Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > funcnvcnv | Structured version Visualization version GIF version |
Description: The double converse of a function is a function. (Contributed by NM, 21-Sep-2004.) |
Ref | Expression |
---|---|
funcnvcnv | ⊢ (Fun 𝐴 → Fun ◡◡𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvcnvss 6026 | . 2 ⊢ ◡◡𝐴 ⊆ 𝐴 | |
2 | funss 6358 | . 2 ⊢ (◡◡𝐴 ⊆ 𝐴 → (Fun 𝐴 → Fun ◡◡𝐴)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (Fun 𝐴 → Fun ◡◡𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3843 ◡ccnv 5524 Fun wfun 6333 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-12 2179 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pr 5296 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-sb 2075 df-clab 2717 df-cleq 2730 df-clel 2811 df-rab 3062 df-v 3400 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-nul 4212 df-if 4415 df-sn 4517 df-pr 4519 df-op 4523 df-br 5031 df-opab 5093 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-fun 6341 |
This theorem is referenced by: funcnvres2 6419 inpreima 6841 difpreima 6842 f1oresrab 6899 sbthlem8 8684 fin1a2lem7 9906 cnclima 22019 iscncl 22020 qtopcld 22464 qtoprest 22468 qtopcmap 22470 rnelfmlem 22703 fmfnfmlem3 22707 mbfimaicc 24383 ismbf3d 24406 i1fd 24433 gsummpt2co 30885 |
Copyright terms: Public domain | W3C validator |