| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funcnvcnv | Structured version Visualization version GIF version | ||
| Description: The double converse of a function is a function. (Contributed by NM, 21-Sep-2004.) |
| Ref | Expression |
|---|---|
| funcnvcnv | ⊢ (Fun 𝐴 → Fun ◡◡𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvcnvss 6147 | . 2 ⊢ ◡◡𝐴 ⊆ 𝐴 | |
| 2 | funss 6505 | . 2 ⊢ (◡◡𝐴 ⊆ 𝐴 → (Fun 𝐴 → Fun ◡◡𝐴)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (Fun 𝐴 → Fun ◡◡𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊆ wss 3905 ◡ccnv 5622 Fun wfun 6480 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-fun 6488 |
| This theorem is referenced by: funcnvres2 6566 inpreima 7002 difpreima 7003 f1oresrab 7065 sbthlem8 9018 fin1a2lem7 10319 cnclima 23171 iscncl 23172 qtopcld 23616 qtoprest 23620 qtopcmap 23622 rnelfmlem 23855 fmfnfmlem3 23859 mbfimaicc 25548 ismbf3d 25571 i1fd 25598 gsummpt2co 33014 |
| Copyright terms: Public domain | W3C validator |