| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funcnvcnv | Structured version Visualization version GIF version | ||
| Description: The double converse of a function is a function. (Contributed by NM, 21-Sep-2004.) |
| Ref | Expression |
|---|---|
| funcnvcnv | ⊢ (Fun 𝐴 → Fun ◡◡𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvcnvss 6170 | . 2 ⊢ ◡◡𝐴 ⊆ 𝐴 | |
| 2 | funss 6538 | . 2 ⊢ (◡◡𝐴 ⊆ 𝐴 → (Fun 𝐴 → Fun ◡◡𝐴)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (Fun 𝐴 → Fun ◡◡𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊆ wss 3917 ◡ccnv 5640 Fun wfun 6508 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-fun 6516 |
| This theorem is referenced by: funcnvres2 6599 inpreima 7039 difpreima 7040 f1oresrab 7102 sbthlem8 9064 fin1a2lem7 10366 cnclima 23162 iscncl 23163 qtopcld 23607 qtoprest 23611 qtopcmap 23613 rnelfmlem 23846 fmfnfmlem3 23850 mbfimaicc 25539 ismbf3d 25562 i1fd 25589 gsummpt2co 32995 |
| Copyright terms: Public domain | W3C validator |