![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funcnvcnv | Structured version Visualization version GIF version |
Description: The double converse of a function is a function. (Contributed by NM, 21-Sep-2004.) |
Ref | Expression |
---|---|
funcnvcnv | ⊢ (Fun 𝐴 → Fun ◡◡𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvcnvss 6198 | . 2 ⊢ ◡◡𝐴 ⊆ 𝐴 | |
2 | funss 6572 | . 2 ⊢ (◡◡𝐴 ⊆ 𝐴 → (Fun 𝐴 → Fun ◡◡𝐴)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (Fun 𝐴 → Fun ◡◡𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3947 ◡ccnv 5677 Fun wfun 6542 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5149 df-opab 5211 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-fun 6550 |
This theorem is referenced by: funcnvres2 6633 inpreima 7073 difpreima 7074 f1oresrab 7136 sbthlem8 9114 fin1a2lem7 10429 cnclima 23171 iscncl 23172 qtopcld 23616 qtoprest 23620 qtopcmap 23622 rnelfmlem 23855 fmfnfmlem3 23859 mbfimaicc 25559 ismbf3d 25582 i1fd 25609 gsummpt2co 32762 |
Copyright terms: Public domain | W3C validator |