑃) − 1)}∀𝑗 ∈ (1..^𝑅)(𝑖 ≠ 𝑗 → (𝑃‘𝑖) ≠ (𝑃‘𝑗)))) |
63 | 62 | anbi2i 622 |
. . . . . . . . 9
⊢
((∀𝑖 ∈
{0}∀𝑗 ∈
(1..^𝑅)(𝑖 ≠ 𝑗 → (𝑃‘𝑖) ≠ (𝑃‘𝑗)) ∧ ∀𝑖 ∈ ((1..^((♯‘𝑃) − 1)) ∪
{((♯‘𝑃) −
1)})∀𝑗 ∈
(1..^𝑅)(𝑖 ≠ 𝑗 → (𝑃‘𝑖) ≠ (𝑃‘𝑗))) ↔ (∀𝑖 ∈ {0}∀𝑗 ∈ (1..^𝑅)(𝑖 ≠ 𝑗 → (𝑃‘𝑖) ≠ (𝑃‘𝑗)) ∧ (∀𝑖 ∈ (1..^((♯‘𝑃) − 1))∀𝑗 ∈ (1..^𝑅)(𝑖 ≠ 𝑗 → (𝑃‘𝑖) ≠ (𝑃‘𝑗)) ∧ ∀𝑖 ∈ {((♯‘𝑃) − 1)}∀𝑗 ∈ (1..^𝑅)(𝑖 ≠ 𝑗 → (𝑃‘𝑖) ≠ (𝑃‘𝑗))))) |
64 | 61, 63 | bitri 274 |
. . . . . . . 8
⊢
(∀𝑖 ∈
({0} ∪ ((1..^((♯‘𝑃) − 1)) ∪ {((♯‘𝑃) − 1)}))∀𝑗 ∈ (1..^𝑅)(𝑖 ≠ 𝑗 → (𝑃‘𝑖) ≠ (𝑃‘𝑗)) ↔ (∀𝑖 ∈ {0}∀𝑗 ∈ (1..^𝑅)(𝑖 ≠ 𝑗 → (𝑃‘𝑖) ≠ (𝑃‘𝑗)) ∧ (∀𝑖 ∈ (1..^((♯‘𝑃) − 1))∀𝑗 ∈ (1..^𝑅)(𝑖 ≠ 𝑗 → (𝑃‘𝑖) ≠ (𝑃‘𝑗)) ∧ ∀𝑖 ∈ {((♯‘𝑃) − 1)}∀𝑗 ∈ (1..^𝑅)(𝑖 ≠ 𝑗 → (𝑃‘𝑖) ≠ (𝑃‘𝑗))))) |
65 | 60, 64 | bitrdi 286 |
. . . . . . 7
⊢ ((𝜑 ∧ 1 <
((♯‘𝑃) −
1)) → (∀𝑖
∈ (0..^(♯‘𝑃))∀𝑗 ∈ (1..^𝑅)(𝑖 ≠ 𝑗 → (𝑃‘𝑖) ≠ (𝑃‘𝑗)) ↔ (∀𝑖 ∈ {0}∀𝑗 ∈ (1..^𝑅)(𝑖 ≠ 𝑗 → (𝑃‘𝑖) ≠ (𝑃‘𝑗)) ∧ (∀𝑖 ∈ (1..^((♯‘𝑃) − 1))∀𝑗 ∈ (1..^𝑅)(𝑖 ≠ 𝑗 → (𝑃‘𝑖) ≠ (𝑃‘𝑗)) ∧ ∀𝑖 ∈ {((♯‘𝑃) − 1)}∀𝑗 ∈ (1..^𝑅)(𝑖 ≠ 𝑗 → (𝑃‘𝑖) ≠ (𝑃‘𝑗)))))) |
66 | 5 | eqcomi 2747 |
. . . . . . . . . . . 12
⊢
((♯‘𝑃)
− 1) = 𝑅 |
67 | 66 | oveq2i 7266 |
. . . . . . . . . . 11
⊢
(1..^((♯‘𝑃) − 1)) = (1..^𝑅) |
68 | 67 | raleqi 3337 |
. . . . . . . . . 10
⊢
(∀𝑖 ∈
(1..^((♯‘𝑃)
− 1))∀𝑗 ∈
(1..^𝑅)(𝑖 ≠ 𝑗 → (𝑃‘𝑖) ≠ (𝑃‘𝑗)) ↔ ∀𝑖 ∈ (1..^𝑅)∀𝑗 ∈ (1..^𝑅)(𝑖 ≠ 𝑗 → (𝑃‘𝑖) ≠ (𝑃‘𝑗))) |
69 | | fvres 6775 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 ∈ (1..^𝑅) → ((𝑃 ↾ (1..^𝑅))‘𝑖) = (𝑃‘𝑖)) |
70 | 69 | eqcomd 2744 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 ∈ (1..^𝑅) → (𝑃‘𝑖) = ((𝑃 ↾ (1..^𝑅))‘𝑖)) |
71 | 70 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 1 <
((♯‘𝑃) −
1)) ∧ 𝑖 ∈
(1..^𝑅)) → (𝑃‘𝑖) = ((𝑃 ↾ (1..^𝑅))‘𝑖)) |
72 | 71 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 1 <
((♯‘𝑃) −
1)) ∧ 𝑖 ∈
(1..^𝑅)) ∧ 𝑗 ∈ (1..^𝑅)) → (𝑃‘𝑖) = ((𝑃 ↾ (1..^𝑅))‘𝑖)) |
73 | | fvres 6775 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈ (1..^𝑅) → ((𝑃 ↾ (1..^𝑅))‘𝑗) = (𝑃‘𝑗)) |
74 | 73 | eqcomd 2744 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ (1..^𝑅) → (𝑃‘𝑗) = ((𝑃 ↾ (1..^𝑅))‘𝑗)) |
75 | 74 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 1 <
((♯‘𝑃) −
1)) ∧ 𝑖 ∈
(1..^𝑅)) ∧ 𝑗 ∈ (1..^𝑅)) → (𝑃‘𝑗) = ((𝑃 ↾ (1..^𝑅))‘𝑗)) |
76 | 72, 75 | neeq12d 3004 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 1 <
((♯‘𝑃) −
1)) ∧ 𝑖 ∈
(1..^𝑅)) ∧ 𝑗 ∈ (1..^𝑅)) → ((𝑃‘𝑖) ≠ (𝑃‘𝑗) ↔ ((𝑃 ↾ (1..^𝑅))‘𝑖) ≠ ((𝑃 ↾ (1..^𝑅))‘𝑗))) |
77 | 76 | biimpd 228 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 1 <
((♯‘𝑃) −
1)) ∧ 𝑖 ∈
(1..^𝑅)) ∧ 𝑗 ∈ (1..^𝑅)) → ((𝑃‘𝑖) ≠ (𝑃‘𝑗) → ((𝑃 ↾ (1..^𝑅))‘𝑖) ≠ ((𝑃 ↾ (1..^𝑅))‘𝑗))) |
78 | 77 | imim2d 57 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 1 <
((♯‘𝑃) −
1)) ∧ 𝑖 ∈
(1..^𝑅)) ∧ 𝑗 ∈ (1..^𝑅)) → ((𝑖 ≠ 𝑗 → (𝑃‘𝑖) ≠ (𝑃‘𝑗)) → (𝑖 ≠ 𝑗 → ((𝑃 ↾ (1..^𝑅))‘𝑖) ≠ ((𝑃 ↾ (1..^𝑅))‘𝑗)))) |
79 | 78 | ralimdva 3102 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 1 <
((♯‘𝑃) −
1)) ∧ 𝑖 ∈
(1..^𝑅)) →
(∀𝑗 ∈
(1..^𝑅)(𝑖 ≠ 𝑗 → (𝑃‘𝑖) ≠ (𝑃‘𝑗)) → ∀𝑗 ∈ (1..^𝑅)(𝑖 ≠ 𝑗 → ((𝑃 ↾ (1..^𝑅))‘𝑖) ≠ ((𝑃 ↾ (1..^𝑅))‘𝑗)))) |
80 | 79 | ralimdva 3102 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 1 <
((♯‘𝑃) −
1)) → (∀𝑖
∈ (1..^𝑅)∀𝑗 ∈ (1..^𝑅)(𝑖 ≠ 𝑗 → (𝑃‘𝑖) ≠ (𝑃‘𝑗)) → ∀𝑖 ∈ (1..^𝑅)∀𝑗 ∈ (1..^𝑅)(𝑖 ≠ 𝑗 → ((𝑃 ↾ (1..^𝑅))‘𝑖) ≠ ((𝑃 ↾ (1..^𝑅))‘𝑗)))) |
81 | 68, 80 | syl5bi 241 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 1 <
((♯‘𝑃) −
1)) → (∀𝑖
∈ (1..^((♯‘𝑃) − 1))∀𝑗 ∈ (1..^𝑅)(𝑖 ≠ 𝑗 → (𝑃‘𝑖) ≠ (𝑃‘𝑗)) → ∀𝑖 ∈ (1..^𝑅)∀𝑗 ∈ (1..^𝑅)(𝑖 ≠ 𝑗 → ((𝑃 ↾ (1..^𝑅))‘𝑖) ≠ ((𝑃 ↾ (1..^𝑅))‘𝑗)))) |
82 | 81 | adantrd 491 |
. . . . . . . 8
⊢ ((𝜑 ∧ 1 <
((♯‘𝑃) −
1)) → ((∀𝑖
∈ (1..^((♯‘𝑃) − 1))∀𝑗 ∈ (1..^𝑅)(𝑖 ≠ 𝑗 → (𝑃‘𝑖) ≠ (𝑃‘𝑗)) ∧ ∀𝑖 ∈ {((♯‘𝑃) − 1)}∀𝑗 ∈ (1..^𝑅)(𝑖 ≠ 𝑗 → (𝑃‘𝑖) ≠ (𝑃‘𝑗))) → ∀𝑖 ∈ (1..^𝑅)∀𝑗 ∈ (1..^𝑅)(𝑖 ≠ 𝑗 → ((𝑃 ↾ (1..^𝑅))‘𝑖) ≠ ((𝑃 ↾ (1..^𝑅))‘𝑗)))) |
83 | 82 | adantld 490 |
. . . . . . 7
⊢ ((𝜑 ∧ 1 <
((♯‘𝑃) −
1)) → ((∀𝑖
∈ {0}∀𝑗 ∈
(1..^𝑅)(𝑖 ≠ 𝑗 → (𝑃‘𝑖) ≠ (𝑃‘𝑗)) ∧ (∀𝑖 ∈ (1..^((♯‘𝑃) − 1))∀𝑗 ∈ (1..^𝑅)(𝑖 ≠ 𝑗 → (𝑃‘𝑖) ≠ (𝑃‘𝑗)) ∧ ∀𝑖 ∈ {((♯‘𝑃) − 1)}∀𝑗 ∈ (1..^𝑅)(𝑖 ≠ 𝑗 → (𝑃‘𝑖) ≠ (𝑃‘𝑗)))) → ∀𝑖 ∈ (1..^𝑅)∀𝑗 ∈ (1..^𝑅)(𝑖 ≠ 𝑗 → ((𝑃 ↾ (1..^𝑅))‘𝑖) ≠ ((𝑃 ↾ (1..^𝑅))‘𝑗)))) |
84 | 65, 83 | sylbid 239 |
. . . . . 6
⊢ ((𝜑 ∧ 1 <
((♯‘𝑃) −
1)) → (∀𝑖
∈ (0..^(♯‘𝑃))∀𝑗 ∈ (1..^𝑅)(𝑖 ≠ 𝑗 → (𝑃‘𝑖) ≠ (𝑃‘𝑗)) → ∀𝑖 ∈ (1..^𝑅)∀𝑗 ∈ (1..^𝑅)(𝑖 ≠ 𝑗 → ((𝑃 ↾ (1..^𝑅))‘𝑖) ≠ ((𝑃 ↾ (1..^𝑅))‘𝑗)))) |
85 | 18, 84 | mpd 15 |
. . . . 5
⊢ ((𝜑 ∧ 1 <
((♯‘𝑃) −
1)) → ∀𝑖 ∈
(1..^𝑅)∀𝑗 ∈ (1..^𝑅)(𝑖 ≠ 𝑗 → ((𝑃 ↾ (1..^𝑅))‘𝑖) ≠ ((𝑃 ↾ (1..^𝑅))‘𝑗))) |
86 | | dff14a 7124 |
. . . . 5
⊢ ((𝑃 ↾ (1..^𝑅)):(1..^𝑅)–1-1→V ↔ ((𝑃 ↾ (1..^𝑅)):(1..^𝑅)⟶V ∧ ∀𝑖 ∈ (1..^𝑅)∀𝑗 ∈ (1..^𝑅)(𝑖 ≠ 𝑗 → ((𝑃 ↾ (1..^𝑅))‘𝑖) ≠ ((𝑃 ↾ (1..^𝑅))‘𝑗)))) |
87 | 16, 85, 86 | sylanbrc 582 |
. . . 4
⊢ ((𝜑 ∧ 1 <
((♯‘𝑃) −
1)) → (𝑃 ↾
(1..^𝑅)):(1..^𝑅)–1-1→V) |
88 | | df-f1 6423 |
. . . 4
⊢ ((𝑃 ↾ (1..^𝑅)):(1..^𝑅)–1-1→V ↔ ((𝑃 ↾ (1..^𝑅)):(1..^𝑅)⟶V ∧ Fun ◡(𝑃 ↾ (1..^𝑅)))) |
89 | 87, 88 | sylib 217 |
. . 3
⊢ ((𝜑 ∧ 1 <
((♯‘𝑃) −
1)) → ((𝑃 ↾
(1..^𝑅)):(1..^𝑅)⟶V ∧ Fun ◡(𝑃 ↾ (1..^𝑅)))) |
90 | 89 | simprd 495 |
. 2
⊢ ((𝜑 ∧ 1 <
((♯‘𝑃) −
1)) → Fun ◡(𝑃 ↾ (1..^𝑅))) |
91 | | funcnv0 6484 |
. . 3
⊢ Fun ◡∅ |
92 | 19 | nn0zd 12353 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (♯‘𝑃) ∈
ℤ) |
93 | | peano2zm 12293 |
. . . . . . . . . . . . 13
⊢
((♯‘𝑃)
∈ ℤ → ((♯‘𝑃) − 1) ∈
ℤ) |
94 | 92, 93 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((♯‘𝑃) − 1) ∈
ℤ) |
95 | 94 | zred 12355 |
. . . . . . . . . . 11
⊢ (𝜑 → ((♯‘𝑃) − 1) ∈
ℝ) |
96 | | 1red 10907 |
. . . . . . . . . . 11
⊢ (𝜑 → 1 ∈
ℝ) |
97 | 95, 96 | lenltd 11051 |
. . . . . . . . . 10
⊢ (𝜑 → (((♯‘𝑃) − 1) ≤ 1 ↔ ¬
1 < ((♯‘𝑃)
− 1))) |
98 | 97 | biimpar 477 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ 1 <
((♯‘𝑃) −
1)) → ((♯‘𝑃) − 1) ≤ 1) |
99 | 5, 98 | eqbrtrid 5105 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ 1 <
((♯‘𝑃) −
1)) → 𝑅 ≤
1) |
100 | | 1zzd 12281 |
. . . . . . . . . . 11
⊢ (𝜑 → 1 ∈
ℤ) |
101 | 5, 94 | eqeltrid 2843 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑅 ∈ ℤ) |
102 | 100, 101 | jca 511 |
. . . . . . . . . 10
⊢ (𝜑 → (1 ∈ ℤ ∧
𝑅 ∈
ℤ)) |
103 | 102 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ 1 <
((♯‘𝑃) −
1)) → (1 ∈ ℤ ∧ 𝑅 ∈ ℤ)) |
104 | | fzon 13336 |
. . . . . . . . . 10
⊢ ((1
∈ ℤ ∧ 𝑅
∈ ℤ) → (𝑅
≤ 1 ↔ (1..^𝑅) =
∅)) |
105 | 104 | bicomd 222 |
. . . . . . . . 9
⊢ ((1
∈ ℤ ∧ 𝑅
∈ ℤ) → ((1..^𝑅) = ∅ ↔ 𝑅 ≤ 1)) |
106 | 103, 105 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ 1 <
((♯‘𝑃) −
1)) → ((1..^𝑅) =
∅ ↔ 𝑅 ≤
1)) |
107 | 99, 106 | mpbird 256 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ 1 <
((♯‘𝑃) −
1)) → (1..^𝑅) =
∅) |
108 | 107 | reseq2d 5880 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ 1 <
((♯‘𝑃) −
1)) → (𝑃 ↾
(1..^𝑅)) = (𝑃 ↾
∅)) |
109 | | res0 5884 |
. . . . . 6
⊢ (𝑃 ↾ ∅) =
∅ |
110 | 108, 109 | eqtrdi 2795 |
. . . . 5
⊢ ((𝜑 ∧ ¬ 1 <
((♯‘𝑃) −
1)) → (𝑃 ↾
(1..^𝑅)) =
∅) |
111 | 110 | cnveqd 5773 |
. . . 4
⊢ ((𝜑 ∧ ¬ 1 <
((♯‘𝑃) −
1)) → ◡(𝑃 ↾ (1..^𝑅)) = ◡∅) |
112 | 111 | funeqd 6440 |
. . 3
⊢ ((𝜑 ∧ ¬ 1 <
((♯‘𝑃) −
1)) → (Fun ◡(𝑃 ↾ (1..^𝑅)) ↔ Fun ◡∅)) |
113 | 91, 112 | mpbiri 257 |
. 2
⊢ ((𝜑 ∧ ¬ 1 <
((♯‘𝑃) −
1)) → Fun ◡(𝑃 ↾ (1..^𝑅))) |
114 | 90, 113 | pm2.61dan 809 |
1
⊢ (𝜑 → Fun ◡(𝑃 ↾ (1..^𝑅))) |