MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcnvcnv Structured version   Visualization version   GIF version

Theorem funcnvcnv 6633
Description: The double converse of a function is a function. (Contributed by NM, 21-Sep-2004.)
Assertion
Ref Expression
funcnvcnv (Fun 𝐴 → Fun 𝐴)

Proof of Theorem funcnvcnv
StepHypRef Expression
1 cnvcnvss 6214 . 2 𝐴𝐴
2 funss 6585 . 2 (𝐴𝐴 → (Fun 𝐴 → Fun 𝐴))
31, 2ax-mp 5 1 (Fun 𝐴 → Fun 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wss 3951  ccnv 5684  Fun wfun 6555
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-br 5144  df-opab 5206  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-fun 6563
This theorem is referenced by:  funcnvres2  6646  inpreima  7084  difpreima  7085  f1oresrab  7147  sbthlem8  9130  fin1a2lem7  10446  cnclima  23276  iscncl  23277  qtopcld  23721  qtoprest  23725  qtopcmap  23727  rnelfmlem  23960  fmfnfmlem3  23964  mbfimaicc  25666  ismbf3d  25689  i1fd  25716  gsummpt2co  33051
  Copyright terms: Public domain W3C validator