MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcnvcnv Structured version   Visualization version   GIF version

Theorem funcnvcnv 6543
Description: The double converse of a function is a function. (Contributed by NM, 21-Sep-2004.)
Assertion
Ref Expression
funcnvcnv (Fun 𝐴 → Fun 𝐴)

Proof of Theorem funcnvcnv
StepHypRef Expression
1 cnvcnvss 6136 . 2 𝐴𝐴
2 funss 6495 . 2 (𝐴𝐴 → (Fun 𝐴 → Fun 𝐴))
31, 2ax-mp 5 1 (Fun 𝐴 → Fun 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wss 3897  ccnv 5610  Fun wfun 6470
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-br 5087  df-opab 5149  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-fun 6478
This theorem is referenced by:  funcnvres2  6556  inpreima  6992  difpreima  6993  f1oresrab  7055  sbthlem8  9002  fin1a2lem7  10292  cnclima  23178  iscncl  23179  qtopcld  23623  qtoprest  23627  qtopcmap  23629  rnelfmlem  23862  fmfnfmlem3  23866  mbfimaicc  25554  ismbf3d  25577  i1fd  25604  gsummpt2co  33020
  Copyright terms: Public domain W3C validator