| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funcnvcnv | Structured version Visualization version GIF version | ||
| Description: The double converse of a function is a function. (Contributed by NM, 21-Sep-2004.) |
| Ref | Expression |
|---|---|
| funcnvcnv | ⊢ (Fun 𝐴 → Fun ◡◡𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvcnvss 6183 | . 2 ⊢ ◡◡𝐴 ⊆ 𝐴 | |
| 2 | funss 6555 | . 2 ⊢ (◡◡𝐴 ⊆ 𝐴 → (Fun 𝐴 → Fun ◡◡𝐴)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (Fun 𝐴 → Fun ◡◡𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊆ wss 3926 ◡ccnv 5653 Fun wfun 6525 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-fun 6533 |
| This theorem is referenced by: funcnvres2 6616 inpreima 7054 difpreima 7055 f1oresrab 7117 sbthlem8 9104 fin1a2lem7 10420 cnclima 23206 iscncl 23207 qtopcld 23651 qtoprest 23655 qtopcmap 23657 rnelfmlem 23890 fmfnfmlem3 23894 mbfimaicc 25584 ismbf3d 25607 i1fd 25634 gsummpt2co 33042 |
| Copyright terms: Public domain | W3C validator |