MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pthdlem1 Structured version   Visualization version   GIF version

Theorem pthdlem1 27546
Description: Lemma 1 for pthd 27549. (Contributed by Alexander van der Vekens, 13-Nov-2017.) (Revised by AV, 9-Feb-2021.)
Hypotheses
Ref Expression
pthd.p (𝜑𝑃 ∈ Word V)
pthd.r 𝑅 = ((♯‘𝑃) − 1)
pthd.s (𝜑 → ∀𝑖 ∈ (0..^(♯‘𝑃))∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)))
Assertion
Ref Expression
pthdlem1 (𝜑 → Fun (𝑃 ↾ (1..^𝑅)))
Distinct variable groups:   𝑃,𝑖,𝑗   𝑅,𝑖,𝑗   𝜑,𝑖,𝑗

Proof of Theorem pthdlem1
StepHypRef Expression
1 pthd.p . . . . . . . 8 (𝜑𝑃 ∈ Word V)
2 wrdf 13865 . . . . . . . 8 (𝑃 ∈ Word V → 𝑃:(0..^(♯‘𝑃))⟶V)
31, 2syl 17 . . . . . . 7 (𝜑𝑃:(0..^(♯‘𝑃))⟶V)
4 fzo0ss1 13066 . . . . . . . . 9 (1..^𝑅) ⊆ (0..^𝑅)
5 pthd.r . . . . . . . . . . 11 𝑅 = ((♯‘𝑃) − 1)
65a1i 11 . . . . . . . . . 10 (𝜑𝑅 = ((♯‘𝑃) − 1))
76oveq2d 7171 . . . . . . . . 9 (𝜑 → (0..^𝑅) = (0..^((♯‘𝑃) − 1)))
84, 7sseqtrid 4018 . . . . . . . 8 (𝜑 → (1..^𝑅) ⊆ (0..^((♯‘𝑃) − 1)))
9 lencl 13882 . . . . . . . . . 10 (𝑃 ∈ Word V → (♯‘𝑃) ∈ ℕ0)
10 nn0z 12004 . . . . . . . . . 10 ((♯‘𝑃) ∈ ℕ0 → (♯‘𝑃) ∈ ℤ)
111, 9, 103syl 18 . . . . . . . . 9 (𝜑 → (♯‘𝑃) ∈ ℤ)
12 fzossrbm1 13065 . . . . . . . . 9 ((♯‘𝑃) ∈ ℤ → (0..^((♯‘𝑃) − 1)) ⊆ (0..^(♯‘𝑃)))
1311, 12syl 17 . . . . . . . 8 (𝜑 → (0..^((♯‘𝑃) − 1)) ⊆ (0..^(♯‘𝑃)))
148, 13sstrd 3976 . . . . . . 7 (𝜑 → (1..^𝑅) ⊆ (0..^(♯‘𝑃)))
153, 14fssresd 6544 . . . . . 6 (𝜑 → (𝑃 ↾ (1..^𝑅)):(1..^𝑅)⟶V)
1615adantr 483 . . . . 5 ((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) → (𝑃 ↾ (1..^𝑅)):(1..^𝑅)⟶V)
17 pthd.s . . . . . . 7 (𝜑 → ∀𝑖 ∈ (0..^(♯‘𝑃))∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)))
1817adantr 483 . . . . . 6 ((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) → ∀𝑖 ∈ (0..^(♯‘𝑃))∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)))
191, 9syl 17 . . . . . . . . . . . 12 (𝜑 → (♯‘𝑃) ∈ ℕ0)
20 nn0re 11905 . . . . . . . . . . . . . . . 16 ((♯‘𝑃) ∈ ℕ0 → (♯‘𝑃) ∈ ℝ)
2120ltm1d 11571 . . . . . . . . . . . . . . 15 ((♯‘𝑃) ∈ ℕ0 → ((♯‘𝑃) − 1) < (♯‘𝑃))
22 1re 10640 . . . . . . . . . . . . . . . . 17 1 ∈ ℝ
23 peano2rem 10952 . . . . . . . . . . . . . . . . . 18 ((♯‘𝑃) ∈ ℝ → ((♯‘𝑃) − 1) ∈ ℝ)
2420, 23syl 17 . . . . . . . . . . . . . . . . 17 ((♯‘𝑃) ∈ ℕ0 → ((♯‘𝑃) − 1) ∈ ℝ)
25 lttr 10716 . . . . . . . . . . . . . . . . 17 ((1 ∈ ℝ ∧ ((♯‘𝑃) − 1) ∈ ℝ ∧ (♯‘𝑃) ∈ ℝ) → ((1 < ((♯‘𝑃) − 1) ∧ ((♯‘𝑃) − 1) < (♯‘𝑃)) → 1 < (♯‘𝑃)))
2622, 24, 20, 25mp3an2i 1462 . . . . . . . . . . . . . . . 16 ((♯‘𝑃) ∈ ℕ0 → ((1 < ((♯‘𝑃) − 1) ∧ ((♯‘𝑃) − 1) < (♯‘𝑃)) → 1 < (♯‘𝑃)))
27 1red 10641 . . . . . . . . . . . . . . . . 17 ((♯‘𝑃) ∈ ℕ0 → 1 ∈ ℝ)
28 ltle 10728 . . . . . . . . . . . . . . . . 17 ((1 ∈ ℝ ∧ (♯‘𝑃) ∈ ℝ) → (1 < (♯‘𝑃) → 1 ≤ (♯‘𝑃)))
2927, 20, 28syl2anc 586 . . . . . . . . . . . . . . . 16 ((♯‘𝑃) ∈ ℕ0 → (1 < (♯‘𝑃) → 1 ≤ (♯‘𝑃)))
3026, 29syld 47 . . . . . . . . . . . . . . 15 ((♯‘𝑃) ∈ ℕ0 → ((1 < ((♯‘𝑃) − 1) ∧ ((♯‘𝑃) − 1) < (♯‘𝑃)) → 1 ≤ (♯‘𝑃)))
3121, 30mpan2d 692 . . . . . . . . . . . . . 14 ((♯‘𝑃) ∈ ℕ0 → (1 < ((♯‘𝑃) − 1) → 1 ≤ (♯‘𝑃)))
3231imdistani 571 . . . . . . . . . . . . 13 (((♯‘𝑃) ∈ ℕ0 ∧ 1 < ((♯‘𝑃) − 1)) → ((♯‘𝑃) ∈ ℕ0 ∧ 1 ≤ (♯‘𝑃)))
33 elnnnn0c 11941 . . . . . . . . . . . . 13 ((♯‘𝑃) ∈ ℕ ↔ ((♯‘𝑃) ∈ ℕ0 ∧ 1 ≤ (♯‘𝑃)))
3432, 33sylibr 236 . . . . . . . . . . . 12 (((♯‘𝑃) ∈ ℕ0 ∧ 1 < ((♯‘𝑃) − 1)) → (♯‘𝑃) ∈ ℕ)
3519, 34sylan 582 . . . . . . . . . . 11 ((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) → (♯‘𝑃) ∈ ℕ)
36 fzo0sn0fzo1 13125 . . . . . . . . . . 11 ((♯‘𝑃) ∈ ℕ → (0..^(♯‘𝑃)) = ({0} ∪ (1..^(♯‘𝑃))))
3735, 36syl 17 . . . . . . . . . 10 ((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) → (0..^(♯‘𝑃)) = ({0} ∪ (1..^(♯‘𝑃))))
38 1zzd 12012 . . . . . . . . . . . 12 ((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) → 1 ∈ ℤ)
39 1p1e2 11761 . . . . . . . . . . . . . . . 16 (1 + 1) = 2
40 2z 12013 . . . . . . . . . . . . . . . 16 2 ∈ ℤ
4139, 40eqeltri 2909 . . . . . . . . . . . . . . 15 (1 + 1) ∈ ℤ
4241a1i 11 . . . . . . . . . . . . . 14 (((♯‘𝑃) ∈ ℕ0 ∧ 1 < ((♯‘𝑃) − 1)) → (1 + 1) ∈ ℤ)
4310adantr 483 . . . . . . . . . . . . . 14 (((♯‘𝑃) ∈ ℕ0 ∧ 1 < ((♯‘𝑃) − 1)) → (♯‘𝑃) ∈ ℤ)
44 ltaddsub 11113 . . . . . . . . . . . . . . . . . 18 ((1 ∈ ℝ ∧ 1 ∈ ℝ ∧ (♯‘𝑃) ∈ ℝ) → ((1 + 1) < (♯‘𝑃) ↔ 1 < ((♯‘𝑃) − 1)))
4544bicomd 225 . . . . . . . . . . . . . . . . 17 ((1 ∈ ℝ ∧ 1 ∈ ℝ ∧ (♯‘𝑃) ∈ ℝ) → (1 < ((♯‘𝑃) − 1) ↔ (1 + 1) < (♯‘𝑃)))
4622, 27, 20, 45mp3an2i 1462 . . . . . . . . . . . . . . . 16 ((♯‘𝑃) ∈ ℕ0 → (1 < ((♯‘𝑃) − 1) ↔ (1 + 1) < (♯‘𝑃)))
47 2re 11710 . . . . . . . . . . . . . . . . . 18 2 ∈ ℝ
4839, 47eqeltri 2909 . . . . . . . . . . . . . . . . 17 (1 + 1) ∈ ℝ
49 ltle 10728 . . . . . . . . . . . . . . . . 17 (((1 + 1) ∈ ℝ ∧ (♯‘𝑃) ∈ ℝ) → ((1 + 1) < (♯‘𝑃) → (1 + 1) ≤ (♯‘𝑃)))
5048, 20, 49sylancr 589 . . . . . . . . . . . . . . . 16 ((♯‘𝑃) ∈ ℕ0 → ((1 + 1) < (♯‘𝑃) → (1 + 1) ≤ (♯‘𝑃)))
5146, 50sylbid 242 . . . . . . . . . . . . . . 15 ((♯‘𝑃) ∈ ℕ0 → (1 < ((♯‘𝑃) − 1) → (1 + 1) ≤ (♯‘𝑃)))
5251imp 409 . . . . . . . . . . . . . 14 (((♯‘𝑃) ∈ ℕ0 ∧ 1 < ((♯‘𝑃) − 1)) → (1 + 1) ≤ (♯‘𝑃))
53 eluz2 12248 . . . . . . . . . . . . . 14 ((♯‘𝑃) ∈ (ℤ‘(1 + 1)) ↔ ((1 + 1) ∈ ℤ ∧ (♯‘𝑃) ∈ ℤ ∧ (1 + 1) ≤ (♯‘𝑃)))
5442, 43, 52, 53syl3anbrc 1339 . . . . . . . . . . . . 13 (((♯‘𝑃) ∈ ℕ0 ∧ 1 < ((♯‘𝑃) − 1)) → (♯‘𝑃) ∈ (ℤ‘(1 + 1)))
5519, 54sylan 582 . . . . . . . . . . . 12 ((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) → (♯‘𝑃) ∈ (ℤ‘(1 + 1)))
56 fzosplitsnm1 13111 . . . . . . . . . . . 12 ((1 ∈ ℤ ∧ (♯‘𝑃) ∈ (ℤ‘(1 + 1))) → (1..^(♯‘𝑃)) = ((1..^((♯‘𝑃) − 1)) ∪ {((♯‘𝑃) − 1)}))
5738, 55, 56syl2anc 586 . . . . . . . . . . 11 ((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) → (1..^(♯‘𝑃)) = ((1..^((♯‘𝑃) − 1)) ∪ {((♯‘𝑃) − 1)}))
5857uneq2d 4138 . . . . . . . . . 10 ((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) → ({0} ∪ (1..^(♯‘𝑃))) = ({0} ∪ ((1..^((♯‘𝑃) − 1)) ∪ {((♯‘𝑃) − 1)})))
5937, 58eqtrd 2856 . . . . . . . . 9 ((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) → (0..^(♯‘𝑃)) = ({0} ∪ ((1..^((♯‘𝑃) − 1)) ∪ {((♯‘𝑃) − 1)})))
6059raleqdv 3415 . . . . . . . 8 ((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) → (∀𝑖 ∈ (0..^(♯‘𝑃))∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) ↔ ∀𝑖 ∈ ({0} ∪ ((1..^((♯‘𝑃) − 1)) ∪ {((♯‘𝑃) − 1)}))∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗))))
61 ralunb 4166 . . . . . . . . 9 (∀𝑖 ∈ ({0} ∪ ((1..^((♯‘𝑃) − 1)) ∪ {((♯‘𝑃) − 1)}))∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) ↔ (∀𝑖 ∈ {0}∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) ∧ ∀𝑖 ∈ ((1..^((♯‘𝑃) − 1)) ∪ {((♯‘𝑃) − 1)})∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗))))
62 ralunb 4166 . . . . . . . . . 10 (∀𝑖 ∈ ((1..^((♯‘𝑃) − 1)) ∪ {((♯‘𝑃) − 1)})∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) ↔ (∀𝑖 ∈ (1..^((♯‘𝑃) − 1))∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) ∧ ∀𝑖 ∈ {((♯‘𝑃) − 1)}∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗))))
6362anbi2i 624 . . . . . . . . 9 ((∀𝑖 ∈ {0}∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) ∧ ∀𝑖 ∈ ((1..^((♯‘𝑃) − 1)) ∪ {((♯‘𝑃) − 1)})∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗))) ↔ (∀𝑖 ∈ {0}∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) ∧ (∀𝑖 ∈ (1..^((♯‘𝑃) − 1))∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) ∧ ∀𝑖 ∈ {((♯‘𝑃) − 1)}∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)))))
6461, 63bitri 277 . . . . . . . 8 (∀𝑖 ∈ ({0} ∪ ((1..^((♯‘𝑃) − 1)) ∪ {((♯‘𝑃) − 1)}))∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) ↔ (∀𝑖 ∈ {0}∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) ∧ (∀𝑖 ∈ (1..^((♯‘𝑃) − 1))∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) ∧ ∀𝑖 ∈ {((♯‘𝑃) − 1)}∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)))))
6560, 64syl6bb 289 . . . . . . 7 ((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) → (∀𝑖 ∈ (0..^(♯‘𝑃))∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) ↔ (∀𝑖 ∈ {0}∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) ∧ (∀𝑖 ∈ (1..^((♯‘𝑃) − 1))∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) ∧ ∀𝑖 ∈ {((♯‘𝑃) − 1)}∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗))))))
665eqcomi 2830 . . . . . . . . . . . 12 ((♯‘𝑃) − 1) = 𝑅
6766oveq2i 7166 . . . . . . . . . . 11 (1..^((♯‘𝑃) − 1)) = (1..^𝑅)
6867raleqi 3413 . . . . . . . . . 10 (∀𝑖 ∈ (1..^((♯‘𝑃) − 1))∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) ↔ ∀𝑖 ∈ (1..^𝑅)∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)))
69 fvres 6688 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ (1..^𝑅) → ((𝑃 ↾ (1..^𝑅))‘𝑖) = (𝑃𝑖))
7069eqcomd 2827 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ (1..^𝑅) → (𝑃𝑖) = ((𝑃 ↾ (1..^𝑅))‘𝑖))
7170adantl 484 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) ∧ 𝑖 ∈ (1..^𝑅)) → (𝑃𝑖) = ((𝑃 ↾ (1..^𝑅))‘𝑖))
7271adantr 483 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) ∧ 𝑖 ∈ (1..^𝑅)) ∧ 𝑗 ∈ (1..^𝑅)) → (𝑃𝑖) = ((𝑃 ↾ (1..^𝑅))‘𝑖))
73 fvres 6688 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (1..^𝑅) → ((𝑃 ↾ (1..^𝑅))‘𝑗) = (𝑃𝑗))
7473eqcomd 2827 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (1..^𝑅) → (𝑃𝑗) = ((𝑃 ↾ (1..^𝑅))‘𝑗))
7574adantl 484 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) ∧ 𝑖 ∈ (1..^𝑅)) ∧ 𝑗 ∈ (1..^𝑅)) → (𝑃𝑗) = ((𝑃 ↾ (1..^𝑅))‘𝑗))
7672, 75neeq12d 3077 . . . . . . . . . . . . . 14 ((((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) ∧ 𝑖 ∈ (1..^𝑅)) ∧ 𝑗 ∈ (1..^𝑅)) → ((𝑃𝑖) ≠ (𝑃𝑗) ↔ ((𝑃 ↾ (1..^𝑅))‘𝑖) ≠ ((𝑃 ↾ (1..^𝑅))‘𝑗)))
7776biimpd 231 . . . . . . . . . . . . 13 ((((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) ∧ 𝑖 ∈ (1..^𝑅)) ∧ 𝑗 ∈ (1..^𝑅)) → ((𝑃𝑖) ≠ (𝑃𝑗) → ((𝑃 ↾ (1..^𝑅))‘𝑖) ≠ ((𝑃 ↾ (1..^𝑅))‘𝑗)))
7877imim2d 57 . . . . . . . . . . . 12 ((((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) ∧ 𝑖 ∈ (1..^𝑅)) ∧ 𝑗 ∈ (1..^𝑅)) → ((𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) → (𝑖𝑗 → ((𝑃 ↾ (1..^𝑅))‘𝑖) ≠ ((𝑃 ↾ (1..^𝑅))‘𝑗))))
7978ralimdva 3177 . . . . . . . . . . 11 (((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) ∧ 𝑖 ∈ (1..^𝑅)) → (∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) → ∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → ((𝑃 ↾ (1..^𝑅))‘𝑖) ≠ ((𝑃 ↾ (1..^𝑅))‘𝑗))))
8079ralimdva 3177 . . . . . . . . . 10 ((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) → (∀𝑖 ∈ (1..^𝑅)∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) → ∀𝑖 ∈ (1..^𝑅)∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → ((𝑃 ↾ (1..^𝑅))‘𝑖) ≠ ((𝑃 ↾ (1..^𝑅))‘𝑗))))
8168, 80syl5bi 244 . . . . . . . . 9 ((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) → (∀𝑖 ∈ (1..^((♯‘𝑃) − 1))∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) → ∀𝑖 ∈ (1..^𝑅)∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → ((𝑃 ↾ (1..^𝑅))‘𝑖) ≠ ((𝑃 ↾ (1..^𝑅))‘𝑗))))
8281adantrd 494 . . . . . . . 8 ((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) → ((∀𝑖 ∈ (1..^((♯‘𝑃) − 1))∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) ∧ ∀𝑖 ∈ {((♯‘𝑃) − 1)}∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗))) → ∀𝑖 ∈ (1..^𝑅)∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → ((𝑃 ↾ (1..^𝑅))‘𝑖) ≠ ((𝑃 ↾ (1..^𝑅))‘𝑗))))
8382adantld 493 . . . . . . 7 ((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) → ((∀𝑖 ∈ {0}∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) ∧ (∀𝑖 ∈ (1..^((♯‘𝑃) − 1))∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) ∧ ∀𝑖 ∈ {((♯‘𝑃) − 1)}∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)))) → ∀𝑖 ∈ (1..^𝑅)∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → ((𝑃 ↾ (1..^𝑅))‘𝑖) ≠ ((𝑃 ↾ (1..^𝑅))‘𝑗))))
8465, 83sylbid 242 . . . . . 6 ((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) → (∀𝑖 ∈ (0..^(♯‘𝑃))∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) → ∀𝑖 ∈ (1..^𝑅)∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → ((𝑃 ↾ (1..^𝑅))‘𝑖) ≠ ((𝑃 ↾ (1..^𝑅))‘𝑗))))
8518, 84mpd 15 . . . . 5 ((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) → ∀𝑖 ∈ (1..^𝑅)∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → ((𝑃 ↾ (1..^𝑅))‘𝑖) ≠ ((𝑃 ↾ (1..^𝑅))‘𝑗)))
86 dff14a 7027 . . . . 5 ((𝑃 ↾ (1..^𝑅)):(1..^𝑅)–1-1→V ↔ ((𝑃 ↾ (1..^𝑅)):(1..^𝑅)⟶V ∧ ∀𝑖 ∈ (1..^𝑅)∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → ((𝑃 ↾ (1..^𝑅))‘𝑖) ≠ ((𝑃 ↾ (1..^𝑅))‘𝑗))))
8716, 85, 86sylanbrc 585 . . . 4 ((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) → (𝑃 ↾ (1..^𝑅)):(1..^𝑅)–1-1→V)
88 df-f1 6359 . . . 4 ((𝑃 ↾ (1..^𝑅)):(1..^𝑅)–1-1→V ↔ ((𝑃 ↾ (1..^𝑅)):(1..^𝑅)⟶V ∧ Fun (𝑃 ↾ (1..^𝑅))))
8987, 88sylib 220 . . 3 ((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) → ((𝑃 ↾ (1..^𝑅)):(1..^𝑅)⟶V ∧ Fun (𝑃 ↾ (1..^𝑅))))
9089simprd 498 . 2 ((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) → Fun (𝑃 ↾ (1..^𝑅)))
91 funcnv0 6419 . . 3 Fun
9219nn0zd 12084 . . . . . . . . . . . . 13 (𝜑 → (♯‘𝑃) ∈ ℤ)
93 peano2zm 12024 . . . . . . . . . . . . 13 ((♯‘𝑃) ∈ ℤ → ((♯‘𝑃) − 1) ∈ ℤ)
9492, 93syl 17 . . . . . . . . . . . 12 (𝜑 → ((♯‘𝑃) − 1) ∈ ℤ)
9594zred 12086 . . . . . . . . . . 11 (𝜑 → ((♯‘𝑃) − 1) ∈ ℝ)
96 1red 10641 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℝ)
9795, 96lenltd 10785 . . . . . . . . . 10 (𝜑 → (((♯‘𝑃) − 1) ≤ 1 ↔ ¬ 1 < ((♯‘𝑃) − 1)))
9897biimpar 480 . . . . . . . . 9 ((𝜑 ∧ ¬ 1 < ((♯‘𝑃) − 1)) → ((♯‘𝑃) − 1) ≤ 1)
995, 98eqbrtrid 5100 . . . . . . . 8 ((𝜑 ∧ ¬ 1 < ((♯‘𝑃) − 1)) → 𝑅 ≤ 1)
100 1zzd 12012 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℤ)
1015, 94eqeltrid 2917 . . . . . . . . . . 11 (𝜑𝑅 ∈ ℤ)
102100, 101jca 514 . . . . . . . . . 10 (𝜑 → (1 ∈ ℤ ∧ 𝑅 ∈ ℤ))
103102adantr 483 . . . . . . . . 9 ((𝜑 ∧ ¬ 1 < ((♯‘𝑃) − 1)) → (1 ∈ ℤ ∧ 𝑅 ∈ ℤ))
104 fzon 13057 . . . . . . . . . 10 ((1 ∈ ℤ ∧ 𝑅 ∈ ℤ) → (𝑅 ≤ 1 ↔ (1..^𝑅) = ∅))
105104bicomd 225 . . . . . . . . 9 ((1 ∈ ℤ ∧ 𝑅 ∈ ℤ) → ((1..^𝑅) = ∅ ↔ 𝑅 ≤ 1))
106103, 105syl 17 . . . . . . . 8 ((𝜑 ∧ ¬ 1 < ((♯‘𝑃) − 1)) → ((1..^𝑅) = ∅ ↔ 𝑅 ≤ 1))
10799, 106mpbird 259 . . . . . . 7 ((𝜑 ∧ ¬ 1 < ((♯‘𝑃) − 1)) → (1..^𝑅) = ∅)
108107reseq2d 5852 . . . . . 6 ((𝜑 ∧ ¬ 1 < ((♯‘𝑃) − 1)) → (𝑃 ↾ (1..^𝑅)) = (𝑃 ↾ ∅))
109 res0 5856 . . . . . 6 (𝑃 ↾ ∅) = ∅
110108, 109syl6eq 2872 . . . . 5 ((𝜑 ∧ ¬ 1 < ((♯‘𝑃) − 1)) → (𝑃 ↾ (1..^𝑅)) = ∅)
111110cnveqd 5745 . . . 4 ((𝜑 ∧ ¬ 1 < ((♯‘𝑃) − 1)) → (𝑃 ↾ (1..^𝑅)) = ∅)
112111funeqd 6376 . . 3 ((𝜑 ∧ ¬ 1 < ((♯‘𝑃) − 1)) → (Fun (𝑃 ↾ (1..^𝑅)) ↔ Fun ∅))
11391, 112mpbiri 260 . 2 ((𝜑 ∧ ¬ 1 < ((♯‘𝑃) − 1)) → Fun (𝑃 ↾ (1..^𝑅)))
11490, 113pm2.61dan 811 1 (𝜑 → Fun (𝑃 ↾ (1..^𝑅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wne 3016  wral 3138  Vcvv 3494  cun 3933  wss 3935  c0 4290  {csn 4566   class class class wbr 5065  ccnv 5553  cres 5556  Fun wfun 6348  wf 6350  1-1wf1 6351  cfv 6354  (class class class)co 7155  cr 10535  0cc0 10536  1c1 10537   + caddc 10539   < clt 10674  cle 10675  cmin 10869  cn 11637  2c2 11691  0cn0 11896  cz 11980  cuz 12242  ..^cfzo 13032  chash 13689  Word cword 13860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-oadd 8105  df-er 8288  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-card 9367  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-nn 11638  df-2 11699  df-n0 11897  df-z 11981  df-uz 12243  df-fz 12892  df-fzo 13033  df-hash 13690  df-word 13861
This theorem is referenced by:  pthd  27549
  Copyright terms: Public domain W3C validator