MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pthdlem1 Structured version   Visualization version   GIF version

Theorem pthdlem1 28035
Description: Lemma 1 for pthd 28038. (Contributed by Alexander van der Vekens, 13-Nov-2017.) (Revised by AV, 9-Feb-2021.)
Hypotheses
Ref Expression
pthd.p (𝜑𝑃 ∈ Word V)
pthd.r 𝑅 = ((♯‘𝑃) − 1)
pthd.s (𝜑 → ∀𝑖 ∈ (0..^(♯‘𝑃))∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)))
Assertion
Ref Expression
pthdlem1 (𝜑 → Fun (𝑃 ↾ (1..^𝑅)))
Distinct variable groups:   𝑃,𝑖,𝑗   𝑅,𝑖,𝑗   𝜑,𝑖,𝑗

Proof of Theorem pthdlem1
StepHypRef Expression
1 pthd.p . . . . . . . 8 (𝜑𝑃 ∈ Word V)
2 wrdf 14150 . . . . . . . 8 (𝑃 ∈ Word V → 𝑃:(0..^(♯‘𝑃))⟶V)
31, 2syl 17 . . . . . . 7 (𝜑𝑃:(0..^(♯‘𝑃))⟶V)
4 fzo0ss1 13345 . . . . . . . . 9 (1..^𝑅) ⊆ (0..^𝑅)
5 pthd.r . . . . . . . . . . 11 𝑅 = ((♯‘𝑃) − 1)
65a1i 11 . . . . . . . . . 10 (𝜑𝑅 = ((♯‘𝑃) − 1))
76oveq2d 7271 . . . . . . . . 9 (𝜑 → (0..^𝑅) = (0..^((♯‘𝑃) − 1)))
84, 7sseqtrid 3969 . . . . . . . 8 (𝜑 → (1..^𝑅) ⊆ (0..^((♯‘𝑃) − 1)))
9 lencl 14164 . . . . . . . . . 10 (𝑃 ∈ Word V → (♯‘𝑃) ∈ ℕ0)
10 nn0z 12273 . . . . . . . . . 10 ((♯‘𝑃) ∈ ℕ0 → (♯‘𝑃) ∈ ℤ)
111, 9, 103syl 18 . . . . . . . . 9 (𝜑 → (♯‘𝑃) ∈ ℤ)
12 fzossrbm1 13344 . . . . . . . . 9 ((♯‘𝑃) ∈ ℤ → (0..^((♯‘𝑃) − 1)) ⊆ (0..^(♯‘𝑃)))
1311, 12syl 17 . . . . . . . 8 (𝜑 → (0..^((♯‘𝑃) − 1)) ⊆ (0..^(♯‘𝑃)))
148, 13sstrd 3927 . . . . . . 7 (𝜑 → (1..^𝑅) ⊆ (0..^(♯‘𝑃)))
153, 14fssresd 6625 . . . . . 6 (𝜑 → (𝑃 ↾ (1..^𝑅)):(1..^𝑅)⟶V)
1615adantr 480 . . . . 5 ((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) → (𝑃 ↾ (1..^𝑅)):(1..^𝑅)⟶V)
17 pthd.s . . . . . . 7 (𝜑 → ∀𝑖 ∈ (0..^(♯‘𝑃))∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)))
1817adantr 480 . . . . . 6 ((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) → ∀𝑖 ∈ (0..^(♯‘𝑃))∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)))
191, 9syl 17 . . . . . . . . . . . 12 (𝜑 → (♯‘𝑃) ∈ ℕ0)
20 nn0re 12172 . . . . . . . . . . . . . . . 16 ((♯‘𝑃) ∈ ℕ0 → (♯‘𝑃) ∈ ℝ)
2120ltm1d 11837 . . . . . . . . . . . . . . 15 ((♯‘𝑃) ∈ ℕ0 → ((♯‘𝑃) − 1) < (♯‘𝑃))
22 1re 10906 . . . . . . . . . . . . . . . . 17 1 ∈ ℝ
23 peano2rem 11218 . . . . . . . . . . . . . . . . . 18 ((♯‘𝑃) ∈ ℝ → ((♯‘𝑃) − 1) ∈ ℝ)
2420, 23syl 17 . . . . . . . . . . . . . . . . 17 ((♯‘𝑃) ∈ ℕ0 → ((♯‘𝑃) − 1) ∈ ℝ)
25 lttr 10982 . . . . . . . . . . . . . . . . 17 ((1 ∈ ℝ ∧ ((♯‘𝑃) − 1) ∈ ℝ ∧ (♯‘𝑃) ∈ ℝ) → ((1 < ((♯‘𝑃) − 1) ∧ ((♯‘𝑃) − 1) < (♯‘𝑃)) → 1 < (♯‘𝑃)))
2622, 24, 20, 25mp3an2i 1464 . . . . . . . . . . . . . . . 16 ((♯‘𝑃) ∈ ℕ0 → ((1 < ((♯‘𝑃) − 1) ∧ ((♯‘𝑃) − 1) < (♯‘𝑃)) → 1 < (♯‘𝑃)))
27 1red 10907 . . . . . . . . . . . . . . . . 17 ((♯‘𝑃) ∈ ℕ0 → 1 ∈ ℝ)
28 ltle 10994 . . . . . . . . . . . . . . . . 17 ((1 ∈ ℝ ∧ (♯‘𝑃) ∈ ℝ) → (1 < (♯‘𝑃) → 1 ≤ (♯‘𝑃)))
2927, 20, 28syl2anc 583 . . . . . . . . . . . . . . . 16 ((♯‘𝑃) ∈ ℕ0 → (1 < (♯‘𝑃) → 1 ≤ (♯‘𝑃)))
3026, 29syld 47 . . . . . . . . . . . . . . 15 ((♯‘𝑃) ∈ ℕ0 → ((1 < ((♯‘𝑃) − 1) ∧ ((♯‘𝑃) − 1) < (♯‘𝑃)) → 1 ≤ (♯‘𝑃)))
3121, 30mpan2d 690 . . . . . . . . . . . . . 14 ((♯‘𝑃) ∈ ℕ0 → (1 < ((♯‘𝑃) − 1) → 1 ≤ (♯‘𝑃)))
3231imdistani 568 . . . . . . . . . . . . 13 (((♯‘𝑃) ∈ ℕ0 ∧ 1 < ((♯‘𝑃) − 1)) → ((♯‘𝑃) ∈ ℕ0 ∧ 1 ≤ (♯‘𝑃)))
33 elnnnn0c 12208 . . . . . . . . . . . . 13 ((♯‘𝑃) ∈ ℕ ↔ ((♯‘𝑃) ∈ ℕ0 ∧ 1 ≤ (♯‘𝑃)))
3432, 33sylibr 233 . . . . . . . . . . . 12 (((♯‘𝑃) ∈ ℕ0 ∧ 1 < ((♯‘𝑃) − 1)) → (♯‘𝑃) ∈ ℕ)
3519, 34sylan 579 . . . . . . . . . . 11 ((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) → (♯‘𝑃) ∈ ℕ)
36 fzo0sn0fzo1 13404 . . . . . . . . . . 11 ((♯‘𝑃) ∈ ℕ → (0..^(♯‘𝑃)) = ({0} ∪ (1..^(♯‘𝑃))))
3735, 36syl 17 . . . . . . . . . 10 ((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) → (0..^(♯‘𝑃)) = ({0} ∪ (1..^(♯‘𝑃))))
38 1zzd 12281 . . . . . . . . . . . 12 ((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) → 1 ∈ ℤ)
39 1p1e2 12028 . . . . . . . . . . . . . . . 16 (1 + 1) = 2
40 2z 12282 . . . . . . . . . . . . . . . 16 2 ∈ ℤ
4139, 40eqeltri 2835 . . . . . . . . . . . . . . 15 (1 + 1) ∈ ℤ
4241a1i 11 . . . . . . . . . . . . . 14 (((♯‘𝑃) ∈ ℕ0 ∧ 1 < ((♯‘𝑃) − 1)) → (1 + 1) ∈ ℤ)
4310adantr 480 . . . . . . . . . . . . . 14 (((♯‘𝑃) ∈ ℕ0 ∧ 1 < ((♯‘𝑃) − 1)) → (♯‘𝑃) ∈ ℤ)
44 ltaddsub 11379 . . . . . . . . . . . . . . . . . 18 ((1 ∈ ℝ ∧ 1 ∈ ℝ ∧ (♯‘𝑃) ∈ ℝ) → ((1 + 1) < (♯‘𝑃) ↔ 1 < ((♯‘𝑃) − 1)))
4544bicomd 222 . . . . . . . . . . . . . . . . 17 ((1 ∈ ℝ ∧ 1 ∈ ℝ ∧ (♯‘𝑃) ∈ ℝ) → (1 < ((♯‘𝑃) − 1) ↔ (1 + 1) < (♯‘𝑃)))
4622, 27, 20, 45mp3an2i 1464 . . . . . . . . . . . . . . . 16 ((♯‘𝑃) ∈ ℕ0 → (1 < ((♯‘𝑃) − 1) ↔ (1 + 1) < (♯‘𝑃)))
47 2re 11977 . . . . . . . . . . . . . . . . . 18 2 ∈ ℝ
4839, 47eqeltri 2835 . . . . . . . . . . . . . . . . 17 (1 + 1) ∈ ℝ
49 ltle 10994 . . . . . . . . . . . . . . . . 17 (((1 + 1) ∈ ℝ ∧ (♯‘𝑃) ∈ ℝ) → ((1 + 1) < (♯‘𝑃) → (1 + 1) ≤ (♯‘𝑃)))
5048, 20, 49sylancr 586 . . . . . . . . . . . . . . . 16 ((♯‘𝑃) ∈ ℕ0 → ((1 + 1) < (♯‘𝑃) → (1 + 1) ≤ (♯‘𝑃)))
5146, 50sylbid 239 . . . . . . . . . . . . . . 15 ((♯‘𝑃) ∈ ℕ0 → (1 < ((♯‘𝑃) − 1) → (1 + 1) ≤ (♯‘𝑃)))
5251imp 406 . . . . . . . . . . . . . 14 (((♯‘𝑃) ∈ ℕ0 ∧ 1 < ((♯‘𝑃) − 1)) → (1 + 1) ≤ (♯‘𝑃))
53 eluz2 12517 . . . . . . . . . . . . . 14 ((♯‘𝑃) ∈ (ℤ‘(1 + 1)) ↔ ((1 + 1) ∈ ℤ ∧ (♯‘𝑃) ∈ ℤ ∧ (1 + 1) ≤ (♯‘𝑃)))
5442, 43, 52, 53syl3anbrc 1341 . . . . . . . . . . . . 13 (((♯‘𝑃) ∈ ℕ0 ∧ 1 < ((♯‘𝑃) − 1)) → (♯‘𝑃) ∈ (ℤ‘(1 + 1)))
5519, 54sylan 579 . . . . . . . . . . . 12 ((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) → (♯‘𝑃) ∈ (ℤ‘(1 + 1)))
56 fzosplitsnm1 13390 . . . . . . . . . . . 12 ((1 ∈ ℤ ∧ (♯‘𝑃) ∈ (ℤ‘(1 + 1))) → (1..^(♯‘𝑃)) = ((1..^((♯‘𝑃) − 1)) ∪ {((♯‘𝑃) − 1)}))
5738, 55, 56syl2anc 583 . . . . . . . . . . 11 ((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) → (1..^(♯‘𝑃)) = ((1..^((♯‘𝑃) − 1)) ∪ {((♯‘𝑃) − 1)}))
5857uneq2d 4093 . . . . . . . . . 10 ((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) → ({0} ∪ (1..^(♯‘𝑃))) = ({0} ∪ ((1..^((♯‘𝑃) − 1)) ∪ {((♯‘𝑃) − 1)})))
5937, 58eqtrd 2778 . . . . . . . . 9 ((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) → (0..^(♯‘𝑃)) = ({0} ∪ ((1..^((♯‘𝑃) − 1)) ∪ {((♯‘𝑃) − 1)})))
6059raleqdv 3339 . . . . . . . 8 ((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) → (∀𝑖 ∈ (0..^(♯‘𝑃))∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) ↔ ∀𝑖 ∈ ({0} ∪ ((1..^((♯‘𝑃) − 1)) ∪ {((♯‘𝑃) − 1)}))∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗))))
61 ralunb 4121 . . . . . . . . 9 (∀𝑖 ∈ ({0} ∪ ((1..^((♯‘𝑃) − 1)) ∪ {((♯‘𝑃) − 1)}))∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) ↔ (∀𝑖 ∈ {0}∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) ∧ ∀𝑖 ∈ ((1..^((♯‘𝑃) − 1)) ∪ {((♯‘𝑃) − 1)})∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗))))
62 ralunb 4121 . . . . . . . . . 10 (∀𝑖 ∈ ((1..^((♯‘𝑃) − 1)) ∪ {((♯‘𝑃) − 1)})∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) ↔ (∀𝑖 ∈ (1..^((♯‘𝑃) − 1))∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) ∧ ∀𝑖 ∈ {((♯‘𝑃) − 1)}∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗))))
6362anbi2i 622 . . . . . . . . 9 ((∀𝑖 ∈ {0}∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) ∧ ∀𝑖 ∈ ((1..^((♯‘𝑃) − 1)) ∪ {((♯‘𝑃) − 1)})∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗))) ↔ (∀𝑖 ∈ {0}∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) ∧ (∀𝑖 ∈ (1..^((♯‘𝑃) − 1))∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) ∧ ∀𝑖 ∈ {((♯‘𝑃) − 1)}∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)))))
6461, 63bitri 274 . . . . . . . 8 (∀𝑖 ∈ ({0} ∪ ((1..^((♯‘𝑃) − 1)) ∪ {((♯‘𝑃) − 1)}))∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) ↔ (∀𝑖 ∈ {0}∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) ∧ (∀𝑖 ∈ (1..^((♯‘𝑃) − 1))∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) ∧ ∀𝑖 ∈ {((♯‘𝑃) − 1)}∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)))))
6560, 64bitrdi 286 . . . . . . 7 ((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) → (∀𝑖 ∈ (0..^(♯‘𝑃))∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) ↔ (∀𝑖 ∈ {0}∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) ∧ (∀𝑖 ∈ (1..^((♯‘𝑃) − 1))∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) ∧ ∀𝑖 ∈ {((♯‘𝑃) − 1)}∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗))))))
665eqcomi 2747 . . . . . . . . . . . 12 ((♯‘𝑃) − 1) = 𝑅
6766oveq2i 7266 . . . . . . . . . . 11 (1..^((♯‘𝑃) − 1)) = (1..^𝑅)
6867raleqi 3337 . . . . . . . . . 10 (∀𝑖 ∈ (1..^((♯‘𝑃) − 1))∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) ↔ ∀𝑖 ∈ (1..^𝑅)∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)))
69 fvres 6775 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ (1..^𝑅) → ((𝑃 ↾ (1..^𝑅))‘𝑖) = (𝑃𝑖))
7069eqcomd 2744 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ (1..^𝑅) → (𝑃𝑖) = ((𝑃 ↾ (1..^𝑅))‘𝑖))
7170adantl 481 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) ∧ 𝑖 ∈ (1..^𝑅)) → (𝑃𝑖) = ((𝑃 ↾ (1..^𝑅))‘𝑖))
7271adantr 480 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) ∧ 𝑖 ∈ (1..^𝑅)) ∧ 𝑗 ∈ (1..^𝑅)) → (𝑃𝑖) = ((𝑃 ↾ (1..^𝑅))‘𝑖))
73 fvres 6775 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (1..^𝑅) → ((𝑃 ↾ (1..^𝑅))‘𝑗) = (𝑃𝑗))
7473eqcomd 2744 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (1..^𝑅) → (𝑃𝑗) = ((𝑃 ↾ (1..^𝑅))‘𝑗))
7574adantl 481 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) ∧ 𝑖 ∈ (1..^𝑅)) ∧ 𝑗 ∈ (1..^𝑅)) → (𝑃𝑗) = ((𝑃 ↾ (1..^𝑅))‘𝑗))
7672, 75neeq12d 3004 . . . . . . . . . . . . . 14 ((((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) ∧ 𝑖 ∈ (1..^𝑅)) ∧ 𝑗 ∈ (1..^𝑅)) → ((𝑃𝑖) ≠ (𝑃𝑗) ↔ ((𝑃 ↾ (1..^𝑅))‘𝑖) ≠ ((𝑃 ↾ (1..^𝑅))‘𝑗)))
7776biimpd 228 . . . . . . . . . . . . 13 ((((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) ∧ 𝑖 ∈ (1..^𝑅)) ∧ 𝑗 ∈ (1..^𝑅)) → ((𝑃𝑖) ≠ (𝑃𝑗) → ((𝑃 ↾ (1..^𝑅))‘𝑖) ≠ ((𝑃 ↾ (1..^𝑅))‘𝑗)))
7877imim2d 57 . . . . . . . . . . . 12 ((((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) ∧ 𝑖 ∈ (1..^𝑅)) ∧ 𝑗 ∈ (1..^𝑅)) → ((𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) → (𝑖𝑗 → ((𝑃 ↾ (1..^𝑅))‘𝑖) ≠ ((𝑃 ↾ (1..^𝑅))‘𝑗))))
7978ralimdva 3102 . . . . . . . . . . 11 (((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) ∧ 𝑖 ∈ (1..^𝑅)) → (∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) → ∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → ((𝑃 ↾ (1..^𝑅))‘𝑖) ≠ ((𝑃 ↾ (1..^𝑅))‘𝑗))))
8079ralimdva 3102 . . . . . . . . . 10 ((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) → (∀𝑖 ∈ (1..^𝑅)∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) → ∀𝑖 ∈ (1..^𝑅)∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → ((𝑃 ↾ (1..^𝑅))‘𝑖) ≠ ((𝑃 ↾ (1..^𝑅))‘𝑗))))
8168, 80syl5bi 241 . . . . . . . . 9 ((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) → (∀𝑖 ∈ (1..^((♯‘𝑃) − 1))∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) → ∀𝑖 ∈ (1..^𝑅)∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → ((𝑃 ↾ (1..^𝑅))‘𝑖) ≠ ((𝑃 ↾ (1..^𝑅))‘𝑗))))
8281adantrd 491 . . . . . . . 8 ((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) → ((∀𝑖 ∈ (1..^((♯‘𝑃) − 1))∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) ∧ ∀𝑖 ∈ {((♯‘𝑃) − 1)}∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗))) → ∀𝑖 ∈ (1..^𝑅)∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → ((𝑃 ↾ (1..^𝑅))‘𝑖) ≠ ((𝑃 ↾ (1..^𝑅))‘𝑗))))
8382adantld 490 . . . . . . 7 ((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) → ((∀𝑖 ∈ {0}∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) ∧ (∀𝑖 ∈ (1..^((♯‘𝑃) − 1))∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) ∧ ∀𝑖 ∈ {((♯‘𝑃) − 1)}∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)))) → ∀𝑖 ∈ (1..^𝑅)∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → ((𝑃 ↾ (1..^𝑅))‘𝑖) ≠ ((𝑃 ↾ (1..^𝑅))‘𝑗))))
8465, 83sylbid 239 . . . . . 6 ((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) → (∀𝑖 ∈ (0..^(♯‘𝑃))∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) → ∀𝑖 ∈ (1..^𝑅)∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → ((𝑃 ↾ (1..^𝑅))‘𝑖) ≠ ((𝑃 ↾ (1..^𝑅))‘𝑗))))
8518, 84mpd 15 . . . . 5 ((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) → ∀𝑖 ∈ (1..^𝑅)∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → ((𝑃 ↾ (1..^𝑅))‘𝑖) ≠ ((𝑃 ↾ (1..^𝑅))‘𝑗)))
86 dff14a 7124 . . . . 5 ((𝑃 ↾ (1..^𝑅)):(1..^𝑅)–1-1→V ↔ ((𝑃 ↾ (1..^𝑅)):(1..^𝑅)⟶V ∧ ∀𝑖 ∈ (1..^𝑅)∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → ((𝑃 ↾ (1..^𝑅))‘𝑖) ≠ ((𝑃 ↾ (1..^𝑅))‘𝑗))))
8716, 85, 86sylanbrc 582 . . . 4 ((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) → (𝑃 ↾ (1..^𝑅)):(1..^𝑅)–1-1→V)
88 df-f1 6423 . . . 4 ((𝑃 ↾ (1..^𝑅)):(1..^𝑅)–1-1→V ↔ ((𝑃 ↾ (1..^𝑅)):(1..^𝑅)⟶V ∧ Fun (𝑃 ↾ (1..^𝑅))))
8987, 88sylib 217 . . 3 ((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) → ((𝑃 ↾ (1..^𝑅)):(1..^𝑅)⟶V ∧ Fun (𝑃 ↾ (1..^𝑅))))
9089simprd 495 . 2 ((𝜑 ∧ 1 < ((♯‘𝑃) − 1)) → Fun (𝑃 ↾ (1..^𝑅)))
91 funcnv0 6484 . . 3 Fun
9219nn0zd 12353 . . . . . . . . . . . . 13 (𝜑 → (♯‘𝑃) ∈ ℤ)
93 peano2zm 12293 . . . . . . . . . . . . 13 ((♯‘𝑃) ∈ ℤ → ((♯‘𝑃) − 1) ∈ ℤ)
9492, 93syl 17 . . . . . . . . . . . 12 (𝜑 → ((♯‘𝑃) − 1) ∈ ℤ)
9594zred 12355 . . . . . . . . . . 11 (𝜑 → ((♯‘𝑃) − 1) ∈ ℝ)
96 1red 10907 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℝ)
9795, 96lenltd 11051 . . . . . . . . . 10 (𝜑 → (((♯‘𝑃) − 1) ≤ 1 ↔ ¬ 1 < ((♯‘𝑃) − 1)))
9897biimpar 477 . . . . . . . . 9 ((𝜑 ∧ ¬ 1 < ((♯‘𝑃) − 1)) → ((♯‘𝑃) − 1) ≤ 1)
995, 98eqbrtrid 5105 . . . . . . . 8 ((𝜑 ∧ ¬ 1 < ((♯‘𝑃) − 1)) → 𝑅 ≤ 1)
100 1zzd 12281 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℤ)
1015, 94eqeltrid 2843 . . . . . . . . . . 11 (𝜑𝑅 ∈ ℤ)
102100, 101jca 511 . . . . . . . . . 10 (𝜑 → (1 ∈ ℤ ∧ 𝑅 ∈ ℤ))
103102adantr 480 . . . . . . . . 9 ((𝜑 ∧ ¬ 1 < ((♯‘𝑃) − 1)) → (1 ∈ ℤ ∧ 𝑅 ∈ ℤ))
104 fzon 13336 . . . . . . . . . 10 ((1 ∈ ℤ ∧ 𝑅 ∈ ℤ) → (𝑅 ≤ 1 ↔ (1..^𝑅) = ∅))
105104bicomd 222 . . . . . . . . 9 ((1 ∈ ℤ ∧ 𝑅 ∈ ℤ) → ((1..^𝑅) = ∅ ↔ 𝑅 ≤ 1))
106103, 105syl 17 . . . . . . . 8 ((𝜑 ∧ ¬ 1 < ((♯‘𝑃) − 1)) → ((1..^𝑅) = ∅ ↔ 𝑅 ≤ 1))
10799, 106mpbird 256 . . . . . . 7 ((𝜑 ∧ ¬ 1 < ((♯‘𝑃) − 1)) → (1..^𝑅) = ∅)
108107reseq2d 5880 . . . . . 6 ((𝜑 ∧ ¬ 1 < ((♯‘𝑃) − 1)) → (𝑃 ↾ (1..^𝑅)) = (𝑃 ↾ ∅))
109 res0 5884 . . . . . 6 (𝑃 ↾ ∅) = ∅
110108, 109eqtrdi 2795 . . . . 5 ((𝜑 ∧ ¬ 1 < ((♯‘𝑃) − 1)) → (𝑃 ↾ (1..^𝑅)) = ∅)
111110cnveqd 5773 . . . 4 ((𝜑 ∧ ¬ 1 < ((♯‘𝑃) − 1)) → (𝑃 ↾ (1..^𝑅)) = ∅)
112111funeqd 6440 . . 3 ((𝜑 ∧ ¬ 1 < ((♯‘𝑃) − 1)) → (Fun (𝑃 ↾ (1..^𝑅)) ↔ Fun ∅))
11391, 112mpbiri 257 . 2 ((𝜑 ∧ ¬ 1 < ((♯‘𝑃) − 1)) → Fun (𝑃 ↾ (1..^𝑅)))
11490, 113pm2.61dan 809 1 (𝜑 → Fun (𝑃 ↾ (1..^𝑅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  Vcvv 3422  cun 3881  wss 3883  c0 4253  {csn 4558   class class class wbr 5070  ccnv 5579  cres 5582  Fun wfun 6412  wf 6414  1-1wf1 6415  cfv 6418  (class class class)co 7255  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   < clt 10940  cle 10941  cmin 11135  cn 11903  2c2 11958  0cn0 12163  cz 12249  cuz 12511  ..^cfzo 13311  chash 13972  Word cword 14145
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-hash 13973  df-word 14146
This theorem is referenced by:  pthd  28038
  Copyright terms: Public domain W3C validator