Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  1trld Structured version   Visualization version   GIF version

Theorem 1trld 27916
 Description: In a graph with two vertices and an edge connecting these two vertices, to go from one vertex to the other vertex via this edge is a trail. The two vertices need not be distinct (in the case of a loop). (Contributed by Alexander van der Vekens, 3-Dec-2017.) (Revised by AV, 22-Jan-2021.) (Revised by AV, 23-Mar-2021.) (Proof shortened by AV, 30-Oct-2021.)
Hypotheses
Ref Expression
1wlkd.p 𝑃 = ⟨“𝑋𝑌”⟩
1wlkd.f 𝐹 = ⟨“𝐽”⟩
1wlkd.x (𝜑𝑋𝑉)
1wlkd.y (𝜑𝑌𝑉)
1wlkd.l ((𝜑𝑋 = 𝑌) → (𝐼𝐽) = {𝑋})
1wlkd.j ((𝜑𝑋𝑌) → {𝑋, 𝑌} ⊆ (𝐼𝐽))
1wlkd.v 𝑉 = (Vtx‘𝐺)
1wlkd.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
1trld (𝜑𝐹(Trails‘𝐺)𝑃)

Proof of Theorem 1trld
StepHypRef Expression
1 1wlkd.p . . 3 𝑃 = ⟨“𝑋𝑌”⟩
2 1wlkd.f . . 3 𝐹 = ⟨“𝐽”⟩
3 1wlkd.x . . 3 (𝜑𝑋𝑉)
4 1wlkd.y . . 3 (𝜑𝑌𝑉)
5 1wlkd.l . . 3 ((𝜑𝑋 = 𝑌) → (𝐼𝐽) = {𝑋})
6 1wlkd.j . . 3 ((𝜑𝑋𝑌) → {𝑋, 𝑌} ⊆ (𝐼𝐽))
7 1wlkd.v . . 3 𝑉 = (Vtx‘𝐺)
8 1wlkd.i . . 3 𝐼 = (iEdg‘𝐺)
91, 2, 3, 4, 5, 6, 7, 81wlkd 27915 . 2 (𝜑𝐹(Walks‘𝐺)𝑃)
10 funcnvs1 14263 . . 3 Fun ⟨“𝐽”⟩
112cnveqi 5726 . . . 4 𝐹 = ⟨“𝐽”⟩
1211funeqi 6357 . . 3 (Fun 𝐹 ↔ Fun ⟨“𝐽”⟩)
1310, 12mpbir 234 . 2 Fun 𝐹
14 istrl 27475 . 2 (𝐹(Trails‘𝐺)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ Fun 𝐹))
159, 13, 14sylanblrc 593 1 (𝜑𝐹(Trails‘𝐺)𝑃)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2115   ≠ wne 3013   ⊆ wss 3918  {csn 4548  {cpr 4550   class class class wbr 5047  ◡ccnv 5535  Fun wfun 6330  ‘cfv 6336  ⟨“cs1 13938  ⟨“cs2 14192  Vtxcvtx 26778  iEdgciedg 26779  Walkscwlks 27375  Trailsctrls 27469 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5171  ax-sep 5184  ax-nul 5191  ax-pow 5247  ax-pr 5311  ax-un 7444  ax-cnex 10578  ax-resscn 10579  ax-1cn 10580  ax-icn 10581  ax-addcl 10582  ax-addrcl 10583  ax-mulcl 10584  ax-mulrcl 10585  ax-mulcom 10586  ax-addass 10587  ax-mulass 10588  ax-distr 10589  ax-i2m1 10590  ax-1ne0 10591  ax-1rid 10592  ax-rnegex 10593  ax-rrecex 10594  ax-cnre 10595  ax-pre-lttri 10596  ax-pre-lttrn 10597  ax-pre-ltadd 10598  ax-pre-mulgt0 10599 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-ifp 1059  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-nel 3118  df-ral 3137  df-rex 3138  df-reu 3139  df-rab 3141  df-v 3481  df-sbc 3758  df-csb 3866  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-pss 3937  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-tp 4553  df-op 4555  df-uni 4820  df-int 4858  df-iun 4902  df-br 5048  df-opab 5110  df-mpt 5128  df-tr 5154  df-id 5441  df-eprel 5446  df-po 5455  df-so 5456  df-fr 5495  df-we 5497  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-riota 7096  df-ov 7141  df-oprab 7142  df-mpo 7143  df-om 7564  df-1st 7672  df-2nd 7673  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-card 9352  df-pnf 10662  df-mnf 10663  df-xr 10664  df-ltxr 10665  df-le 10666  df-sub 10857  df-neg 10858  df-nn 11624  df-2 11686  df-n0 11884  df-z 11968  df-uz 12230  df-fz 12884  df-fzo 13027  df-hash 13685  df-word 13856  df-concat 13912  df-s1 13939  df-s2 14199  df-wlks 27378  df-trls 27471 This theorem is referenced by:  1pthd  27917  1pthond  27918  upgr1trld  27922
 Copyright terms: Public domain W3C validator