![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funcnvcnv | Structured version Visualization version GIF version |
Description: The double converse of a function is a function. (Contributed by NM, 21-Sep-2004.) |
Ref | Expression |
---|---|
funcnvcnv | ⊢ (Fun 𝐴 → Fun ◡◡𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvcnvss 6225 | . 2 ⊢ ◡◡𝐴 ⊆ 𝐴 | |
2 | funss 6597 | . 2 ⊢ (◡◡𝐴 ⊆ 𝐴 → (Fun 𝐴 → Fun ◡◡𝐴)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (Fun 𝐴 → Fun ◡◡𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3976 ◡ccnv 5699 Fun wfun 6567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-fun 6575 |
This theorem is referenced by: funcnvres2 6658 inpreima 7097 difpreima 7098 f1oresrab 7161 sbthlem8 9156 fin1a2lem7 10475 cnclima 23297 iscncl 23298 qtopcld 23742 qtoprest 23746 qtopcmap 23748 rnelfmlem 23981 fmfnfmlem3 23985 mbfimaicc 25685 ismbf3d 25708 i1fd 25735 gsummpt2co 33031 |
Copyright terms: Public domain | W3C validator |