MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pthdlem1 Structured version   Visualization version   GIF version

Theorem pthdlem1 29765
Description: Lemma 1 for pthd 29768. (Contributed by Alexander van der Vekens, 13-Nov-2017.) (Revised by AV, 9-Feb-2021.)
Hypotheses
Ref Expression
pthd.p (𝜑𝑃 ∈ Word V)
pthd.r 𝑅 = ((♯‘𝑃) − 1)
pthd.s (𝜑 → ∀𝑖 ∈ (0..^(♯‘𝑃))∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)))
Assertion
Ref Expression
pthdlem1 (𝜑 → Fun (𝑃 ↾ (1..^𝑅)))
Distinct variable groups:   𝑃,𝑖,𝑗   𝑅,𝑖,𝑗   𝜑,𝑖,𝑗

Proof of Theorem pthdlem1
StepHypRef Expression
1 pthd.p . . . . . . . 8 (𝜑𝑃 ∈ Word V)
2 wrdf 14432 . . . . . . . 8 (𝑃 ∈ Word V → 𝑃:(0..^(♯‘𝑃))⟶V)
31, 2syl 17 . . . . . . 7 (𝜑𝑃:(0..^(♯‘𝑃))⟶V)
4 fzo0ss1 13596 . . . . . . . . 9 (1..^𝑅) ⊆ (0..^𝑅)
5 pthd.r . . . . . . . . . . 11 𝑅 = ((♯‘𝑃) − 1)
65a1i 11 . . . . . . . . . 10 (𝜑𝑅 = ((♯‘𝑃) − 1))
76oveq2d 7371 . . . . . . . . 9 (𝜑 → (0..^𝑅) = (0..^((♯‘𝑃) − 1)))
84, 7sseqtrid 3973 . . . . . . . 8 (𝜑 → (1..^𝑅) ⊆ (0..^((♯‘𝑃) − 1)))
9 lencl 14447 . . . . . . . . 9 (𝑃 ∈ Word V → (♯‘𝑃) ∈ ℕ0)
10 nn0z 12503 . . . . . . . . 9 ((♯‘𝑃) ∈ ℕ0 → (♯‘𝑃) ∈ ℤ)
11 fzossrbm1 13595 . . . . . . . . 9 ((♯‘𝑃) ∈ ℤ → (0..^((♯‘𝑃) − 1)) ⊆ (0..^(♯‘𝑃)))
121, 9, 10, 114syl 19 . . . . . . . 8 (𝜑 → (0..^((♯‘𝑃) − 1)) ⊆ (0..^(♯‘𝑃)))
138, 12sstrd 3941 . . . . . . 7 (𝜑 → (1..^𝑅) ⊆ (0..^(♯‘𝑃)))
143, 13fssresd 6698 . . . . . 6 (𝜑 → (𝑃 ↾ (1..^𝑅)):(1..^𝑅)⟶V)
1514adantr 480 . . . . 5 ((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) → (𝑃 ↾ (1..^𝑅)):(1..^𝑅)⟶V)
16 pthd.s . . . . . . 7 (𝜑 → ∀𝑖 ∈ (0..^(♯‘𝑃))∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)))
1716adantr 480 . . . . . 6 ((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) → ∀𝑖 ∈ (0..^(♯‘𝑃))∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)))
181, 9syl 17 . . . . . . . . . . . 12 (𝜑 → (♯‘𝑃) ∈ ℕ0)
19 nn0re 12401 . . . . . . . . . . . . . . . 16 ((♯‘𝑃) ∈ ℕ0 → (♯‘𝑃) ∈ ℝ)
2019ltm1d 12065 . . . . . . . . . . . . . . 15 ((♯‘𝑃) ∈ ℕ0 → ((♯‘𝑃) − 1) < (♯‘𝑃))
21 1re 11123 . . . . . . . . . . . . . . . . 17 1 ∈ ℝ
22 peano2rem 11439 . . . . . . . . . . . . . . . . . 18 ((♯‘𝑃) ∈ ℝ → ((♯‘𝑃) − 1) ∈ ℝ)
2319, 22syl 17 . . . . . . . . . . . . . . . . 17 ((♯‘𝑃) ∈ ℕ0 → ((♯‘𝑃) − 1) ∈ ℝ)
24 lttr 11200 . . . . . . . . . . . . . . . . 17 ((1 ∈ ℝ ∧ ((♯‘𝑃) − 1) ∈ ℝ ∧ (♯‘𝑃) ∈ ℝ) → ((1 < ((♯‘𝑃) − 1) ∧ ((♯‘𝑃) − 1) < (♯‘𝑃)) → 1 < (♯‘𝑃)))
2521, 23, 19, 24mp3an2i 1468 . . . . . . . . . . . . . . . 16 ((♯‘𝑃) ∈ ℕ0 → ((1 < ((♯‘𝑃) − 1) ∧ ((♯‘𝑃) − 1) < (♯‘𝑃)) → 1 < (♯‘𝑃)))
26 1red 11124 . . . . . . . . . . . . . . . . 17 ((♯‘𝑃) ∈ ℕ0 → 1 ∈ ℝ)
27 ltle 11212 . . . . . . . . . . . . . . . . 17 ((1 ∈ ℝ ∧ (♯‘𝑃) ∈ ℝ) → (1 < (♯‘𝑃) → 1 ≤ (♯‘𝑃)))
2826, 19, 27syl2anc 584 . . . . . . . . . . . . . . . 16 ((♯‘𝑃) ∈ ℕ0 → (1 < (♯‘𝑃) → 1 ≤ (♯‘𝑃)))
2925, 28syld 47 . . . . . . . . . . . . . . 15 ((♯‘𝑃) ∈ ℕ0 → ((1 < ((♯‘𝑃) − 1) ∧ ((♯‘𝑃) − 1) < (♯‘𝑃)) → 1 ≤ (♯‘𝑃)))
3020, 29mpan2d 694 . . . . . . . . . . . . . 14 ((♯‘𝑃) ∈ ℕ0 → (1 < ((♯‘𝑃) − 1) → 1 ≤ (♯‘𝑃)))
3130imdistani 568 . . . . . . . . . . . . 13 (((♯‘𝑃) ∈ ℕ0 ∧ 1 < ((♯‘𝑃) − 1)) → ((♯‘𝑃) ∈ ℕ0 ∧ 1 ≤ (♯‘𝑃)))
32 elnnnn0c 12437 . . . . . . . . . . . . 13 ((♯‘𝑃) ∈ ℕ ↔ ((♯‘𝑃) ∈ ℕ0 ∧ 1 ≤ (♯‘𝑃)))
3331, 32sylibr 234 . . . . . . . . . . . 12 (((♯‘𝑃) ∈ ℕ0 ∧ 1 < ((♯‘𝑃) − 1)) → (♯‘𝑃) ∈ ℕ)
3418, 33sylan 580 . . . . . . . . . . 11 ((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) → (♯‘𝑃) ∈ ℕ)
35 fzo0sn0fzo1 13662 . . . . . . . . . . 11 ((♯‘𝑃) ∈ ℕ → (0..^(♯‘𝑃)) = ({0} ∪ (1..^(♯‘𝑃))))
3634, 35syl 17 . . . . . . . . . 10 ((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) → (0..^(♯‘𝑃)) = ({0} ∪ (1..^(♯‘𝑃))))
37 1zzd 12513 . . . . . . . . . . . 12 ((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) → 1 ∈ ℤ)
38 1p1e2 12256 . . . . . . . . . . . . . . . 16 (1 + 1) = 2
39 2z 12514 . . . . . . . . . . . . . . . 16 2 ∈ ℤ
4038, 39eqeltri 2829 . . . . . . . . . . . . . . 15 (1 + 1) ∈ ℤ
4140a1i 11 . . . . . . . . . . . . . 14 (((♯‘𝑃) ∈ ℕ0 ∧ 1 < ((♯‘𝑃) − 1)) → (1 + 1) ∈ ℤ)
4210adantr 480 . . . . . . . . . . . . . 14 (((♯‘𝑃) ∈ ℕ0 ∧ 1 < ((♯‘𝑃) − 1)) → (♯‘𝑃) ∈ ℤ)
43 ltaddsub 11602 . . . . . . . . . . . . . . . . . 18 ((1 ∈ ℝ ∧ 1 ∈ ℝ ∧ (♯‘𝑃) ∈ ℝ) → ((1 + 1) < (♯‘𝑃) ↔ 1 < ((♯‘𝑃) − 1)))
4443bicomd 223 . . . . . . . . . . . . . . . . 17 ((1 ∈ ℝ ∧ 1 ∈ ℝ ∧ (♯‘𝑃) ∈ ℝ) → (1 < ((♯‘𝑃) − 1) ↔ (1 + 1) < (♯‘𝑃)))
4521, 26, 19, 44mp3an2i 1468 . . . . . . . . . . . . . . . 16 ((♯‘𝑃) ∈ ℕ0 → (1 < ((♯‘𝑃) − 1) ↔ (1 + 1) < (♯‘𝑃)))
46 2re 12210 . . . . . . . . . . . . . . . . . 18 2 ∈ ℝ
4738, 46eqeltri 2829 . . . . . . . . . . . . . . . . 17 (1 + 1) ∈ ℝ
48 ltle 11212 . . . . . . . . . . . . . . . . 17 (((1 + 1) ∈ ℝ ∧ (♯‘𝑃) ∈ ℝ) → ((1 + 1) < (♯‘𝑃) → (1 + 1) ≤ (♯‘𝑃)))
4947, 19, 48sylancr 587 . . . . . . . . . . . . . . . 16 ((♯‘𝑃) ∈ ℕ0 → ((1 + 1) < (♯‘𝑃) → (1 + 1) ≤ (♯‘𝑃)))
5045, 49sylbid 240 . . . . . . . . . . . . . . 15 ((♯‘𝑃) ∈ ℕ0 → (1 < ((♯‘𝑃) − 1) → (1 + 1) ≤ (♯‘𝑃)))
5150imp 406 . . . . . . . . . . . . . 14 (((♯‘𝑃) ∈ ℕ0 ∧ 1 < ((♯‘𝑃) − 1)) → (1 + 1) ≤ (♯‘𝑃))
52 eluz2 12748 . . . . . . . . . . . . . 14 ((♯‘𝑃) ∈ (ℤ‘(1 + 1)) ↔ ((1 + 1) ∈ ℤ ∧ (♯‘𝑃) ∈ ℤ ∧ (1 + 1) ≤ (♯‘𝑃)))
5341, 42, 51, 52syl3anbrc 1344 . . . . . . . . . . . . 13 (((♯‘𝑃) ∈ ℕ0 ∧ 1 < ((♯‘𝑃) − 1)) → (♯‘𝑃) ∈ (ℤ‘(1 + 1)))
5418, 53sylan 580 . . . . . . . . . . . 12 ((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) → (♯‘𝑃) ∈ (ℤ‘(1 + 1)))
55 fzosplitsnm1 13647 . . . . . . . . . . . 12 ((1 ∈ ℤ ∧ (♯‘𝑃) ∈ (ℤ‘(1 + 1))) → (1..^(♯‘𝑃)) = ((1..^((♯‘𝑃) − 1)) ∪ {((♯‘𝑃) − 1)}))
5637, 54, 55syl2anc 584 . . . . . . . . . . 11 ((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) → (1..^(♯‘𝑃)) = ((1..^((♯‘𝑃) − 1)) ∪ {((♯‘𝑃) − 1)}))
5756uneq2d 4117 . . . . . . . . . 10 ((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) → ({0} ∪ (1..^(♯‘𝑃))) = ({0} ∪ ((1..^((♯‘𝑃) − 1)) ∪ {((♯‘𝑃) − 1)})))
5836, 57eqtrd 2768 . . . . . . . . 9 ((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) → (0..^(♯‘𝑃)) = ({0} ∪ ((1..^((♯‘𝑃) − 1)) ∪ {((♯‘𝑃) − 1)})))
5958raleqdv 3293 . . . . . . . 8 ((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) → (∀𝑖 ∈ (0..^(♯‘𝑃))∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) ↔ ∀𝑖 ∈ ({0} ∪ ((1..^((♯‘𝑃) − 1)) ∪ {((♯‘𝑃) − 1)}))∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗))))
60 ralunb 4146 . . . . . . . . 9 (∀𝑖 ∈ ({0} ∪ ((1..^((♯‘𝑃) − 1)) ∪ {((♯‘𝑃) − 1)}))∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) ↔ (∀𝑖 ∈ {0}∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) ∧ ∀𝑖 ∈ ((1..^((♯‘𝑃) − 1)) ∪ {((♯‘𝑃) − 1)})∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗))))
61 ralunb 4146 . . . . . . . . . 10 (∀𝑖 ∈ ((1..^((♯‘𝑃) − 1)) ∪ {((♯‘𝑃) − 1)})∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) ↔ (∀𝑖 ∈ (1..^((♯‘𝑃) − 1))∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) ∧ ∀𝑖 ∈ {((♯‘𝑃) − 1)}∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗))))
6261anbi2i 623 . . . . . . . . 9 ((∀𝑖 ∈ {0}∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) ∧ ∀𝑖 ∈ ((1..^((♯‘𝑃) − 1)) ∪ {((♯‘𝑃) − 1)})∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗))) ↔ (∀𝑖 ∈ {0}∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) ∧ (∀𝑖 ∈ (1..^((♯‘𝑃) − 1))∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) ∧ ∀𝑖 ∈ {((♯‘𝑃) − 1)}∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)))))
6360, 62bitri 275 . . . . . . . 8 (∀𝑖 ∈ ({0} ∪ ((1..^((♯‘𝑃) − 1)) ∪ {((♯‘𝑃) − 1)}))∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) ↔ (∀𝑖 ∈ {0}∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) ∧ (∀𝑖 ∈ (1..^((♯‘𝑃) − 1))∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) ∧ ∀𝑖 ∈ {((♯‘𝑃) − 1)}∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)))))
6459, 63bitrdi 287 . . . . . . 7 ((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) → (∀𝑖 ∈ (0..^(♯‘𝑃))∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) ↔ (∀𝑖 ∈ {0}∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) ∧ (∀𝑖 ∈ (1..^((♯‘𝑃) − 1))∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) ∧ ∀𝑖 ∈ {((♯‘𝑃) − 1)}∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗))))))
655eqcomi 2742 . . . . . . . . . . . 12 ((♯‘𝑃) − 1) = 𝑅
6665oveq2i 7366 . . . . . . . . . . 11 (1..^((♯‘𝑃) − 1)) = (1..^𝑅)
6766raleqi 3291 . . . . . . . . . 10 (∀𝑖 ∈ (1..^((♯‘𝑃) − 1))∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) ↔ ∀𝑖 ∈ (1..^𝑅)∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)))
68 fvres 6850 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ (1..^𝑅) → ((𝑃 ↾ (1..^𝑅))‘𝑖) = (𝑃𝑖))
6968eqcomd 2739 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ (1..^𝑅) → (𝑃𝑖) = ((𝑃 ↾ (1..^𝑅))‘𝑖))
7069adantl 481 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) ∧ 𝑖 ∈ (1..^𝑅)) → (𝑃𝑖) = ((𝑃 ↾ (1..^𝑅))‘𝑖))
7170adantr 480 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) ∧ 𝑖 ∈ (1..^𝑅)) ∧ 𝑗 ∈ (1..^𝑅)) → (𝑃𝑖) = ((𝑃 ↾ (1..^𝑅))‘𝑖))
72 fvres 6850 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (1..^𝑅) → ((𝑃 ↾ (1..^𝑅))‘𝑗) = (𝑃𝑗))
7372eqcomd 2739 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (1..^𝑅) → (𝑃𝑗) = ((𝑃 ↾ (1..^𝑅))‘𝑗))
7473adantl 481 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) ∧ 𝑖 ∈ (1..^𝑅)) ∧ 𝑗 ∈ (1..^𝑅)) → (𝑃𝑗) = ((𝑃 ↾ (1..^𝑅))‘𝑗))
7571, 74neeq12d 2990 . . . . . . . . . . . . . 14 ((((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) ∧ 𝑖 ∈ (1..^𝑅)) ∧ 𝑗 ∈ (1..^𝑅)) → ((𝑃𝑖) ≠ (𝑃𝑗) ↔ ((𝑃 ↾ (1..^𝑅))‘𝑖) ≠ ((𝑃 ↾ (1..^𝑅))‘𝑗)))
7675biimpd 229 . . . . . . . . . . . . 13 ((((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) ∧ 𝑖 ∈ (1..^𝑅)) ∧ 𝑗 ∈ (1..^𝑅)) → ((𝑃𝑖) ≠ (𝑃𝑗) → ((𝑃 ↾ (1..^𝑅))‘𝑖) ≠ ((𝑃 ↾ (1..^𝑅))‘𝑗)))
7776imim2d 57 . . . . . . . . . . . 12 ((((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) ∧ 𝑖 ∈ (1..^𝑅)) ∧ 𝑗 ∈ (1..^𝑅)) → ((𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) → (𝑖𝑗 → ((𝑃 ↾ (1..^𝑅))‘𝑖) ≠ ((𝑃 ↾ (1..^𝑅))‘𝑗))))
7877ralimdva 3145 . . . . . . . . . . 11 (((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) ∧ 𝑖 ∈ (1..^𝑅)) → (∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) → ∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → ((𝑃 ↾ (1..^𝑅))‘𝑖) ≠ ((𝑃 ↾ (1..^𝑅))‘𝑗))))
7978ralimdva 3145 . . . . . . . . . 10 ((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) → (∀𝑖 ∈ (1..^𝑅)∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) → ∀𝑖 ∈ (1..^𝑅)∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → ((𝑃 ↾ (1..^𝑅))‘𝑖) ≠ ((𝑃 ↾ (1..^𝑅))‘𝑗))))
8067, 79biimtrid 242 . . . . . . . . 9 ((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) → (∀𝑖 ∈ (1..^((♯‘𝑃) − 1))∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) → ∀𝑖 ∈ (1..^𝑅)∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → ((𝑃 ↾ (1..^𝑅))‘𝑖) ≠ ((𝑃 ↾ (1..^𝑅))‘𝑗))))
8180adantrd 491 . . . . . . . 8 ((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) → ((∀𝑖 ∈ (1..^((♯‘𝑃) − 1))∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) ∧ ∀𝑖 ∈ {((♯‘𝑃) − 1)}∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗))) → ∀𝑖 ∈ (1..^𝑅)∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → ((𝑃 ↾ (1..^𝑅))‘𝑖) ≠ ((𝑃 ↾ (1..^𝑅))‘𝑗))))
8281adantld 490 . . . . . . 7 ((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) → ((∀𝑖 ∈ {0}∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) ∧ (∀𝑖 ∈ (1..^((♯‘𝑃) − 1))∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) ∧ ∀𝑖 ∈ {((♯‘𝑃) − 1)}∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)))) → ∀𝑖 ∈ (1..^𝑅)∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → ((𝑃 ↾ (1..^𝑅))‘𝑖) ≠ ((𝑃 ↾ (1..^𝑅))‘𝑗))))
8364, 82sylbid 240 . . . . . 6 ((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) → (∀𝑖 ∈ (0..^(♯‘𝑃))∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) → ∀𝑖 ∈ (1..^𝑅)∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → ((𝑃 ↾ (1..^𝑅))‘𝑖) ≠ ((𝑃 ↾ (1..^𝑅))‘𝑗))))
8417, 83mpd 15 . . . . 5 ((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) → ∀𝑖 ∈ (1..^𝑅)∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → ((𝑃 ↾ (1..^𝑅))‘𝑖) ≠ ((𝑃 ↾ (1..^𝑅))‘𝑗)))
85 dff14a 7213 . . . . 5 ((𝑃 ↾ (1..^𝑅)):(1..^𝑅)–1-1→V ↔ ((𝑃 ↾ (1..^𝑅)):(1..^𝑅)⟶V ∧ ∀𝑖 ∈ (1..^𝑅)∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → ((𝑃 ↾ (1..^𝑅))‘𝑖) ≠ ((𝑃 ↾ (1..^𝑅))‘𝑗))))
8615, 84, 85sylanbrc 583 . . . 4 ((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) → (𝑃 ↾ (1..^𝑅)):(1..^𝑅)–1-1→V)
87 df-f1 6494 . . . 4 ((𝑃 ↾ (1..^𝑅)):(1..^𝑅)–1-1→V ↔ ((𝑃 ↾ (1..^𝑅)):(1..^𝑅)⟶V ∧ Fun (𝑃 ↾ (1..^𝑅))))
8886, 87sylib 218 . . 3 ((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) → ((𝑃 ↾ (1..^𝑅)):(1..^𝑅)⟶V ∧ Fun (𝑃 ↾ (1..^𝑅))))
8988simprd 495 . 2 ((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) → Fun (𝑃 ↾ (1..^𝑅)))
90 funcnv0 6555 . . 3 Fun
9118nn0zd 12504 . . . . . . . . . . . . 13 (𝜑 → (♯‘𝑃) ∈ ℤ)
92 peano2zm 12525 . . . . . . . . . . . . 13 ((♯‘𝑃) ∈ ℤ → ((♯‘𝑃) − 1) ∈ ℤ)
9391, 92syl 17 . . . . . . . . . . . 12 (𝜑 → ((♯‘𝑃) − 1) ∈ ℤ)
9493zred 12587 . . . . . . . . . . 11 (𝜑 → ((♯‘𝑃) − 1) ∈ ℝ)
95 1red 11124 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℝ)
9694, 95lenltd 11270 . . . . . . . . . 10 (𝜑 → (((♯‘𝑃) − 1) ≤ 1 ↔ ¬ 1 < ((♯‘𝑃) − 1)))
9796biimpar 477 . . . . . . . . 9 ((𝜑 ∧ ¬ 1 < ((♯‘𝑃) − 1)) → ((♯‘𝑃) − 1) ≤ 1)
985, 97eqbrtrid 5130 . . . . . . . 8 ((𝜑 ∧ ¬ 1 < ((♯‘𝑃) − 1)) → 𝑅 ≤ 1)
99 1zzd 12513 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℤ)
1005, 93eqeltrid 2837 . . . . . . . . . . 11 (𝜑𝑅 ∈ ℤ)
10199, 100jca 511 . . . . . . . . . 10 (𝜑 → (1 ∈ ℤ ∧ 𝑅 ∈ ℤ))
102101adantr 480 . . . . . . . . 9 ((𝜑 ∧ ¬ 1 < ((♯‘𝑃) − 1)) → (1 ∈ ℤ ∧ 𝑅 ∈ ℤ))
103 fzon 13587 . . . . . . . . . 10 ((1 ∈ ℤ ∧ 𝑅 ∈ ℤ) → (𝑅 ≤ 1 ↔ (1..^𝑅) = ∅))
104103bicomd 223 . . . . . . . . 9 ((1 ∈ ℤ ∧ 𝑅 ∈ ℤ) → ((1..^𝑅) = ∅ ↔ 𝑅 ≤ 1))
105102, 104syl 17 . . . . . . . 8 ((𝜑 ∧ ¬ 1 < ((♯‘𝑃) − 1)) → ((1..^𝑅) = ∅ ↔ 𝑅 ≤ 1))
10698, 105mpbird 257 . . . . . . 7 ((𝜑 ∧ ¬ 1 < ((♯‘𝑃) − 1)) → (1..^𝑅) = ∅)
107106reseq2d 5935 . . . . . 6 ((𝜑 ∧ ¬ 1 < ((♯‘𝑃) − 1)) → (𝑃 ↾ (1..^𝑅)) = (𝑃 ↾ ∅))
108 res0 5939 . . . . . 6 (𝑃 ↾ ∅) = ∅
109107, 108eqtrdi 2784 . . . . 5 ((𝜑 ∧ ¬ 1 < ((♯‘𝑃) − 1)) → (𝑃 ↾ (1..^𝑅)) = ∅)
110109cnveqd 5821 . . . 4 ((𝜑 ∧ ¬ 1 < ((♯‘𝑃) − 1)) → (𝑃 ↾ (1..^𝑅)) = ∅)
111110funeqd 6511 . . 3 ((𝜑 ∧ ¬ 1 < ((♯‘𝑃) − 1)) → (Fun (𝑃 ↾ (1..^𝑅)) ↔ Fun ∅))
11290, 111mpbiri 258 . 2 ((𝜑 ∧ ¬ 1 < ((♯‘𝑃) − 1)) → Fun (𝑃 ↾ (1..^𝑅)))
11389, 112pm2.61dan 812 1 (𝜑 → Fun (𝑃 ↾ (1..^𝑅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wne 2929  wral 3048  Vcvv 3437  cun 3896  wss 3898  c0 4282  {csn 4577   class class class wbr 5095  ccnv 5620  cres 5623  Fun wfun 6483  wf 6485  1-1wf1 6486  cfv 6489  (class class class)co 7355  cr 11016  0cc0 11017  1c1 11018   + caddc 11020   < clt 11157  cle 11158  cmin 11355  cn 12136  2c2 12191  0cn0 12392  cz 12479  cuz 12742  ..^cfzo 13561  chash 14244  Word cword 14427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-er 8631  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-card 9843  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-nn 12137  df-2 12199  df-n0 12393  df-z 12480  df-uz 12743  df-fz 13415  df-fzo 13562  df-hash 14245  df-word 14428
This theorem is referenced by:  pthd  29768
  Copyright terms: Public domain W3C validator