MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcnvcnv Structured version   Visualization version   GIF version

Theorem funcnvcnv 6645
Description: The double converse of a function is a function. (Contributed by NM, 21-Sep-2004.)
Assertion
Ref Expression
funcnvcnv (Fun 𝐴 → Fun 𝐴)

Proof of Theorem funcnvcnv
StepHypRef Expression
1 cnvcnvss 6225 . 2 𝐴𝐴
2 funss 6597 . 2 (𝐴𝐴 → (Fun 𝐴 → Fun 𝐴))
31, 2ax-mp 5 1 (Fun 𝐴 → Fun 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wss 3976  ccnv 5699  Fun wfun 6567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-fun 6575
This theorem is referenced by:  funcnvres2  6658  inpreima  7097  difpreima  7098  f1oresrab  7161  sbthlem8  9156  fin1a2lem7  10475  cnclima  23297  iscncl  23298  qtopcld  23742  qtoprest  23746  qtopcmap  23748  rnelfmlem  23981  fmfnfmlem3  23985  mbfimaicc  25685  ismbf3d  25708  i1fd  25735  gsummpt2co  33031
  Copyright terms: Public domain W3C validator