| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funcnvcnv | Structured version Visualization version GIF version | ||
| Description: The double converse of a function is a function. (Contributed by NM, 21-Sep-2004.) |
| Ref | Expression |
|---|---|
| funcnvcnv | ⊢ (Fun 𝐴 → Fun ◡◡𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvcnvss 6149 | . 2 ⊢ ◡◡𝐴 ⊆ 𝐴 | |
| 2 | funss 6508 | . 2 ⊢ (◡◡𝐴 ⊆ 𝐴 → (Fun 𝐴 → Fun ◡◡𝐴)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (Fun 𝐴 → Fun ◡◡𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊆ wss 3898 ◡ccnv 5620 Fun wfun 6483 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-fun 6491 |
| This theorem is referenced by: funcnvres2 6569 inpreima 7006 difpreima 7007 f1oresrab 7069 sbthlem8 9018 fin1a2lem7 10308 cnclima 23203 iscncl 23204 qtopcld 23648 qtoprest 23652 qtopcmap 23654 rnelfmlem 23887 fmfnfmlem3 23891 mbfimaicc 25579 ismbf3d 25602 i1fd 25629 gsummpt2co 33059 |
| Copyright terms: Public domain | W3C validator |